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Abstract—The intelligence behind robotic arms has evolved 

significantly, incorporating advanced methodologies from 

kinematics to brain-computer interfaces. This review critically 

examines the sequential steps in robotic arm control, covering 

Kinematic Analysis, Path Planning, Trajectory Optimization, 

and various Control Techniques, with a particular focus on 

Brain Signal Acquisition and Classification Approaches. While 

substantial progress has been made, key challenges persist. 

Traditional kinematic models often struggle with real-world 

uncertainties, computational inefficiencies, and singularity 

issues, limiting adaptability in dynamic environments. Path 

planning and trajectory optimization face constraints in real-

time applications, where trade-offs between accuracy, 

computational speed, and obstacle avoidance remain critical. 

Control methodologies, from classical techniques to AI-driven 

approaches, must enhance robustness and energy efficiency to 

ensure stability in practical deployments. Furthermore, brain-

controlled robotic arms, despite promising breakthroughs, 

contend with signal variability, low resolution, and the need for 

extensive training, raising concerns about reliability, ethical 

implications, and data privacy. This review consolidates recent 

advancements while addressing the fundamental challenges 

impeding seamless integration in industrial and biomedical 

applications. By bridging these gaps, future research can refine 

robotic arm intelligence, fostering more autonomous, precise, 

and human-integrated systems. 

Keywords—Robotic Arm Control; Kinematic Analysis; Path 

Planning; Trajectory Optimization; Brain Computer Interface. 

I. INTRODUCTION  

Robotic arms (Fig. 1) have historically been fundamental 

to automation, revolutionizing sectors including 

manufacturing, logistics, healthcare, and assistive 

technologies [1]. Their capacity to perform exact, repetitious, 

and intricate jobs with minimal human involvement has 

propelled considerable progress in control approaches. 

Throughout the years, advancements in kinematics 

modelling, path planning, trajectory optimization, and 

intelligent control approaches have empowered robotic arms 

to execute progressively complex tasks. The current 

incorporation of artificial intelligence (AI), reinforcement 

learning, and brain-computer interfaces (BCIs) has enhanced 

their capabilities, facilitating adaptive, autonomous, and 

human-integrated control [2]. Nonetheless, despite the 

considerable potential of these breakthroughs, the realization 

of fully controlled, intelligent robotic arm systems continue 

to pose a substantial barrier owing to technical, 

computational, and ethical constraints [3]. 

 

Fig. 1. Robotics arm control 

The advancement of high-performance control techniques 

is impeded by numerous computational and practical 

limitations. Conventional control techniques, like PID and 

model predictive control, face challenges in sustaining 

efficiency inside dynamic and uncertain contexts, where 

sensor imperfections and external disturbances may 

undermine stability [4]. AI-driven methodologies, although 

providing flexibility, necessitate substantial computational 

resources, vast training datasets, and real-time processing 

abilities, rendering their application in industrial and assistive 

contexts extremely challenging [5]. Moreover, brain-

controlled robotic arms, despite advancements in 

neuroprosthetics and rehabilitation, have low signal-to-noise 
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ratios, user variability, and prolonged calibration durations, 

constraining their practical application. Guaranteeing secure 

and dependable human-robot interaction is a critical issue, 

particularly in high-risk fields such as surgical robotics and 

collaborative automation, where system malfunctions may 

result in severe repercussions [6]. Moreover, ethical concerns 

about data privacy, cognitive strain, and accessibility must be 

resolved as robotic arms become more integrated with 

human-centered applications [7]. 

In addition to these technical obstacles, achieving a 

balance between computing efficiency and adaptability 

continues to be a significant issue in robotic arm control [8]. 

Conventional control systems frequently inadequately 

address environmental uncertainty and sensor noise, 

requiring the implementation of hybrid control frameworks 

that integrate classical model-based methods with machine 

learning-enhanced flexibility [9]. Moreover, BCI-driven 

robotic systems, despite transforming neuroprosthetics, must 

address neurological variability, inconsistent signal 

acquisition, and the requirement for extensive user training 

prior to reliable implementation in practical applications. As 

robotic arms gain autonomy, it is essential to address safety, 

robustness, and interpretability within AI-based and neural 

control frameworks to ensure reliable, human-compatible 

robotic assistance [10]. 

This review aims to bridge that gap by systematically 

analyzing key methodologies, highlighting their 

interdependencies, and identifying the most promising 

research directions, As illustrated in Fig. 2, which explains 

the study methodology by reviewing the series of operations 

required to control the robotic arm. A critical assessment of 

existing approaches is provided, addressing their strengths, 

limitations, and applicability to real-world scenarios. This 

study follows a structured methodology to ensure a balanced 

and rigorous review. It synthesizes research findings from 

diverse sources, including classical control theories, 

optimization techniques, artificial intelligence-based 

strategies, and brain-machine interfaces. 

 

Fig. 2. The methodology of the review study 

The paper critically evaluates computational efficiency, 

adaptability, robustness, and ethical considerations 

associated with these control methodologies. By integrating 

insights from kinematic modeling to cognitive control 

mechanisms, this review serves as a roadmap for researchers 

and practitioners aiming to enhance robotic arm intelligence 

and autonomy. The goal is to provide a holistic, forward-

looking perspective on robotic arm control, identifying 

challenges that hinder real-world implementation and 

guiding future innovations in industrial automation, 

healthcare robotics, and neuroprosthetics. 

Section 2 demonstrates the review of kinematics analysis 

of robotic arms. Section 3 shows the review path planning 

literatures while Section 4 is for trajectory optimization 

literatures. Section 5 starts with control techniques revision 

while Section 6 reviews the brain computer interface fields. 

Section 7 concludes the paper and presents the future work. 

II. ROBOTIC ARM KINEMATICS ANALYSIS 

Understanding the motion and behavior of robotic arms is 

essential for their effective usage and control, with 

kinematics analysis serving as a cornerstone in this endeavor. 

This analysis makes a specialty of two essential standards: 

forward kinematics (FK) and inverse kinematics (IK) [11]. 

Forward kinematics involves determining the end-effector's 

role and orientation based on joint angles or lengths, 

facilitating unique control and manipulation through 

mapping the robotic arm's joint space to its mission space. 

Conversely, inverse kinematics includes figuring out joint 

configurations to reap favored end-effector positions and 

orientations, permitting autonomous computation of required 

joint angles for duties that include manipulation, grasping, 

and trajectory execution [12]. 

As in Fig. 3, traditional techniques for kinematics 

evaluation often rely upon mathematical formulations and 

geometric adjustments, which may be computationally 

extensive and at risk of complexities in robotic arm 

configurations. However, current advancements in soft 

computing strategies, such as neural networks, genetic 

algorithms, and fuzzy common sense, provide alternative 

strategies. These strategies offer sturdy solutions capable of 

handling the non-linearities and uncertainties inherent in 

robotic arm structures, thereby enhancing performance and 

reliability in realistic programs [13]. 

 

Fig. 3. Kinematics analysis problem solving techniques [14] 

A. Traditional Methods 

Traditional methods for robotic arm kinematics rely on 

well-established mathematical and engineering principles to 

determine joint configurations, end-effector positions, and 

movement trajectories. These methods generally fall into two 

categories: analytical and numerical approaches. Analytical 

methods seek exact, closed-form solutions based on 

geometric and algebraic principles, making them highly 

precise but often impractical for complex robotic structures 

[15]. Numerical methods, on the other hand, use iterative 

algorithms to approximate solutions, offering greater 

flexibility at the cost of increased computational load. While 
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these methods provide a solid foundation for robotic arm 

control, their effectiveness is often constrained by factors 

such as kinematic redundancy, singularities, non-linearity, 

and real-time computational feasibility. Understanding these 

methods in depth is essential for evaluating their 

applicability, efficiency, and limitations in modern robotic 

systems [16]. 

A cornerstone of traditional kinematic analysis is the 

Denavit-Hartenberg (DH) convention, which provides a 

standardized mathematical representation for describing 

robotic arm structures. The DH method simplifies forward 

kinematics by systematically defining homogeneous 

transformation matrices, which relate each link of a robotic 

arm to the next through a series of rotational and translational 

transformations [17]. This transformation is governed by four 

key parameters, each uniquely defining the spatial 

relationship between consecutive links, as shown in Fig. 4 

and following [13]: 

• Link Length (aᵢ) – The distance between two successive 

joint axes along the common normal. 

• Link Twist (αᵢ) – The angle of rotation between two 

consecutive joint axes around the common normal. 

• Link Offset (dᵢ) – The displacement along the z-axis 

between two linked joints. 

• Joint Angle (θᵢ) – The rotational movement around the z-

axis of a joint. 

 

Fig. 4. DH parameter assistance frames [18] 

Once the DH parameters are defined, the homogeneous 

transformation matrix for each link is derived using: 
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By sequentially multiplying these transformation 

matrices from the base to the end-effector, the overall 

position and orientation of the robotic arm in 3D space can be 

determined. While the DH convention is a powerful modeling 

tool, it is not without limitations. It struggles with kinematic 

redundancy, singularities, and complex joint configurations, 

particularly in robotic arms with non-serial structures or 

closed-loop mechanisms. Consequently, for more advanced 

robotic systems, alternative formulations such as product of 

exponentials (PoE) representation or optimization-based 

approaches may be required to enhance computational 

efficiency and robustness [19], [20]. 

1) Analytical Methods 

Analytical methods for resolving robotic arm kinematics 

entail formulating explicit mathematical equations that 

connect joint angles to end-effector positions. These 

strategies generally employ geometric, algebraic, or 

trigonometric formulations to derive precise solutions, 

guaranteeing great precision and low computing expense 

when utilised for uncomplicated robotic systems. The main 

benefit of analytical approaches is their deterministic quality, 

which removes the necessity for iterative convergence and 

improves computational efficiency. Nonetheless, their 

efficacy declines for robots possessing six or more degrees of 

freedom (DOF), non-spherical wrists, or complex joint 

limitations, rendering the acquisition of closed-form 

solutions progressively difficult or unattainable. Although 

analytical methods are precise, they encounter difficulties in 

managing singularities and highly redundant systems, 

requiring hybrid approaches that incorporate optimisation or 

heuristic modifications. 

Kucuk and Bingul (2004) highlight those analytical 

approaches are designed to obtain solutions in a mathematical 

form, which improves the efficiency and accuracy of 

calculations. These answers are especially beneficial in 

unconventional robot configurations, where researchers have 

investigated several approaches such as geometric and 

algebraic methodologies. Conversely, numerical approaches 

depend on iterative procedures to discover answers, which 

can offer greater flexibility but often require more computer 

complexity [1]. 

Expanding upon these fundamental ideas, several 

inventive techniques have arisen to address the inverse 

kinematics problem in more intricate situations. Z. Fu, W. 

Yang, and Z. Yang (2013) proposed a new method that 

utilises geometric algebra to address the inverse kinematics 

problem for 6R robot manipulators with an offset wrist. This 

method not only streamlines the computation process but also 

improves numerical stability. The authors substantiated the 

superiority of their approach using simulations, illustrating 

that it surpasses current methodologies in terms of precision 

and computing efficacy [21]. In a similar vein, Li et al. (2023) 

introduced a technique that incorporates variations in 

geometric attributes to enhance the accuracy of inverse 

kinematics computations. The authors successfully 

implemented this technique on a robotic arm with six degrees 

of freedom, resulting in a significant improvement in 

movement accuracy. This finding emphasises the potential 

influence of the technique on industries including 

manufacturing and medicine [2]. 

Alternative mathematical frameworks have been 

investigated by other scholars to address the inverse 

kinematics problem. In their study, M. Wenz and H. Worn 

(2007) conducted a comparison between knowledge-based 

approaches and linear algebra-based techniques. They 

discovered that while knowledge-based methods perform 

well in simpler tasks, linear algebra-based strategies are more 
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efficient in dealing with complex manipulator geometries and 

singularities [22]. In addition, Zaplana et al. (2022) proposed 

the adoption of geometric algebra as a comprehensive 

framework for solving inverse kinematics problems in serial 

robots. This method combines rotations and translations into 

a unified mathematical entity, streamlining computations and 

enhancing both precision and effectiveness. The efficacy of 

the method was confirmed using a six-degree-of-freedom 

robot, showcasing its superiority compared to conventional 

techniques [23]. These achievements demonstrate the 

continuous development of techniques for solving the inverse 

kinematics problem, with each new method enhancing the 

reliability and efficiency of robotic systems. 

2) Numerical Methods 

Numerical approaches offer an alternative to analytical 

answers by utilising iterative algorithms to approximate 

inverse kinematics (IK) solutions. These approaches are 

especially beneficial when closed-form solutions are 

unattainable, as they can handle intricate kinematic 

configurations, redundancy, and limitations. The prevalent 

numerical techniques are Newton-Raphson iterations, 

gradient descent methods, and Jacobian-based algorithms, 

including the Jacobian Inverse and Jacobian Transpose 

methods. Although these strategies are versatile, they entail 

considerable processing demands, necessitating numerous 

iterations to achieve an optimal solution. Moreover, 

numerical approaches exhibit sensitivity to initial 

circumstances, are susceptible to divergence in ill-

conditioned systems, and require substantial computer 

resources, hence complicating real-time applications. To 

resolve these challenges, researchers frequently employ 

regularization techniques or optimisation heuristics to 

enhance numerical stability and convergence rates. 

Arikawa (2020) introduced a symbolic computation 

technique that extends the methodology proposed by 

Raghavan and Roth. This approach employs a computer 

algebra system to translate the outcomes into a symbolic 

representation. This method greatly enhances the precision 

and effectiveness of inverse kinematics computations for 6R 

manipulators. Arikawa's methodology was evaluated using 

different 6R manipulators, and the findings verified its 

efficacy in accurately computing the inverse kinematics for 

all tested setups. This represents a significant advancement in 

robotics by providing a more efficient solution for universal 

6R manipulators [24]. 

Recent progress in the field includes the research 

conducted by Shen et al. (2021), who developed a new 

parallel manipulator with symbolic kinematics. This 

manipulator incorporates partial decoupling, allowing for 

three degrees of freedom in translation. This design is 

especially well-suited for applications that need a high level 

of precision, such as micro/nano manipulation and assembly. 

The authors utilised symbolic kinematics to obtain both the 

forward and inverse kinematic equations, hence improving 

computational efficiency. Their methodology, which 

integrates analytical and numerical techniques, was 

employed to compute the operational range of the 

manipulator. When compared to conventional manipulators, 

the suggested design offers a greater range of movement and 

enhanced motion homogeneity. This highlights its promise in 

precision-driven fields [25]. Significant advancements have 

been made in the research of iterative and numerical methods 

for inverse kinematics. Aristidou and Lasenby (2009) 

conducted a thorough examination of several methods, 

including analytical, numerical, and hybrid approaches, and 

also developed a new iterative solver. Their work emphasised 

the constraints of analytical approaches when applied to 

intricate systems and the adaptability of iterative procedures, 

although the latter may encounter difficulties with 

convergence and computational complexity. The authors' 

introduced iterative solution exhibited higher performance, 

accuracy, and resilience in comparison to current algorithms 

[20]. 

In a similar manner, Saad (2018) devised a 

comprehensive numerical method to solve a 6-degree-of-

freedom fully-articulated manipulator, which was executed 

using MATLAB. The algorithm provided shown superior 

performance in terms of both accuracy and efficiency 

compared to other approaches. It has potential uses in 

controlling robotic arms and planning paths [26]. In their 

study, Iakovlev et al. (2020) highlighted the efficacy of 

iterative methods in determining accurate locations and 

orientations for robotic manipulators. These techniques 

involve calculating joint angles repeatedly to achieve precise 

results. Their approach demonstrated exceptional precision 

and effectiveness in solving the inverse kinematics problem 

of a 6-degree-of-freedom robotic manipulator [27]. In their 

2023 publication, Quiñonez Y. et al. introduced a numerical 

technique called the Iterative Optimal Solution Trajectory via 

𝜁𝑣-Homotopy Former (IOSTV 𝜁𝑣 - HF). This technique is 

specifically designed to minimise oscillations and ensure 

smooth and stable trajectories for robotic systems. This 

versatile technique consistently shown high velocity and 

reduced deviations in jobs involving following a specific 

path, making it a flexible tool for a wide range of robotic 

applications [28]. 

Despite their prevalent usage, traditional methods to 

robotic arm kinematics encounter numerous intrinsic 

obstacles that affect their efficiency and usability in practical 

situations. Analytical approaches, despite their mathematical 

rigour, prove impracticable for high-DOF robotic arms, as 

obtaining accurate solutions is often infeasible or 

computationally prohibitive due to the nonlinear 

characteristics of joint interactions. These approaches also 

encounter difficulties with singularities, where little 

alterations in joint angles can result in significant, 

unanticipated motions of the end-effector, culminating in a 

loss of control [29]. Numerical approaches, while more 

adaptable, provide distinct issues such as elevated computing 

expenses, sensitivity to starting estimates, and sluggish 

convergence. The dependence on iterative methods renders 

them less appropriate for real-time control, as they demand 

considerable computer resources and may not yield a viable 

solution in time-critical scenarios. Moreover, in highly 

dynamic situations characterized by external influences and 

sensor noise that create unpredictability, both analytical and 

numerical methods exhibit a lack of flexibility, necessitating 

the use of hybrid or AI-enhanced techniques to attain 
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robustness. Addressing these constraints is a vital focus of 

inquiry in robotic kinematics and control [30]. 

B. Optimization Based Methods 

Optimization-based methods provide a sophisticated 

technique for addressing inverse kinematics by framing the 

issue as an optimisation problem, aiming to identify a joint 

configuration that meets specified constraints while 

optimising for factors such as minimal energy consumption, 

collision avoidance, or smooth trajectory generation. These 

methods are especially advantageous for high-DOF robotic 

arms, when conventional techniques encounter challenges 

related to complexity and computing viability. Common 

methodologies encompass Particle Swarm Optimisation 

(PSO), Genetic Algorithms (GA), and Sequential Quadratic 

Programming (SQP), each presenting unique benefits 

regarding convergence velocity, adaptability, and 

management of nonlinear constraints. In contrast to analytical 

and numerical methods, optimization-based approaches offer 

versatility in managing redundancy, workspace limitations, 

and dynamic impediments, rendering them ideal for real-time 

adaptive control. These methods necessitate meticulous 

parameter calibration, substantial computer resources, and 

clearly stated cost functions, as wrong formulation may result 

in poor or unstable solutions [31], [32]. 

1) Particle Swarm Optimization 

Particle Swarm Optimisation (PSO) has become more 

popular in recent years as a highly efficient approach for 

solving the inverse kinematics problem in robotic systems. 

PSO algorithm is a computational technique that draws 

inspiration from the collective behaviour of birds flocking or 

fish schooling, as shown in Fig. 5. In this algorithm, a group 

of potential solutions, referred to as particles, navigate around 

the solution space in order to locate the most optimal solution. 

Each particle adapts its position based on its own past 

experiences and the experiences of nearby particles, giving it 

a resilient and effective method for solving intricate 

optimisation problems [33]. 

 

Fig. 5. Comparison between birds’ swarm hunting technique and PSO 

algorithm [23] 

Alkayyali and Tutunji (2019) introduced a solution based 

on PSO to tackle the inverse kinematics problem in the field 

of robotic arm manipulators. Their methodology utilises 

swarm optimisation to efficiently discover optimal solutions 

for the configurations of a robotic arm, specifically for a 

robotic arm with six DOF. The findings indicated that this 

strategy, based on PSO, exhibited higher convergence in 

terms of both speed and accuracy when compared to other 

competing strategies. This highlights the versatility and 

efficiency of the PSO-based method across different types of 

robotic arm manipulators [34]. 

Deng and Xie (2021) made improvements to the PSO 

technique, specifically designed for serial robotic 

manipulators with multiple DOF. Their approach included a 

novel fitness function that took into account the constraints 

on joint mobility and the distance between the end effector 

and the target. Additionally, they employed a dynamic 

parameter setting technique and an adaptive inertia weight. 

The enhancements resulted in quicker convergence and 

increased precision, surpassing both PSO-based and non-

PSO-based methods in their investigation, demonstrating the 

method's potential in robotics applications [36]. The work of 

Danaci H. et al. (2023) demonstrates additional progress in 

PSO for inverse kinematics. They successfully utilised a PSO 

approach to obtain convergence for a comprehensive end-

effector position. The authors showcased the parallelization 

of inverse kinematic calculations utilising POSIX threads by 

utilising the Baxter Research Robot, which is equipped with 

two seven-joint arms, as a demonstration platform. This 

method enabled the simultaneous processing of the collective 

movement of the swarm particles, resulting in a substantial 

improvement in computational efficiency. The technology 

may be easily adjusted to work with any traditional serial 

robotic manipulator, highlighting its wide range of 

applications and the ongoing development of PSO in the field 

of robotics [37]. 

2) Genetic Algorithm 

Genetic Algorithms (GA) are a type of optimisation 

algorithms that draw inspiration from the process of natural 

selection as in Fig. 6. In this process, the most fit individuals 

are chosen for reproduction, resulting in the production of 

offspring for the following generation. GA are highly 

efficient at addressing intricate optimisation issues through 

the iterative evolution of a population of potential solutions. 

This concept has been extensively utilised in the realm of 

robotics, particularly for addressing the inverse kinematics 

problem. This challenge involves determining the joint 

angles required to position a robot's end-effector at a certain 

location [38]. 

 

Fig. 6. Genetic algorithm vs biological background 
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In the early 2000s, Her and M Karkoub (2002) proposed 

a new method that integrates fuzzy logic and GA to calculate 

the inverse kinematics solution of a robot. GA was utilised to 

optimise the parameters of the fuzzy logic system. This 

involved iteratively adjusting the system's parameters and 

membership functions in order to improve the accuracy and 

convergence of the inverse kinematics solution. Although the 

experimental findings showed that fuzzy logic 

approximations were beneficial, the study also pointed out 

that employing these approximations in highly accurate 

settings could result in inaccuracies in the inverse kinematics 

solutions [39]. Köker (2013) proposed a method that utilises 

neural networks to minimise mistakes in robotic manipulators 

by incorporating evolutionary algorithms into inverse 

kinematics. This approach utilises a genetic algorithm to 

instruct the neural network in minimizing the positioning 

error of the end-effector. The fitness function employed in 

this approach evaluates the neural network's performance and 

chooses the most ideal members for future generations. The 

findings demonstrated that this approach successfully solved 

the inverse kinematics issue, with an average discrepancy of 

only 0.3 mm in a 6-DOF robotic manipulator [40]. 

Zhou et al. (2018) made significant progress in using 

machine learning and genetic algorithms for inverse 

kinematics. They utilised the Extreme Learning Machine 

(ELM) in conjunction with a Sequential Mutation Genetic 

Algorithm (SMGA) to tackle the problem. The ELM 

approach is used to forecast the joint angles needed to place 

the end-effector, and the SMGA is then employed to refine 

these forecasts and determine the most optimal solution. The 

ELM-SMGA method was found to be superior to other 

commonly used methodologies in terms of both accuracy and 

efficiency, making it a reliable solution for inverse 

kinematics in robotics [41]. In their study, Hernandez-

Barragan et al. (2022) put out an approach that utilises 

metaheuristic optimisation, notably Genetic Algorithms, to 

address the inverse kinematics problem in mobile dual-arm 

robots. Their methodology, which circumvents the utilisation 

of the Jacobian matrix, adeptly tackles concerns pertaining to 

singularities and is especially suitable for coordinated 

manipulation tasks. The precision and effectiveness of this 

strategy were proved through validation using simulation and 

real-world experiments with the KUKA Youbot robot. This 

validates its applicability for both coordinated and non-

coordinated operations [42]. 

3) Novel Methods 

Research in robotics has resulted in the development of 

novel strategies that utilise diverse algorithms and 

optimisation methods to solve IK challenge. In 2008, Courty 

and Arnaud proposed a technique named "Inverse Kinematics 

by Particle Filtering." This approach combines Sequential 

Monte Carlo (SMC) methods with particle filtering to 

efficiently solve the inverse kinematics problem for a human 

arm model. This method employs a set of particles to 

represent possible combinations of joint positions. These 

particles are adjusted based on data from sensors, and have 

been proven effective in monitoring arm motion in real time. 

This approach also shows potential for use in fields like 

motion capture and robotics [43]. Martin et al. (2018) 

introduced the natural-Cyclic Coordinate Descent (CCD) 

algorithm, a new approach developed to address the IK 

problem for hyper-redundant and soft robots with a large 

number of degrees of freedom. This method utilises the 

principle of natural curvature in the robot's configuration 

space to direct the optimisation process. It enables gradual 

modifications of joint angles until the desired end-effector 

position is reached [44]. In their study, Amiri M. et al. (2021) 

presented a novel approach called Genetic-Swarm 

Optimisation (GSO) to tackle the IK problem in robotic arms. 

This approach combines the advantages of GA and PSO to 

optimise the parameters of a Proportional-Integral-Derivative 

(PID) controller. This leads to a highly efficient control of 

each joint. The usefulness of the methodology was 

demonstrated by validating it using statistical analysis and 

comparing it with typical optimisation approaches. This 

validation process showcased the approach's ability to 

effectively represent and regulate dynamic systems inside a 

virtual environment [45]. 

Optimization-based methods have arisen as effective 

solutions for overcoming the constraints of conventional 

inverse kinematics techniques, especially in intricate robotic 

systems where closed-form solutions are unfeasible. The 

main benefit of these systems is their capacity to manage 

redundant degrees of freedom, workspace limitations, and 

multi-objective functions while optimising for criteria 

including energy efficiency, smooth motion, and collision 

avoidance. Methods provide flexibility, rendering them very 

efficient for real-time path planning and adaptive control in 

dynamic settings. Moreover, optimisation techniques do not 

necessitate detailed system modelling, enabling their 

application to robots with diverse kinematic configurations. 

Nonetheless, these methods possess inherent limitations. 

Their principal constraint is computational expense, as 

optimisation methods frequently necessitate multiple 

iterations to achieve convergence to an ideal solution, 

rendering real-time applications difficult, particularly in 

high-velocity robotic activities. Furthermore, numerous 

optimisation methods depend on precisely defined cost 

functions and hyperparameter adjustment, which may lead to 

inferior performance if configured incorrectly. Moreover, 

global optimisation methods like Genetic Algorithms and 

Particle Swarm Optimisation may experience premature 

convergence or protracted execution periods, hence 

constraining their applicability in situations necessitating 

immediate decision-making. Notwithstanding these hurdles, 

optimization-based methods are crucial for addressing 

inverse kinematics and motion planning issues, and current 

research in parallel computing, metaheuristics, and hybrid 

AI-enhanced frameworks seeks to alleviate these 

computational inefficiencies. 

C. Artificial Intelligence Based Methods 

1) Artificial Neural Network 

Artificial Neural Networks (ANNs) are computational 

models that mimic the structure and function of the human 

brain. They are composed of linked layers of neurones that 

are responsible for processing and transmitting information. 

ANNs have emerged as a highly effective tool in the field of 

robotics, particularly for tackling intricate problems like 

inverse kinematics. Inverse kinematics involves the task of 
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identifying the correct joint angles needed to attain a desired 

position for the end-effector. ANNs are highly suitable for 

solving the inverse kinematics problem due to their 

adaptability and ability to learn, which allows them to 

effectively handle the complex and multi-dimensional 

aspects of the problem [46]. In 2014, AV Duka conducted 

research on the application of neural networks to forecast the 

movement path of robotic arms. The focus was on solving the 

inverse kinematics problem for a robotic arm with six degrees 

of freedom. Duka suggested using a neural network that was 

trained on a dataset generated through forward kinematics to 

create a relationship between joint angles and end-effector 

positions. The outcomes of this methodology, evaluated on a 

simulated robotic arm, exhibited exceptional precision in 

following a desired path with negligible mistakes. The neural 

network-based method demonstrated superior performance 

compared to classic inverse kinematics techniques in terms of 

both accuracy and convergence speed, hence emphasising the 

efficacy of neural networks in this particular field [47].  

ARJ Almusawi, LC Dülger, and D Özdemir (2016) 

devised a new ANN approach to solve the inverse kinematics 

problem of a Denso VP6242 robotic arm, building upon 

previous applications of ANNs. Their approach employed a 

feedforward neural network (FNN) that was trained via 

backpropagation. The FNN consisted of two hidden layers, 

each containing 20 neurones. The FNN effectively produced 

the necessary joint angles for precise robot positioning, 

attaining an average error rate of only 0.0076. The use of 

ANNs in this methodology showed faster and more accurate 

results compared to iterative methods. This highlights the 

potential of ANNs in improving the precision and efficiency 

of robotic arms [48]. In a recent study, Lu et al. (2022) 

presented a sophisticated neural network structure that 

effectively incorporates the position and orientation of a 

robot's end-effectors as input to produce the required joint 

angles. Their model underwent training and testing using 

both simulated and real-world robot data. The results 

demonstrated greater performance in comparison to existing 

methods, such as analytical techniques and numerical 

optimization-based approaches. The model demonstrated a 

level of accuracy above 98% when tested with simulated data 

and exceeding 94% when tested with real robot data, 

highlighting its resilience and suitability for real-world 

situations. This study reinforces the significance of neural 

networks in addressing the inverse kinematics problem, 

especially in situations that demand great accuracy [49]. 

2) Adaptive Neuro-Fuzzy Inference System 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is 

a hybrid intelligent system that synergistically integrates the 

capabilities of neural networks and fuzzy logic. ANFIS 

utilises the capacity of neural networks to enhance the 

performance of fuzzy inference systems, making it an 

effective tool for addressing intricate challenges in robotics, 

such as inverse kinematics. This system has the capability to 

simulate the complex connections between inputs and 

outputs, offering a reliable solution for activities that demand 

accurate control and prediction [50]. 

In a study conducted by J. Narayan and A. Singla (2017), 

they showcased the efficacy of ANFIS in analysing the 

kinematics of a SCARA robot and accurately forecasting its 

trajectory. The ANFIS model accurately predicted the robot's 

joint angles and end-effector location by analysing input and 

output data from testing and simulations. The model achieved 

mean absolute errors between 0.017 and 0.039. This work 

emphasised the capacity of kinematic analysis utilising 

ANFIS to improve the accuracy and effectiveness of robotic 

systems [51]. Desmukh and colleagues (2021) utilised the 

ANFIS model to address the inverse kinematics and forward 

dynamics of a 3-DOF serial manipulator. Their methodology 

combined the benefits of neural networks and fuzzy logic, 

meticulously choosing input and output variables, and 

training the ANFIS model to produce precise forecasts. The 

simulation findings validated the efficacy of the ANFIS-

based approach in addressing the inverse kinematics and 

forward dynamics of the manipulator, showcasing its 

suitability in intricate robotic systems [52].  

In a recent study, MRA Refaai (2022) utilised numerous 

ANFIS models to enhance the resolution of the inverse 

kinematics problem in a robot arm's trajectory. The work 

aimed to overcome the drawbacks of traditional inverse 

kinematics systems in terms of their accuracy and efficiency. 

It proposed a segmented approach, where the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is employed to 

compute the inverse kinematics for each segment of the robot 

arm. The results suggested that this technique offered a 

superior and more effective solution in comparison to earlier 

methods, demonstrating the capabilities of ANFIS in 

advanced robotics [50]. In addition, Demby et al. (2019) 

investigated the application of Artificial Neural Networks 

(ANNs) and Fuzzy Neural Networks (FNNs) to solve the 

inverse kinematics problem in serial robots. Their research 

compared the performance of artificial neural networks 

(ANNs) with fuzzy neural networks (FNNs), and discovered 

that FNNs surpassed ANNs in terms of both convergence 

speed and accuracy. This highlights the advantages of 

combining fuzzy logic with neural networks for tasks 

involving robotic control and prediction [53].  

AI-based techniques signify a transformative change in 

robotic arm control, providing unparalleled adaptability, 

learning capacities, and job generalization. In contrast to 

conventional techniques that depend on explicit 

mathematical models, AI-driven methodologies empower 

robotic arms to learn from data, rectify errors autonomously, 

and adjust to changing environments. These methods are 

proficient in managing nonlinearities, high-dimensional 

spaces, and intricate joint coordination, rendering them 

especially beneficial for jobs necessitating precise motor 

control, human-robot interaction, and real-time adaptability. 

Furthermore, deep learning models can enhance their 

performance progressively, diminishing the necessity for 

human adjustments and pre-established models. 

Notwithstanding their potential, AI-based methodologies 

possess considerable constraints. A significant challenge is 

data reliance, as deep learning models necessitate extensive, 

high-quality datasets for optimal training. Insufficient 

training samples may lead these models to demonstrate 

inadequate generalization, erratic behaviour, or catastrophic 

forgetting in unfamiliar situations. Moreover, computational 

intensity presents a significant problem, as AI-driven 
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techniques, especially deep learning architectures, require 

substantial processing power and memory, complicating real-

time implementation for low-resource or embedded robotic 

systems. A further disadvantage is the absence of 

interpretability, as numerous AI models function as black 

boxes, complicating error diagnosis and the assurance of 

system reliability in safety-critical applications. As AI 

advances the limits of robotic control, hybrid AI-classical 

control models and explainable AI (XAI) methodologies are 

being investigated to mitigate these issues, hence ensuring 

autonomy and reliability in robotic systems. 

The selection of a suitable kinematic analysis approach 

for robotic arm control is contingent upon several aspects, 

including computational efficiency, precision, real-time 

viability, and adaptation to dynamic settings. Although 

conventional analytical and numerical methods yield 

accurate and deterministic solutions, they frequently 

encounter difficulties with complicated, redundant, or highly 

nonlinear robotic systems. Optimization-based 

methodologies provide enhanced flexibility and robustness; 

nevertheless, they also include computational overhead and 

convergence challenges. AI-driven models utilize data-

driven learning and adaptive control, allowing robotic arms 

to function in unstructured and uncertain situations. 

Nonetheless, these methodologies necessitate substantial 

training datasets, significant computer resources, and 

meticulous calibration to guarantee stability and 

dependability. 

Table I presents a detailed and organized comparison of 

the essential qualities, benefits, drawbacks, computing 

demands, and practical uses of several kinematic analysis 

methods. This comparison study allows researchers and 

engineers to evaluate the trade-offs among several 

methodologies and choose the best appropriate strategy 

according to specific application requirements, system 

limitations, and performance criteria. This study seeks to 

enhance informed decision-making in robotic arm control by 

assessing these elements, thereby reconciling classical 

kinematic formulations with contemporary AI-enhanced 

approaches. 

TABLE I.  COMPARATIVE ANALYSIS OF KINEMATIC ANALYSIS METHODS FOR ROBOTIC ARM 

Method Approach Strengths Weaknesses 
Computational 

Complexity 

Real-Time 

Feasibility 

Handling of 

Redundancy 

Robustness 

to Noise & 

Disturbances 

Applications 

Analytical 

Methods 

Closed-form 

mathematical 

solutions 

using 

algebraic and 

geometric 

methods. 

High precision; 

deterministic; 

low 

computational 

cost for simple 

systems. 

Difficult to apply 

to high-DOF 

systems; 

struggles with 

singularities. 

Low for simple 

systems, but 

grows rapidly 

for complex 

structures. 

High for simple 

robotic arms; 

infeasible for 

complex, 

redundant 

systems. 

Poor; requires 

extra constraints 

for redundant 

manipulators. 

Poor; highly 

sensitive to 

sensor 

inaccuracies 

and 

singularities. 

Simple robotic 

arms, industrial 

manipulators 

with limited 

DOFs. 

Numerical 

Methods 

Iterative 

computational 

techniques to 

approximate 

solutions. 

Flexible for 

complex 

systems; can 

handle 

redundancy and 

constraints. 

Computationally 

expensive; 

sensitive to 

initial 

conditions. 

High due to 

iterative nature 

and 

convergence 

dependencies. 

Limited; may 

be too slow for 

real-time 

adaptive 

control. 

Good; 

numerical 

solvers can 

handle 

redundant 

DOFs. 

Moderate; 

requires 

filtering and 

stabilization 

techniques. 

Complex robotic 

arms, systems 

requiring high 

precision. 

Particle 

Swarm 

Optimization 

(PSO) 

Swarm 

intelligence-

based 

heuristic 

optimization 

method. 

Good 

convergence 

properties; 

handles multi-

objective 

optimization. 

Requires tuning; 

may suffer from 

slow 

convergence. 

Moderate to 

high; depends 

on swarm size 

and iterations. 

Moderate; 

feasible with 

efficient 

implementation. 

Excellent; can 

optimize 

redundant DOFs 

dynamically. 

Good; 

heuristic 

nature allows 

adaptation to 

disturbances. 

Trajectory 

optimization, 

industrial 

automation, bio-

inspired robotics. 

Genetic 

Algorithm 

(GA) 

Evolutionary 

computation-

based global 

optimization 

technique. 

Can explore a 

wide search 

space; effective 

in avoiding 

local minima. 

Performance 

depends on 

parameter 

tuning; 

computationally 

expensive. 

High; 

evolutionary 

operators 

require many 

fitness 

evaluations. 

Limited; 

convergence 

speed can 

hinder real-time 

applications. 

Very good; 

allows 

optimization 

with redundancy 

handling. 

Good; 

mutation and 

crossover 

operators add 

robustness. 

Autonomous 

robotic systems, 

adaptive control 

applications. 

Deep 

Reinforcement 

Learning 

(DRL) [54], 

[55] 

AI-based self-

learning 

framework 

for robotic 

motion 

control. 

Learns optimal 

control 

strategies; 

adapts 

dynamically to 

changing 

environments. 

Requires large 

training datasets; 

prone to 

instability and 

catastrophic 

forgetting. 

Very high; 

requires 

extensive 

computation 

during training. 

High for trained 

models; real-

time inference 

is feasible. 

Good; policy-

based methods 

can optimize 

redundancy. 

Moderate; 

performance 

depends on 

reward 

function 

design. 

Autonomous 

robotics, adaptive 

real-time control. 

Hybrid AI-

Based 

Optimization 

[56], [57] 

Combines AI-

based 

learning 

models with 

optimization 

techniques. 

Can leverage 

AI’s 

adaptability 

with 

optimization’s 

efficiency. 

High 

complexity; 

requires hybrid 

model tuning. 

Very high; 

requires both 

AI and 

optimization 

resources. 

Limited; 

depends on 

computational 

power and 

model 

efficiency. 

Very good; 

adapts 

dynamically to 

constraints. 

Good; AI 

improves 

optimization 

robustness. 

High-precision 

robotics, real-

time adaptation 

in uncertain 

environments. 

Quantum-

Inspired 

Optimization 

[58], [59] 

Utilizes 

quantum 

computing 

principles for 

optimization 

tasks. 

High-speed 

convergence; 

capable of 

handling large 

search spaces 

efficiently. 

Theoretical and 

experimental; 

limited real-

world 

implementations. 

High; requires 

quantum-

inspired solvers 

and specialized 

algorithms. 

Limited; current 

applications are 

still in the 

research phase. 

Potentially 

excellent; but 

practical 

implementations 

are lacking. 

High-

dimensional 

robotics, 

futuristic 

optimization 

models. 

 

Natural-Cyclic 

Coordinate 

Descent 

(CCD) 

Algorithm 

Iterative 

optimization 

method that 

modifies joint 

angles 

sequentially 

to minimize 

Fast 

convergence; 

computationally 

efficient for 

real-time 

applications. 

Can be trapped 

in local minima; 

struggles with 

high-DOF 

redundant 

robots. 

Low to 

moderate; 

depends on 

number of 

iterations. 

High; suitable 

for real-time 

robotic control. 

Moderate; may 

need additional 

constraints for 

redundancy. 

Moderate; 

susceptible to 

local errors 

but stable 

under 

controlled 

conditions. 

Real-time robotic 

motion control, 

inverse 

kinematics in 

manipulators. 
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end-effector 

error. 

Genetic-

Swarm 

Optimization 

(GSO) 

Hybrid 

method 

combining 

GA and PSO 

for improved 

convergence 

and accuracy. 

Enhanced 

search 

efficiency; 

reduces 

premature 

convergence 

issues of GA 

and PSO 

individually. 

Computationally 

expensive; 

hybridization 

increases 

processing 

requirements. 

High; requires 

extensive 

fitness 

evaluations and 

parameter 

tuning. 

Limited; real-

time feasibility 

depends on 

computational 

resources. 

Excellent; 

hybrid approach 

improves 

redundancy 

handling. 

Very good; 

robustness 

improved 

over standard 

GA or PSO. 

Adaptive robotic 

motion control, 

multi-objective 

optimization 

problems. 

Artificial 

Neural 

Networks 

(ANN) 

Data-driven 

learning 

model trained 

on input-

output 

relationships. 

Learns from 

data; adaptable 

to nonlinear 

problems; fast 

inference. 

Requires large 

training datasets; 

can be a black-

box model. 

High; depends 

on model 

architecture and 

training data. 

High for trained 

models; real-

time inference 

is fast. 

Good; neural 

networks can 

model 

redundancy 

implicitly. 

Excellent; 

neural models 

can 

generalize 

well with 

sufficient 

training. 

Medical robotics, 

human-robot 

interaction, real-

time control. 

Neuro-Fuzzy 

Inference 

System (NFIS) 

Hybrid 

system 

combining 

fuzzy logic 

with neural 

networks. 

Interpretable 

learning; 

handles 

uncertainty 

better than pure 

AI models. 

Needs 

significant 

training; model 

complexity 

increases 

computation 

time. 

Moderate to 

high; dependent 

on fuzzy rule 

complexity. 

Moderate; 

hybrid nature 

makes real-time 

application 

challenging. 

Good; fuzzy 

logic adapts to 

redundant inputs 

efficiently. 

Very good; 

fuzzy logic 

handles noisy 

inputs 

effectively. 

Neuroprosthetics, 

adaptive robotics, 

uncertain 

environments. 

III. ROBOTIC ARM PATH PLANNING 

The path planning process as shown in Fig. 7, is essential 

for robotic arms to navigate from their starting positions to 

desired goals while avoiding obstacles and adhering to 

kinematic constraints. Real-world tasks often demand 

coordinated and obstacle-free movement, especially for 

robotic arms with six degrees of freedom (6 DOF), which 

offer increased flexibility. However, achieving effective path 

planning is challenging due to the irregularity of obstacles, 

limited visibility, and intricate geometries present in real-

world environments [60]. 

 

Fig. 7. Path planning process 

To simplify path planning, Cartesian motion planning 

methods as mentioned in Table II, focus on specifying the 

desired trajectory of the robotic arm's end-effector directly in 

Cartesian space, defined by its position and orientation. 

These methods manipulate the end-effector's Cartesian 

coordinates, often disregarding joint angles, making them 

particularly effective for tasks requiring precise positioning 

and orientation control, such as pick-and-place operations in 

manufacturing. Cartesian motion planning methods offer 

straightforward solutions to complex path planning problems 

and are adaptable to various robotic arm configurations and 

environments [61]. 

Learning by demonstration methods for robotic arm path 

planning, which mentioned in Table II. offer an alternative 

approach by teaching the robot how to perform tasks through 

observed demonstrations provided by a human operator or 

another robot. These methods leverage machine learning 

techniques such as imitation learning and reinforcement 

learning to extract patterns and strategies from demonstrated 

motions. By learning from demonstrations, robotic arms 

acquire task-specific knowledge and adapt their path 

planning strategies to different scenarios autonomously. This 

capability allows them to improve their performance over 

time through experience and feedback, making learning by 

demonstration methods valuable tools for applications where 

manual programming or predefined trajectories are 

impractical or insufficient [62]. 

Path planning is a critical difficulty in robotic arm control, 

since it influences the efficiency, precision, and adaptability 

of motion execution in dynamic situations. The diverse path 

planning methodologies examined in this research present 

unique benefits and limitations, affecting their 

appropriateness for particular applications. Conventional 

geometric and graph-based techniques, including visibility 

graphs and A algorithms*, deliver deterministic and 

computationally efficient solutions, rendering them 

appropriate for structured situations. Nonetheless, they 

encounter difficulties in high-dimensional environments, 

real-time adaptability, and dynamic obstacle evasion. 

Sampling-based techniques, such as Rapidly-exploring 

Random Trees (RRT) and Probabilistic Roadmaps (PRM), 

provide superior scalability in high-dimensional and crowded 

settings, but with the trade-off of non-deterministic outcomes 

and the possibility of inferior trajectories [79], [80], [81], 

[82]. 
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TABLE II.  PATH PLANNING METHODS SUMMERY  

Method Planning Method Trajectory generation method 
Authors and 

Year 
Robot DOF Application 

C
a

r
te

si
a

n
 m

o
ti

o
n

 p
la

n
n

in
g

 

Fourier approximation 

Joint trajectories 

obtained through 
motion builder 

(AutoCAD). 

(Kim, 2014) 
[63] 

Four DOFs 

Joint and muscle 

rehabilitation: 

frozen shoulder 

Optimization 

method based on Riemannian 
geometry 

Geodesic curves. 

(Soltani-

Zarring, 
2017) [64] 

Four DOFs 

Rehabilitation and 

activities of daily life 
tasks. 

Task-based 

planning method 
(Circular-arc planning). 

Task analysis in order to find a 

planning task 
(Circular motion). 

(Meng, 2018) 

[65] 
Four DOFs Rehabilitation tasks. 

Planning based on 
minimum-jerk 

model 

Inverse kinematics 

with swivel-angle + 

minimum-jerk 
method. 

(Wang, 2019) 

[66] 
Five DOFs 

Reaching and 
reach-to-grasp 

movements. 

Multi cubic 
Polynomial interpolation 

Method. 

Finds angular 

positions through 
inverse kinematics 

(IK; using reverse coordinate 

method). 

(Li, 2019) [67] Six DOFs 
Reach-to-grasp 

movements. 

Planning based on Potential 

energy minimization. 

Inverse kinematics (IK) resolution 
based on zeroing dynamics method 

(ZD) 

(Li-Zhan, 

2020) [68] 
Six DOFs 

Industrial 
application: 

manipulation 
tasks. 

Planning based quadric 

polynomial coefficients 

optimization. 

Cubic and quadric polynomial 
functions 

Mousa M. 
(2023) [69] 

Six DOFs Laboratory robotic arm 

Planning based fewer nodes and 
edges in the graph 

Graph construction method 
(Malhan R. 
2023) [70] 

Multiple tool 

center points 

(TCPs) 

Industrial 
application 

le
a

r
n

in
g

 b
y

 d
e
m

o
n

st
r
a

ti
o

n
 

Artificial Neural Network 
model. 

Trained ANN 
model used to 

resolve inverse 

kinematics 
problem 

(Chung, 2012) 
[71] 

Five DOFs 

Writing, hand 

waving, beating, 
and throwing a 

ball. 

Gaussian mixture model 

(GMM). 

Gaussian mixture 

regression (GMR) 

(Sabbaghi, 

2014) [72] 
Five DOFs 

Healthcare and 

education 

Modified hidden 

Markov model 

(HMM) (Discrete HMM). 

Trained modified 

HMM. 

(Garrido, 

2016) [73] 
Six DOFs Writing task. 

Neural-network 
(NN) training + 

Dynamic motion primitives 

(DMP) 
computation 

DMP with 

well-defined 
landscape 

attractor, 

(Lauretti, 
2018) [74] 

Six DOFs 
Reaching movements, 

grasping. 

Three distinct 

artificial neural 
networks 

(ANNs). 

Predictive model 
consisted of three 

ANNs 

(Naghibi, 
2020) [75] 

Six DOFs 
ADL movements 

such as eating 

and drinking 

Multilevel 
convolutional 

NN. 

Trajectory 

extraction (by 
OpenPose) + 

threshold-filtering 

method 

(Tao, 2020) 

[76] 
Six DOFs 

Upper-limb 

rehabilitation. 

Deconvolutional 

neural network 

(DNN) 

trained function 

approximation 

DNN. 

(Duburcq, 
2020) [77] 

Six DOFs ---------------- 

Deep reinforcement learning 
Minimize accuracy, energy 

consumption, and smoothness 
Zhang S. 

2023) [78] 
Six DOFs 

Simulations and physical 
experiments 

 

The amalgamation of optimization-based and machine 

learning methodologies has markedly enhanced path 

smoothness, flexibility, and real-time decision-making. 

Nevertheless, these approaches incur substantial 

computational expenses, restricting their practicality for 

resource-limited or safety-sensitive applications. 

Furthermore, learning-based methodologies, such 

Reinforcement Learning (RL) and Neural Motion Planning, 

necessitate substantial training datasets and considerable 

computer resources, which raises issues with generalization, 

stability, and training duration. Moreover, guaranteeing 

effective collision avoidance and dynamic re-planning in 

unstructured and unexpected situations continues to pose a 

significant problem. 

Future investigations in robotic arm route planning should 

concentrate on creating hybrid models that integrate the 

efficacy of traditional methods with the flexibility of AI-

driven techniques. Real-time adaptive algorithms capable of 

dynamically modifying mobility plans based on sensor 

feedback will be essential for enhancing autonomy and 
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safety. Moreover, alleviating the computational demands of 

machine learning-driven planners via streamlined 

architectures, meta-learning, and neuromorphic computing 

may promote their wider implementation in industrial and 

assistive robotics. Ultimately, ethical considerations like 

secure human-robot interaction, transparency in decision-

making, and the dependability of AI-driven motion planning 

must be addressed to guarantee reliable implementation in 

practical applications. 

IV. ROBOTIC ARM TRAJECTORY OPTIMIZATION 

Trajectory optimization is a fundamental aspect of robotic 

arm motion planning, where the primary goal is to determine 

a trajectory that ensures smooth, efficient, and collision-free 

movement. At the core of this process lies the objective 

function, a mathematical expression that defines the criteria 

used to evaluate and optimize the trajectory. The objective 

function serves as a guiding metric for optimization 

algorithms, allowing them to iteratively refine the trajectory 

to achieve better performance [83]. In many cases, trajectory 

optimization is a multi-objective problem, meaning that 

multiple factors must be optimized simultaneously. A general 

form of a multi-objective optimization function can be 

expressed as [32]: 

𝐽 = 𝑤1 . 𝐽1 + 𝑤2. 𝐽2+. . . +𝑤𝑛. 𝐽𝑛 

where each 𝐽𝑖 represents an individual objective (such as 

execution time, energy consumption, or smoothness), and 𝑤𝑖 
are the corresponding weights that determine the relative 

importance of each factor. These weights can be adjusted 

based on application requirements, ensuring that the 

optimization process aligns with the specific goals of the 

robotic system. 

Several key factors influence trajectory optimization in 

robotic arms. Execution time is often minimized to ensure 

fast and efficient movement, particularly in industrial settings 

where productivity is critical. Energy consumption is another 

important consideration, as reducing power usage enhances 

system efficiency and longevity. In addition, ensuring smooth 

joint motion minimizes mechanical wear and improves 

precision, which is crucial for applications such as surgical 

robotics or fine assembly tasks. Path length and joint 

movement minimization are also common optimization 

goals, reducing unnecessary movements that could lead to 

instability or increased computational load [35], [84]. 

Furthermore, safety and environmental interaction play a 

vital role in trajectory planning. Obstacle avoidance is a 

crucial constraint, ensuring that the robotic arm does not 

collide with objects or humans in its workspace. Similarly, 

task-specific constraints, such as maintaining a desired force 

on an object or achieving precise positioning, must be 

incorporated into the optimization process to meet 

operational requirements. The objective function acts as the 

foundation for optimization algorithms, influencing how they 

search for and refine optimal trajectories. By carefully 

defining this function and balancing multiple objectives, 

trajectory optimization can significantly improve robotic arm 

performance, leading to greater efficiency, accuracy, and 

adaptability across various applications [85]. 

Over the years, there has been substantial progress in the 

construction and optimisation of robotic trajectories. Various 

approaches have emerged to improve the efficiency and 

efficacy of robotic systems. Direct transcription approaches 

for optimising limited paths using comprehensive dynamic 

models of robots were first developed by Alexander Heim 

and Oskar Von Stryk in 2000. Their methodology not only 

enhanced the set points of online robot controllers, but also 

showcased its compatibility with existing CAR tools and 

controllers. This was confirmed by simulations and 

experiments conducted on an ABB IRB 6400 industrial robot 

[86]. Expanding upon this basis, Christoph Rösmann et al. 

(2013) introduced the concept of the "timed elastic band" 

issue as a modified version of multi-objective optimisation. 

They utilised the sparse system solvers in the g2o framework 

to effectively tackle the difficulties encountered in VSLAM. 

Their study demonstrated the durability and computational 

effectiveness of these strategies in practical robotic 

experiments [87]. 

Recent progress in trajectory optimisation has been 

concentrated on specialised applications, such as robotic 

grasping in areas with obstructed views. Kahn et al. (2015) 

investigated trajectory optimisation methods that allow 

robots to actively explore their environment and determine 

the best grasping positions even in the presence of obstacles. 

This methodology, which takes into account the robot's 

kinematics, dynamics, and uncertainties in its sensory 

perception, improves the independence and effectiveness of 

robotic manipulation systems in intricate surroundings [88]. 

Rabab Benotsmane et al. (2020) developed a technique called 

"whip-lashing" that improves the movement of a robotic arm 

by maximising its speed and minimising the time it takes to 

complete a motion cycle. This technique is specifically 

designed for a five-degree-of-freedom RV-2AJ manipulator 

arm. Their example study exhibited a 33% decrease in cycle 

time, highlighting the considerable potential of this 

technology to enhance productivity in industrial applications 

[89]. 

Recent studies have further advanced trajectory 

optimisation, namely in the field of specialised robotic 

systems. Su Y et al. (2021) introduced a hybrid optimisation 

approach that combines the hyper-heuristic whale 

optimisation algorithm (HHWOA) with the Gauss pseudo 

spectral method (GPM) to enhance the optimisation of 

reentry trajectories for reusable launch vehicles (RLVs). This 

method, which removes the requirement for user-defined 

beginning estimates, has demonstrated potential in spaceship 

design [85]. Tao Wang et al. (2022) devised a time-domain 

model in the realm of soft robotics to enhance the energy 

efficiency of a fluidic soft robotic arm. They employed the 

interior point approach for optimisation. Their research 

highlights the significance of trajectory optimisation in 

reducing energy consumption while maintaining mobility 

limitations [90]. In addition, Mousa M et al. (2024) 

investigated the utilisation of genetic algorithms to decrease 

the duration required for robotic arms to reach specified 

places. Their research, specifically focussing on the KUKA 

KR 4 R600 robot, demonstrates the superiority of genetic 

algorithms compared to traditional rule-based methods, 
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resulting in dramatically improved operational efficiency 

[18]. 

Table III presents a detailed comparison of trajectory 

optimization algorithms used in robotic arm motion planning. 

It covers traditional, heuristic, and hybrid approaches, 

evaluating them based on advantages, limitations, 

computational complexity, real-time feasibility, constraint 

handling, robustness to disturbances, and applications. The 

comparison highlights the trade-offs between different 

optimization techniques, offering insights into their 

suitability for various robotic applications such as industrial 

automation, high-DOF manipulators, real-time motion 

control, and autonomous robotics. 

 

 

TABLE III.  COMPARATIVE ANALYSIS OF TRAJECTORY OPTIMIZATION ALGORITHMS FOR ROBOTIC ARMS 

Algorithm Approach Advantages Limitations 
Computational 

Complexity 

Real Time 

Feasibility 

Constraint 

Handling 

Robustness 

to 

Disturbances 

Applications 

Direct 

Transcription 

Converts 

trajectory 

optimization 

into a 

parameterized 

optimization 
problem using 

full dynamic 

models. 

Provides 

highly 

accurate set 

points; 

compatible 
with existing 

control tools. 

Computationally 

intensive; 

requires detailed 

dynamic models. 

High Limited 

Strong; 

considers all 

system 

constraints. 

Moderate; 

sensitive to 

model 

inaccuracies. 

Industrial 

robots; high-

precision 

tasks. 

Timed Elastic 

Band (TEB) 

Adjusts a pre-

planned path 

into a time-

parameterized 

trajectory 

using 
optimization 

techniques. 

Enhances 

computational 

efficiency; 

flexible in 

dynamic 
environments 

May struggle 

with high degrees 

of freedom 

(DOF) systems. 

Moderate Moderate 

Good; 

manages 

multiple 

objectives. 

High; proven 

durability in 

experiments. 

Visual 

SLAM; 

autonomous 

robotic arms. 

Genetic 

Algorithm 

(GA) [91], [92] 

Uses 

evolutionary 

principles 

(selection, 

mutation, 

crossover) to 

optimize 
trajectory 

parameters. 

Strong global 

search 

capability; 

avoids local 

minima. 

Computationally 

slow; 

convergence 

depends on 

tuning 
parameters. 

High Limited 

Very good; 

can optimize 

multiple 

objectives. 

Moderate; 

robustness 

depends on 

tuning. 

Adaptive 

motion 

planning; 

high-

complexity 
environments. 

Particle Swarm 

Optimization 

(PSO) [84], 

[93] 

Uses swarm 

intelligence to 

iteratively 

improve 

trajectory 

points. 

Fast 

convergence; 

effective in 

high-

dimensional 

spaces. 

May get stuck in 

local minima; 

performance 

sensitive to 

hyperparameters. 

Moderate to 

High 
Moderate 

Good; 

adaptable to 

various 

constraints. 

Moderate; 

requires 

additional 

mechanisms 

for 

disturbance 

rejection. 

Industrial 

robotics; 

trajectory 

smoothing. 

Whale 

Optimization 

Algorithm 

(WOA) [94], 

[95], [96] 

Inspired by the 
hunting 

behavior of 

whales, 

optimizing 

trajectories via 

encircling, 

spiraling, and 

searching 
strategies. 

Effective at 

finding 

optimal 

solutions; 

good 

convergence. 

Can suffer from 

slow 

convergence; 

parameter tuning 

is crucial. 

Moderate Moderate 

Good; can 

handle 

trajectory 

constraints. 

High; 

adaptive to 

changes. 

Path planning 

for mobile and 

industrial 

robots. 

Gray Wolf 

Optimization 

(GWO) [97], 

[98] 

Mimics 

hierarchical 

hunting 

strategies of 

wolves for 

trajectory 

refinement. 

Strong 

exploration 

and 

exploitation 

balance; 

effective for 

complex path 

planning. 

Computational 

cost increases for 

large search 

spaces. 

Moderate to 

High 
Limited 

Good; 

capable of 

multi-

objective 

optimization. 

High; resilient 

to 

disturbances. 

Multi-

objective 

trajectory 

optimization 

in robotics. 

GCS 

(Geometric 

Complexity 

Simplification) 

[99] 

A framework 
that finds 

better 

trajectories in 

less time by 

simplifying the 

complexity of 

the planning 

problem. 

Efficient in 

high-

dimensional 

complex 

environments; 

reduces 

computation 

time. 

May oversimplify 

in certain 

scenarios; 

applicability 

depends on 

problem 

structure. 

Low to 

Moderate 
High 

Moderate; 

balances 

simplicity 

and 

constraint 

handling. 

High; reliable 

in complex 

settings. 

Autonomous 

navigation; 

high-DOF 

robotic arms. 

RETRO 

(Reactive 

Trajectory 

Employs 
adaptive 

optimization 

techniques for 

Generates 
smooth 

trajectories; 

flexible and 

May require 
complex 

implementation; 

performance 

Moderate High 

Good; 
integrates 

task-specific 

requirements 

High; 

maintains 

performance 

Real-time 
manipulation; 

dynamic 

environments. 
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Optimization) 

[100] 

real-time 

motion 

planning in 

dynamic 

environments 

adaptable; 

real-time 

applicability. 

dependent on 

environment 

dynamics. 

like collision 

avoidance. 

in dynamic 

settings. 

LQR-RRT 

(Linear-

Quadratic 

Regulator 

Rapidly 

Exploring 

Random Tree) 

[101] 

Combines 
sampling-

based planning 

with optimal 

control for 

kinodynamic 

planning. 

Efficiently 
finds feasible 

trajectories; 

handles 

underactuated 

systems. 

Requires accurate 

dynamic models; 

may be 

computationally 

intensive. 

High Limited 

Good; 

manages 

dynamic 

constraints. 

Moderate; 

performance 

depends on 

dynamic 

accuracy. 

High-speed 

trajectory 

planning; 

autonomous 

systems. 

 

The varied methods outlined in this section provide 

distinct benefits for computing efficiency, constraint 

management, and resilience to disruptions. Nevertheless, 

despite the ongoing advancement of these optimisation 

strategies, numerous enduring problems persist that affect 

their application in practical robotic systems. 

Traditional techniques, such Direct Transcription and 

Timed Elastic Band (TEB), offer high-precision trajectory 

planning but are hindered by computing complexity and 

restricted real-time adaptability. Although these technologies 

guarantee fluid and precise movements, they frequently 

necessitate intricate dynamic models and encounter 

difficulties in managing unforeseen disturbances in highly 

dynamic settings. Gradient-based methods such as CHOMP 

and STOMP enhance trajectory refining, hence increasing 

smoothness and practicality. Nevertheless, they frequently 

exhibit sensitivity to initial conditions and may converge to 

local minima, hence constraining their efficacy in intricate 

robotic tasks. 

To tackle these issues, metaheuristic and nature-inspired 

optimisation methods, including GA, PSO, WOA, and GWO, 

have been implemented. These techniques are especially 

efficacious in high-dimensional search spaces, offering 

global optimisation potential while circumventing local 

minima. Nonetheless, their efficacy is significantly 

contingent upon hyperparameter optimisation, and they may 

have protracted convergence, rendering them less suitable for 

time-critical robotic applications. Hybrid methodologies, 

including the Enhanced Multi-Strategy Sparrow Search 

Algorithm and Robotic Trajectory Planning Particle Swarm 

Optimisation (RTPPSO), endeavor to amalgamate the 

advantages of several algorithms, optimising the balance 

between exploration and exploitation to enhance 

convergence rates and resilience. Although these methods 

exhibit potential, their heightened processing requirements 

continue to hinder real-time robotic systems. 

A significant concern in trajectory optimisation is the 

management of restrictions and disturbances. Algorithms 

such as KOMO (Kinematic and Optimization-Based Motion 

Planning) and LQR-RRT offer precise constraint 

management and are adept for intricate robotic systems; 

however, they necessitate accurate dynamic models and may 

incur significant computational costs when utilised for multi-

objective optimisation challenges. Conversely, RETRO 

(Reactive Trajectory Optimisation) and GCS (Geometric 

Complexity Simplification) seek to reduce the complexity of 

motion planning, hence enhancing real-time viability. 

Nevertheless, these techniques may excessively simplify 

trajectory representations, constraining their utility in 

situations characterized by highly dynamic restrictions. 

Future research should concentrate on hybrid trajectory 

optimisation methods that integrate model-based control, 

machine learning, and adaptive real-time re-planning 

strategies. Integrating reinforcement learning with 

neuromorphic computing may save computational overhead 

while preserving resilience and real-time adaptation. 

Moreover, trajectory planning frameworks must incorporate 

real-time sensor feedback loops, allowing robotic arms to 

adapt their movements dynamically in response to 

environmental alterations and unexpected disruptions. 

Finally, ethical and safety aspects in trajectory planning must 

be addressed, especially for robotic systems functioning 

alongside humans, to provide predictable, safe, and 

interpretable motion behaviour. 

By surmounting these obstacles, trajectory optimisation 

algorithms can develop into highly autonomous, intelligent, 

and adaptive control systems, facilitating more efficient and 

reliable robotic arm applications in industrial automation, 

healthcare, and collaborative robotics. 

V. CONTROL TECHNIQUES 

The use of robotic arms encompasses a variety of methods 

for seamless interaction between humans and machines as 

shown in Fig. 8. Voice-controlled methods enable hands-free 

operation through spoken instructions, while vision-based 

methods use computer vision to interpret visual information 

and indicate the environment Collaboration enhances 

cooperation between humans and robots through power 

sharing and physical interaction. Additionally, brain-

computer interface (BCI) techniques enable direct 

communication between the human brain and robotic 

systems, providing unprecedented independence for 

individuals with disabilities These different management 

techniques combine to provide robotic arm capabilities and 

applications in various industries and fields improve [102]. 

A. Voice Control  

Integrating voice recognition technology into robotic 

systems is now a crucial field of study, specifically aimed at 

improving human-robot interaction and increasing 

accessibility for people with impairments. In 2009, B House, 

J Malkin, and J Bilmes presented the VoiceBot, a system that 

uses advanced voice recognition algorithms to comprehend 

and carry out spoken commands. Their research showcased 

the feasibility and reliability of VoiceBot in industrial 

automation and for individuals with impairments, proving its 

ability to greatly improve productivity and user experience 
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through voice-activated control of robotic arms [104]. This 

fundamental research has laid the groundwork for additional 

investigation into voice-operated robotics, specifically in 

specialised domains like surgery and prosthetics. 

 

Fig. 8. Controlling techniques of robotic arms [103] 

Zinchenko, Wu, and Song (2017) conducted a study to 

explore the practicality of utilising speech recognition for the 

purpose of controlling surgical robots. They proposed a 

system that relies on hidden Markov models to read spoken 

commands and translate them into actions performed by the 

robots. Their extensive experimentation validated the 

efficacy and feasibility of this strategy, indicating that speech 

recognition could provide surgeons with a more intuitive and 

efficient means of interacting with robotic equipment during 

procedures [105]. In a study conducted by Kateryna 

Zinchenko and her colleagues in 2018, they extended the use 

of voice control to prosthetic robot arms. They employed a 

highly effective modelling technique and created a system for 

a four-joint RRRR arm. Their approach demonstrated an 11% 

enhancement in voice recognition efficiency compared to 

current methods, underscoring the efficacy of voice 

commands in running prosthetic devices [106]. 

Recent progress in the sector has specifically 

concentrated on enhancing the user-friendliness and 

availability of voice-controlled robotic systems for people 

with disabilities. Pulikottil et al. (2018) assessed the 

effectiveness of a voice-activated control system for assistive 

robotic arms, specifically the JACO2 manipulator, which was 

modified to be controlled by speech commands through the 

Robot Operating System (ROS). Usability tests conducted 

with individuals afflicted by neurodegenerative disorders 

shown a significant inclination towards the voice control 

system, highlighting its capacity to augment patient 

independence and boost quality of life [107]. In a similar 

vein, S. Yuvaraj et al. (2022) sought to develop a cost-

effective and user-friendly robotic arm system utilising 

Arduino Uno, specifically tailored for those with physical 

limitations. The system exclusively depends on voice 

commands, showcasing exceptional precision and 

effectiveness in intricate jobs, significantly enhancing the 

accessibility and usefulness of voice-controlled robots in 

aiding persons with disabilities [108]. 

B. Vision Control  

Computer vision and robotic manipulation have greatly 

enhanced assistive robotic systems, especially for disabled 

individuals. Hairong Jiang et al. developed an advanced 

object tracking, facial recognition, and gesture recognition 

system in 2013. This system controls a wheelchair-mounted 

robotic manipulator for commercial application. This 

specialty technology for severe spinal cord injuries (SCIs) 

achieved 97.5% identification accuracy for an eight-gesture 

lexicon. Using two Kinect cameras, the system can recognise 

hand motions, identify the operator's face features, and 

recognise objects, making it more efficient at recovering 

common objects. The study showed that computer vision-

based solutions can help people with spinal cord injuries 

(SCIs) handle robotic manipulators more efficiently and 

effectively using gesture and facial recognition [109]. 

Vision-based systems have demonstrated considerable 

potential in the field of robotic surgery and object handling. 

Wang et al. (2018) proposed a technique to calibrate dual 

robot arms in minimally invasive surgery using visual 

information from endoscopic camera pictures and robot 

encoder data, eliminating the requirement for external 

tracking sensors. The validity of this approach was confirmed 

by testing it with the da Vinci surgical system. The results 

showed that camera perspective projection geometry is 

highly successful in properly estimating the position of 

surgical tools, considering the limitations of RCM-based 

kinematics [110]. In addition to this, Riasat Khan et al. (2022) 

created a robotic gripper that utilises computer vision to 

choose and arrange objects. Their system, employing the 

PixyCMU camera sensor and OpenCV, demonstrated a 100% 

accuracy in detecting geometric shapes and sizes, as well as 

an 80% accuracy in colour detection. This highlights the 

potential for automated sorting and manipulation tasks in 

diverse applications [111]. 

C. Human Collaboration Control  

Research has focused on improving human-robot 

collaboration by incorporating human-like motion and 

interaction dynamics into humanoid robots. Kupferberg et al. 

(2011) investigated the effects of integrating biological 

motion into humanoid robots. They argued that these motions 

enhance the robots' similarity to humans and hence enhance 

their acceptance as motor partners. The study revealed that 

the utilisation of human-like gestures is essential for 

developing a sense of familiarity and comfort, which are vital 

for achieving successful interactions between humans and 

robots, particularly in environments such as healthcare and 

rehabilitation. This is consistent with prior studies on 

anthropomorphism, highlighting the significance of 

biological motion in enhancing the relatability and 

effectiveness of humanoid robots in collaborative settings 

[112]. 

In addition to these findings, later studies have examined 

various facets of human-robot interaction (HRI) that enhance 

successful collaboration. Sciutti et al. (2012) investigated 

motor resonance, which refers to the synchronisation of 

movements between humans and robots, as a measure of 
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successful human-robot interaction (HRI). The study utilised 

electromyography (EMG) signals to quantify muscle 

activation, yielding valuable insights into the degree of 

involvement and effectiveness of interaction between 

humans and robots [113]. Psarakis, Nathanael, and Marmaras 

(2022) emphasised the significance of anticipatory behaviour 

in enhancing the collaboration between humans and robots. 

Their study showcased that human may improve their 

performance in tasks by accurately anticipating the 

behaviours of robots, particularly when they are supported by 

user-friendly and easily understandable interfaces that offer 

immediate updates on the robot's condition and intentions 

[114]. Peng Zhou et al. (2024) proposed a technique to 

manipulate flexible linear objects in real-time while humans 

and robots work together, based on these ideas. This method 

employs a topological latent representation and a fixed-time 

sliding mode controller to provide smoother interactions and 

more efficient management of flexible objects. As a result, it 

contributes to the advancement of the field of human-robot 

collaboration [115]. 

D. Brain Control  

The utilisation of human brain impulses as a control 

signal in robotics, especially in robotic arms, is regarded as 

one of the most robust and cutting-edge fields of research. 

This technology facilitates the utilisation of robots in 

industries by enabling the autonomous control of robotic 

arms for industrial purposes. It allows for the allocation of 

industrial labour to other duties and the automation of 

production lines without requiring any modifications in the 

field during the manufacturing process. Manipulating brain 

impulses, however, advances the field of medical research by 

greatly improving the quality of life for individuals who are 

entirely incapacitated. The subsequent subsection can 

provide a more detailed analysis of this advancement. 

VI. BRAIN CONTROLLED ROBOTIC ARM 

The origin of brain-computer interfaces (BCIs) may be 

traced back to Hans Berger's identification of electrical 

activity in the human brain and the subsequent advancement 

of electroencephalography. EEG (electroencephalogram). In 

1924, Berger pioneered the use of EEG to measure and assess 

human brain activity. Oscillatory activity, such as Berger's 

wave or the alpha wave, was identified by Berger through the 

examination of EEG records [116]. 

Music for Solo Performer, composed by Alvin Lucier, an 

American composer, served as an early manifestation of a 

brain-machine interface, predating the adoption of the phrase 

itself (1965). The composition employs 

electroencephalography (EEG) and analogue signal 

processing equipment to activate acoustic percussion 

instruments. The components include filters, amplifiers, and 

a mixing board. The task is accomplished by generating alpha 

waves, which are subsequently emitted through loudspeakers 

positioned in close proximity to or directly on different 

percussion instruments [117].  

Jacques Vidal, a professor at UCLA, coined the term 

"BCI" and authored the initial review publications on the 

topic [6], [118]. Vidal is widely acknowledged in the field of 

brain-computer interfaces (BCIs) as the pioneer of BCIs, as 

demonstrated by numerous peer-reviewed publications that 

have investigated and discussed this topic, such as those 

referenced in [119], [120]. Vidal's 1973 study, as reviewed, 

discussed the "BCI challenge" [121] which involves the 

manipulation of external objects using EEG signals. 

Specifically, the work explores the use of Contingent 

Negative Variation (CNV) as a potential challenge for BCI 

control. Vidal's 1977 experiment marked the initial use of 

BCI subsequent to his 1973 BCI challenge. The task involved 

using noninvasive EEG to manipulate a cursor-like graphical 

object displayed on a computer screen, namely by utilising 

Visual Evoked Potentials (VEP). The demonstration 

resembled navigating a labyrinth [62]. 

In 1988, a research paper was published on the use of 

noninvasive EEG technology to control a physical item, 

specifically a robot. The study described involved the use of 

EEG to control multiple robot motions, including starting, 

stopping, and restarting, along a predetermined path marked 

on the floor. The default robot function was line-following, 

utilising both autonomous intelligence and an autonomous 

energy supply [122], [123]. In 1988, Stevo Bozinovski, 

Mihail Sestakov, and Liljana Bozinovska published the initial 

study on controlling robots using EEG signals [5], [124]. 

In 2010, recent research has shown that brain stimulation 

can improve synaptic effectiveness, which may allow for the 

restoration of functional connectivity and related behaviours 

[125], [126]. In light of these findings, the possibility 

emerged that BCI technology could also restore function in 

addition to enabling it. 

DARPA has provided funding for BCI technology as part 

of the BRAIN initiative since 2013. This funding has 

supported various projects, including the development of a 

brain chip that allows a paralysed man to feel his fingers, led 

by the University of Pittsburgh Medical Centre in 2016 [127]. 

In 2017, Paradromics plans to invest $65 million to create a 

highly advanced, small-scale brain-computer interface. 

Additionally, Brown University will receive up to $19 

million in 2017 to engineer the next-generation brain-

computer interface, among other projects. 

A. Brain Signal Acquisition Techniquies 

In recent years, several technologies have emerged to 

evaluate the functioning of the human brain. Certain 

techniques monitor the fluctuation of electrical activities 

associated with specific brain states, whereas others measure 

different aspects. The existing approaches can be categorised 

into two groups based on their level of invasiveness: 

noninvasive and intrusive, as shown in Fig. 9. Invasive 

methods can be categorised into two main types: intra-

cortical electrode array technologies and 

electrocorticography. ECoG stands for electrocorticography, 

which is a type of intracranial electroencephalography. Non-

invasive methods are categorised into EEG, functional near 

infrared spectroscopy (fNIRS), functional magnetic 

resonance imaging (fMRI), and magnetoencephalography 

(MEG) [128]. 

1) Invasive Techniquies 

Intra-cortical - Significant progress has been made in the 

study of BMIs and their ability to restore motor function. Key 
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research has focused on understanding the processes and 

practical uses of this technology. In 1999, DW Moran and AB 

Schwartz published a groundbreaking study on the motor 

cortex, revealing that it employs a population code to encode 

both speed and direction in reaching movements. Through the 

observation of motor cortex neurons in monkeys engaged in 

reaching tasks, researchers found that although individual 

neurons were associated with distinct characteristics of 

movement, a more precise representation was obtained by 

considering the combined activity of populations of neurons. 

This discovery emphasised the significance of distributed 

representation in motor control, which could enhance the 

creation of more efficient BMIs by utilising the inherent 

neural coding of movement data [129]. Expanding upon this 

fundamental comprehension, following research has utilised 

these ideas to implement practical BMI applications, 

specifically in individuals with movement impairments. 

Velliste et al. (2008) proved the possibility of utilising BMIs 

to operate a prosthetic arm. This enabled rhesus monkeys to 

independently feed themselves by controlling the arm using 

their neurological signals. This study offered significant 

insights into the processes of cortical motor control and 

emphasised the potential of BMI technology to assist persons 

with motor impairments [130]. 

 

Fig. 9. Brain signals acquisition techniques [116] 

In a study conducted by Hochberg et al. (2012), the 

researchers investigated the application of neurologically 

controlled robotic limbs in patients who have quadriplegia, 

thus making significant progress in this area. Their study 

shown that following the training, participants were able to 

utilise a robotic arm to execute activities such as grasping 

objects, thereby highlighting the potential of BMIs to 

reinstate a certain level of autonomy for individuals with 

profound motor impairments [131]. Collinger et al. (2013) 

extended these discoveries by creating a BCI that allowed a 

tetraplegic patient to operate a prosthetic limb with seven 

degrees of freedom. This demonstrated the potential of BCIs 

for achieving advanced motor control [132]. In addition, 

Bouton et al. (2016) presented a neural bypass technique that 

circumvents impaired sections of the spinal cord in order to 

restore movement by directly utilising brain impulses. This 

development provides a promising opportunity for persons 

with spinal cord injuries to regain their ability to move [133]. 

Collectively, these investigations signify noteworthy 

advancements in the advancement of BMIs and 

neuroprosthetics, showcasing their capacity to enhance the 

quality of life for persons afflicted with paralysis. 

Electrocorticography (ECoG) - ECoG signals have 

demonstrated considerable promise in enhancing 

neuroprosthetic technology, specifically for patients with 

spinal cord injuries, in the field of BMIs. Márquez-Chin et al. 

(2009) showed that it is possible to use offline categorisation 

of ECoG signals to operate a neuroprosthesis for grasping 

activities. Their study yielded evidence demonstrating the 

successful utilisation of ECoG signals for the operation of 

neuroprosthetic devices. This presents a promising 

opportunity for enhancing motor function in individuals with 

spinal cord injuries [134]. This study emphasises the 

increasing potential of BMIs based on ECoG in restoring 

motor abilities that have been lost. It also implies that in the 

future, these technologies could have a significant impact on 

the quality of life for those who have severe motor 

impairments. 

Hirata and Yoshimine (2015) highlighted the benefits of 

ECoG BMIs in terms of signal resolution and long-term 

stability, thus expanding our understanding of their potential. 

The participants engaged in a conversation about the capacity 

of ECoG BMIs to interpret intricate brain functions, like as 

writing and speaking, which might greatly assist people with 

paralysis by granting them control over their limbs and 

communication. Nevertheless, they also acknowledged the 

difficulties linked to the creation of dependable and user-

friendly ECoG BMIs, such as enhancing the accuracy of 

signal interpretation and minimising the invasiveness of 

electrode placement [135]. Furthermore, Kim and Jeong 

(2022) examined the use of an electrocorticographic decoder 

employing an echo state network (ESN) and Gaussian 

readout to decipher arm movements for BMIs. Their 

methodology demonstrated greater efficacy in forecasting the 

paths of arm movements, suggesting that the utilisation of 

advanced decoding techniques could further augment the 

efficiency of ECoG-based Brain-Machine Interfaces [136]. 

These findings highlight the promise of ECoG technology in 

creating advanced neuroprosthetic devices that can greatly 

enhance the quality of life for those with neurological 

disorders. 

2) Noninvasive Techniques 

Electroencephalography (EEG) - The utilisation of EEG 

data for the purpose of controlling robotic prostheses has 

attracted considerable interest, as evidenced by numerous 

research that have emphasised the possibilities and 

difficulties associated with this method. Shedeed et al. (2013) 

suggested utilising EEG inputs for real-time control of 

robotic prostheses, highlighting the importance of accurate 

and dependable algorithms for efficiently analysing EEG 

signals. The study highlighted that the accuracy of analysing 

EEG data has been enhanced by improvements in machine 

learning and signal processing. However, it emphasised the 

importance of user training in order to efficiently control 

robotic equipment using these signals [137]. Building upon 

this idea, J Meng et al. (2016) investigated the practicality of 

utilising EEG signals to manipulate a robotic arm for the 

purpose of performing reach and grab tasks. Their research 

showed that by using a four-channel EEG helmet together 

with a machine-learning algorithm, they were able to 

precisely determine the intended movements of the 

participants. This allowed for the operation of assistive 

equipment using EEG-based technology [138]. 

Recent progress has been achieved in improving EEG-

BCI systems to enhance the independence and physical 
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capacities of individuals with motor disabilities. In a study 

conducted by R. Bousseta et al. (2018), they showed that an 

EEG-based BCI system was able to control a robotic arm in 

three dimensions with a high level of accuracy. The system 

achieved an average precision of 87.5% among participants 

who had motor impairments [139]. Jeong et al. (2020) 

introduced an advanced system that utilises a multi-

directional Convolutional Neural Network (CNN) and 

Bidirectional Long Short-Term Memory (BiLSTM) network 

to manipulate a robotic arm using EEG signals. The system 

achieved an impressive precision rate of 98.33%. This system 

utilised the spatiotemporal components extracted from EEG 

data, resulting in a notable enhancement in the accuracy of 

categorising movement commands and enabling the robotic 

arm to be controlled in several directions [140]. Miao Z. et al. 

(2023) have recently presented LMDA-Net, a highly efficient 

multi-dimensional attention network that incorporates 

channel and depth attention modules to improve the 

classification of EEG data. After conducting experiments on 

many public datasets, LMDA-Net showed superior 

performance in terms of classification accuracy compared to 

other models. This indicates that LMDA-Net has the potential 

to be a flexible decoding model for EEG events, with 

potential applications in BCI tasks that go beyond motor 

control [141].  

Functional near infrared spectroscopy (fNIRS) - fNIRS 

has demonstrated significant potential in BCI research, 

specifically in the non-invasive monitoring of brain activity. 

Coyle et al. (2007) emphasised the advantages of a simpler 

fNIRS system. This system uses only one source-detector 

pair to monitor the amount of haemoglobin in the brain, 

which serves as an indicator of neuronal activity. This 

methodology has been successfully employed in research that 

involve the visualisation of motions and cognitive processes, 

showcasing its potential for applications in brain-computer 

interfaces. Nevertheless, the system's actual implementation 

is constrained by its poor spatial resolution and vulnerability 

to interference from adjacent brain tissues [142]. These 

constraints indicate that although fNIRS has potential as a 

tool for BCI, additional improvements are necessary to 

increase its precision and practicality in real-life situations. 

Canning and Scheutz (2013) suggested using fNIRS to 

investigate human-robot interaction (HRI) further. They 

contended that fNIRS has the potential to offer crucial 

insights into the brain mechanisms that underlie social 

interactions between humans and robots. By utilising fNIRS 

to measure brain activity during human-robot interaction 

(HRI) activities including collaborative attention, turn-

taking, and feedback, researchers can gain a deeper 

understanding of how humans perceive and react to robot 

behaviour [143]. Zhang et al. (2017) investigated the 

incorporation of the common spatial pattern (CSP) algorithm, 

which is typically employed in EEG-based BCIs, into fNIRS-

based BCIs for motor imaging. Their research showed that 

the implementation of the CSP algorithm enhanced the 

accuracy of categorising motor imagery tasks using fNIRS. 

This suggests that incorporating approaches from EEG-based 

BCIs could improve the efficiency of fNIRS-based systems 

as well [144]. These studies demonstrate the increasing 

potential of fNIRS in both BCI and human-robot interaction 

(HRI) research. However, they also highlight the necessity 

for further improvements in signal processing approaches to 

fully optimise the usefulness of this technology. 

Functional Magnetic Resonance Imaging (fMRI) - The 

study of fMRI-based BCIs has provided new opportunities 

for helping individuals with movement limitations to operate 

external devices using cognitive processes. In their study, 

Yoo et al. (2004) provided evidence for the efficacy of fMRI-

based BCIs in the domain of spatial navigation. Participants 

were instructed to mentally visualise travelling through a 

virtual environment while their brain activity was measured 

via fMRI scanning. The study utilised Multivariate Pattern 

Analysis (MVPA) to accurately decipher the imagined 

movements of participants. This demonstrates the potential of 

fMRI-based BCIs to convert mental imagery into effective 

commands for manipulating external equipment [145]. This 

method presents a hopeful resolution for people who have 

physical disabilities, enabling them to engage with their 

surroundings in novel ways by using mental imagery. 

In order to make progress in this area, L. Minati et al. 

(2012) and Cohen et al. (2014) conducted research on the 

utilisation of fMRI signals to manipulate robotic systems. 

Their findings showcased the capability of non-invasive brain 

imaging techniques in controlling robots. In a proof-of-

concept experiment, Minati et al. (2012) enabled participants 

to operate a robotic arm by picturing the movement of their 

hands. The robot's actions were guided by fMRI signals 

[146]. In a study conducted by Cohen et al. (2014), it was 

demonstrated that people can control a robot arm in a way 

that resembles human movement by mentally imagining their 

own arm movements. This study established a significant 

connection between the signals in the motor cortex of the 

brain, as measured by functional magnetic resonance imaging 

(fMRI), and the movements of the robot arm [147]. These 

studies emphasise the potential of fMRI-based BCIs in 

prosthetics and rehabilitation. However, they also emphasise 

the necessity for enhancements in the accuracy, speed, and 

ethical aspects of this developing technology. 

Magnetoencephalography (MEG) - BCI technology has 

recently made significant progress by utilising MEG as it 

offers excellent temporal resolution and the capability to 

capture intricate brain activity. McClay et al. (2015) 

introduced a novel real-time BCI system that utilises MEG 

data and interactive 3D visualisation to offer instant feedback 

on cognitive processes. The system employs the Hadoop 

ecosystem to manage the vast amount of data produced by 

MEG, facilitating real-time analysis and visualisation. Their 

proof-of-concept study on visual attention confirmed the 

system's feasibility, highlighting its capacity to accurately 

detect real-time changes in brain activity [148]. 

Fukuma et al. (2016) investigated the application of MEG 

signals to enable real-time control of neuroprosthetic limbs 

for patients with amyotrophic lateral sclerosis (ALS), 

building upon the existing capabilities of MEG in BCIs. The 

study showcased the efficacy of MEG in capturing brain 

signals linked to imagined hand movements. This enables 

individuals with severe paralysis to exert accurate and precise 

control over a neuroprosthetic hand. The discovery highlights 

the capacity of MEG-based systems to enhance motor 
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function in patients with motor deficits, especially in cases of 

extreme paralysis [149]. Rathee et al. (2021) made a 

significant contribution to the area by developing a detailed 

MEG dataset that is specifically tailored for applications of 

BCIs that involve motor and cognitive imagery. The dataset, 

comprising more than 500 trials, has been openly released on 

the OpenNeuro platform, serving as a valuable asset for 

future study and advancement in MEG-based BCIs [150]. 

B. Brain Signal Classification Techniquies 

The primary focus of BCI research is to precisely extract 

the relevant features from EEG data and improve the speed 

of classification and identification. Support Vector Machine 

(SVM), K-Nearest Neighbour (KNN), Artificial Neural 

Networks (ANN), and Linear Discriminant Analysis (LDA) 

are frequently used classification techniques in Brain-

Computer Interface (BCI) systems [151]. 

Upon analysing the content of Table IV, which presents a 

compilation of research focused on classifying brain signals 

for the purpose of automating control of different types of 

robots, such as auxiliary devices or robotic arms, one can gain 

insights into the most prevalent and extensively employed 

classification techniques. These methods offer a diverse array 

of classification options and demonstrate exceptionally high 

accuracy in their classification outcomes. 

1) Emotional EEG Brain Signal Classification 

Significant progress has been made in utilising 

Electroencephalography (EEG) data for emotion 

identification. Numerous studies have investigated various 

approaches to improve accuracy and practicality. In their 

study, Bhardwaj et al. (2015) utilised EEG signals in 

combination with Independent Component Analysis (ICA) 

and machine learning methods, including Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA), to 

classify emotions into seven distinct moods. Their research 

showed that EEG can be used as a reliable measure of 

authentic emotions by directly examining brain activity. 

Support Vector Machine (SVM) achieved an average 

accuracy of 74.13%, while Linear Discriminant Analysis 

(LDA) achieved 66.50% [166]. In addition, Z.-T. Liu et al. 

(2019) employed the DEAP dataset and introduced a 

technique that relies on Valance and Arousal. They utilised 

K-nearest neighbour and support vector networks to 

accurately categorise emotional states. Their method attained 

an impressive detection accuracy of 86.46%, especially when 

using EEG data obtained within a single temporal frame. This 

underscores the potential for real-time emotion recognition in 

human-robot interaction systems [167]. 

Recent developments in EEG-based emotion recognition 

have primarily concentrated on enhancing accuracy by 

employing more advanced models and algorithms. In their 

study, T. Song et al. (2020) proposed the use of a dynamical 

graph convolutional neural network (DGCNN) for the 

purpose of classifying emotions based on multichannel EEG 

data. This approach employed graph structures to more 

accurately depict the connections between EEG channels, 

resulting in enhanced accuracy in recognising emotions. 

Through their investigation of the DREAMER and SEED 

datasets, they found that the suggested DGCNN model 

performed better than previous approaches, obtaining an 

accuracy of 79.95% in subject-independent cross-validation 

and 90.4% in subject-dependent trials [168]. In a study 

conducted by S. K. Khare et al. (2020), an adaptive adjustable 

Q wavelet transform was proposed. The researchers used 

grey wolf optimisation to fine-tune the parameters of the 

transform. As a consequence, they achieved a classification 

accuracy of 95.70% for identifying four basic emotions. The 

combination of nonparametric techniques and machine 

learning technology has the potential to improve EEG-based 

emotion identification, as demonstrated by this method [169]. 

Recent research has been expanding the limits of emotion 

identification using EEG, by investigating novel structures 

and potential uses. In their 2021 study, S. Issa et al. proposed 

a method that employs the Broad Learning System (BLS) to 

accurately categorize emotions based on EEG data, 

eliminating the need for user-specific information. Their 

methodology exhibited strong and reliable performance, with 

accuracies of around 93.1% and 94.4% on the DEAP and 

MAHNOB-HCI databases, respectively. Additionally, the 

training time required was remarkably low [170]. In addition, 

Chowdary MK et al. (2022) investigated the application of 

recurrent neural network structures, such as LSTM, GRU, 

and RNN, for the purpose of emotion recognition using EEG 

inputs. Each model achieved impressive accuracy rates of 

95%, 97%, and 96% correspondingly [171]. Chen J. et al. 

(2024) conducted a recent study where they used EEG 

technology to investigate emotions in simulated driving 

situations. They utilised graph neural networks (GNN) to 

analyse brain data and categorize panic responses and 

accident-avoidance skills. Their approach yielded a binary 

classification accuracy of 91.5% and demonstrated the 

efficacy of deep learning algorithms in capturing emotional 

states during high-stress scenarios [172], [173]. 

VII. CRITICAL ANALYSIS AND FINAL REVISION 

Control of robotic arms has shown substantial progress, 

incorporating conventional kinematic modelling, AI-based 

optimisation, and brain-computer interfaces (BCI) [174]. 

Every method exhibits distinct advantages; nonetheless, 

obstacles remain. Classical control approaches encounter 

difficulties with complicated, high-degree-of-freedom 

systems, whereas heuristic and AI-based solutions enhance 

adaptability but frequently require substantial processing 

resources. Trajectory optimisation methods, such as Genetic 

Algorithms (GA), Particle Swarm Optimisation (PSO), and 

hybrid models, have improved motion efficiency and 

constraint management; nonetheless, real-time applicability 

and robustness continue to be limiting constraints. BCI-

controlled robotic arms offer transformative applications but 

encounter challenges including subpar signal quality, 

prolonged calibration durations, and ethical issues related to 

brain data protection.
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TABLE IV.  BRIEF VIEW OF BRAIN SIGNAL DIFFERENT CLASSIFICATION TECHNIQUES 

Classification technique Reference Signal acquisition technique Robot Accuracy percentage 

Support Vector Machine (SVM) 

2014 [152] 

2016 [153] 

2017 [154] 

2018 [139] 

2020 [7] 

EEG 

EEG 

EEG 
EEG 

EEG 

Robot arm 

Mobile robot 

Mobile robot 
Dual-arm robot 

Quadcopter 

95 % 

59 to 68 % 

> 75 % 
69 % 

75 % 

K-Nearest Neighbor (KNN) 

2007 [155] 

2015 [156] 

2020 [157] 

MEG 

EEG 

EEG 

Visuomotor 

Quadcopter 

------- 

97 % 

75 % 

95.7 % 

Artificial Neural Networks (ANN) 

2013 [158] 

2014 [159] 

2016 [160] 

2020 [161] 

MEG and EEG 

EEG 

EEG 
EEG 

7-DOF robotic arm 

Wheelchair 

Quadcopter 
Tractor driving robot 

94 % 

86.5 % 

98 % 
93 % 

Linear Discriminant Analysis (LDA) 
2011 [162] 

2015 [163] 

EEG 

EEG-NIRS 

Industrial arm 

Quadcopter 

78 to 92 % 

78 to 90 % 

Hybrid 
2019 [164] 

2022 [165] 

EEG 

EEG 

Exoskeleton robot 

-------- 

95 % 

98 % 

Notwithstanding these developments, other hurdles must 

be surmounted to attain completely autonomous and adaptive 

control of robotic arms. Real-time execution continues to be 

a constraint, as several optimisation strategies necessitate 

substantial processing capacity. Scalability and adaptability 

remain constrained, as task-specific control techniques 

necessitate regular human modifications. Furthermore, as 

robotic arms assimilate into human settings, it will be 

essential to guarantee safe human-robot collaboration, the 

interpretability of AI-generated choices, and the ethical 

implications associated with automation and brain-computer 

interface technologies. Addressing these concerns will be 

crucial for the broader use of industrial, medical, and assistive 

robotics. 

Future research ought to concentrate on hybrid AI and 

physics-based control, harmonizing data-driven adaptability 

with deterministic stability. Real-time, low-latency trajectory 

optimisation is essential for dynamic situations, whereas 

developments in BCI must emphasise user accessibility and 

signal dependability. As robotic systems advance in 

intelligence and societal integration, the focus must transition 

to explainable AI, ethical automation, and human-centered 

design. Addressing these difficulties would enhance robotic 

arm control, making it more efficient, safe, and intelligent, 

thereby influencing the future of automation, healthcare, and 

human enhancement. 

VIII. CONCLUSION  

This review paper presents a thorough examination of the 

fully controlled robotic arm process, including essential 

elements like kinematic analysis, path planning, trajectory 

optimisation, control approaches, brain signal acquisition, 

and brain signal classification. This study synthesizes current 

research findings, emphasizing both progress and ongoing 

obstacles, so providing significant insights for researchers, 

engineers, and practitioners in robotics and neuro-

engineering. 

Notwithstanding considerable advancements, some 

persistent problems impede the extensive implementation of 

robotic arm technologies. The implementation of real-time 

systems continues to be a significant challenge, especially in 

dynamic contexts where external disturbances, sensor errors, 

and processing inefficiencies impact performance. The 

computational demands of optimisation methods and AI-

based control models restrict their real-time use, necessitating 

the development of energy-efficient, low-latency algorithms 

as a focal point for future study. Furthermore, developing 

resilient, adaptable, and scalable control techniques that can 

generalize across diverse robotic configurations and 

situations continues to be a significant research issue. 

In addition to technical constraints, the ethical and 

sociological ramifications of robotic arm technology require 

thorough scrutiny. The incorporation of brain-computer 

interfaces (BCIs) has advanced neuroprosthetics and assistive 

robots, although also raises issues related to data security, 

privacy, and the possible exploitation of neurological signals. 

Furthermore, the growing automation of industrial and 

manual jobs prompts concerns regarding workforce 

displacement and social inequality, highlighting the necessity 

for regulatory frameworks that reconcile technological 

advancement with societal welfare. Prioritizing safety issues 

in human-robot interaction is essential to avert mishaps and 

foster user trust in intelligent robotic systems. 

Future progress will necessitate interdisciplinary 

collaborations across robotics, neuroscience, artificial 

intelligence, and computational engineering to tackle these 

difficulties. Future innovations must prioritize the creation of 

energy-efficient, adaptive, and socially responsible robotic 

arm systems, facilitating their smooth integration into 

healthcare, industrial automation, and daily applications. 

Addressing these unresolved difficulties will advance the 

field of robotic arm control towards more intelligent, human-

compatible, and ethically responsible inventions that serve 

the broader society. 
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