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Abstract—This study proposes an adaptive Artificial Neural
Network-based voltage control strategy for maintaining a stable
DC bus voltage in a high-gain DC-DC boost converter for solar
photovoltaic systems. Unlike conventional PID controllers, which
struggle with non-linear and dynamic conditions, the proposed
controller dynamically adjusts the duty cycle to mitigate the effects
of varying solar irradiance and reference voltage, ensuring robust
voltage regulation with reduced overshoot, enhanced transient
response, and improved steady-state stability. This approach
addresses critical challenges in standalone solar applications,
such as water pumping and rural electrification, where consis-
tent performance is essential despite fluctuating environmental
conditions. In comparison to conventional control strategies, the
ANN-based controller demonstrates superior adaptability, partic-
ularly under rapidly changing operating conditions. The results
demonstrate the superior adaptability and efficiency of the ANN-
based controller compared to the conventional PID controller,
making it a valuable and reliable solution for sustainable solar
PV systems. The proposed system was validated using a co-
simulation framework that integrates MATLAB/Simulink and
OrCAD, facilitating performance evaluation under varying solar
irradiance and reference voltage conditions.
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I. INTRODUCTION

The increasing global reliance on renewable energy systems
is driven by the environmental and economic challenges posed
by fossil fuels [1]–[4]. Among various renewable sources, solar
photovoltaic (PV) technology is widely adopted due to its
scalability, minimal environmental impact, and potential for de-
centralized energy generation [5]–[8]. However, the intermittent
nature of solar irradiance leads to significant fluctuations in
power output, negatively affecting the stability and efficiency
of PV systems [61]. Addressing these fluctuations requires ad-
vanced energy conversion and control strategies to ensure stable
and reliable operation under varying environmental conditions
[9]–[13].

High-gain boost converters (HGBCs) play a crucial role
in modern PV systems by stepping up the low DC voltage
generated by solar panels to higher levels with significantly

improved voltage gain compared to conventional boost con-
verters [14]–[16]. These converters utilize advanced circuit
topologies, such as coupled inductors, switched capacitors,
and voltage multipliers, which enable them to achieve higher
voltage gains while operating at lower duty cycles [23]–[27].
This makes them essential in applications requiring high DC
voltage, such as standalone systems and motor drives, where
conventional boost converters struggle to provide sufficient gain
without excessive switching losses and component stress [17]–
[22]. However, ensuring precise voltage regulation in HGBCs
remains challenging due to their complex and highly non-linear
behavior under varying solar irradiance [28], [29].

Conventional controllers, particularly proportional-integral-
derivative (PID) controllers, are widely used in photovoltaic
systems for voltage regulation due to their simplicity and
effectiveness under steady-state conditions [30]–[32]. However,
their fixed control parameters and linear design limit their
ability to handle rapid changes in solar irradiance and operating
conditions. This often results in overshoot, oscillations, and
prolonged settling times, leading to degraded performance
in dynamic environments [33], [34]. Furthermore, extensive
tuning of PID gains is required to optimize performance across
varying conditions, making them less practical for real-world
PV applications with fluctuating inputs [61].

In response to these challenges, artificial neural networks
(ANN) have emerged as a promising solution for adaptive
control in power electronics. ANNs are capable of modeling
complex, non-linear system dynamics and predicting control
actions in real time, allowing them to adapt to rapidly changing
conditions [35]–[37]. ANN-based controller applications have
demonstrated improvements in both transient response and
steady-state accuracy, particularly in the tracking of maximum
power points and other renewable energy applications [38]–
[40]. Despite these advancements, limited research has focused
on integrating ANN-based control strategies with high-gain
boost converters, leaving a gap in addressing the unique chal-
lenges of dynamic voltage regulation in solar PV systems.

This study presents an adaptive ANN-based voltage control
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strategy for a HGBC in solar PV systems. The proposed
controller dynamically adjusts the duty cycle to maintain a
stable DC bus voltage, reducing transient overshoot, minimiz-
ing steady-state error, and enhancing system stability. Unlike
conventional methods, the ANN-based approach eliminates the
dependence on complex mathematical models, making it robust
and adaptable to environmental fluctuations [41], [42].

The proposed control system is validated through a co-
simulation framework integrating MATLAB/Simulink and Or-
CAD. This setup allows for a detailed evaluation of system
performance under varying solar irradiance and reference volt-
age conditions, capturing both circuit-level non-linearities and
control behavior [62]. The results demonstrate that the ANN-
based controller significantly outperforms conventional PID
control by achieving faster stabilization, reduced overshoot, and
improved adaptability to disturbances.

This research makes several key contributions. First, the
study develops an adaptive ANN-based control strategy specif-
ically designed for a specific HGBC in solar PV systems.
Second, it implements a comprehensive co-simulation frame-
work combining MATLAB/Simulink and OrCAD to enable
detailed performance evaluation under realistic operating condi-
tions. Third, a comparative performance analysis demonstrates
improved voltage regulation, enhanced transient response, and
superior adaptability compared to conventional PID controllers.
By addressing these challenges, this study advances intelligent
control strategies for renewable energy systems, with potential
applications in water pumping, rural electrification, and other
standalone PV solutions.

II. METHOD

This section details the technical implementation of the pro-
posed adaptive control strategy for the HGBC and its validation
through co-simulation. Fig. 1 presents the synoptic diagram of
the proposed system, which integrates a PV array, the HGBC,
an ANN-based controller, and the DC load. The system employs
a feedback control mechanism wherein the controller monitors
the output voltage and dynamically adjusts the duty cycle to
maintain stable voltage regulation under varying conditions.

A. Model of the High-Gain Boost Converter

HGBCs play a crucial role in PV systems by bridging the
gap between the low output voltage of solar panels and the
higher voltage demands of applications such as inverters, energy
storage, and motor drives [43]–[46]. Unlike conventional boost
converters, the HGBC achieves significant voltage amplification
while minimizing component stress and switching losses. As
shown in Fig. 2, the converter consists of three inductors
(L1, L2, L3), two capacitors (C1, Co), two diodes (D1, Do), and
three switches (S1, S2, S3). This configuration enables efficient
operation in continuous conduction mode (CCM) [47], ensuring

uninterrupted inductor current and stable energy transfer to the
load.
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Fig. 1. Synoptic diagram of the proposed DC bus voltage regulation system using ANN
control

Fig. 2. Schematic of the proposed HGBC for photovoltaic applications.

The proposed system utilizes a Jinko JKM275PP-60 PV
module, which provides a maximum power output of 275 W
at a voltage of 32.0 V and a current of 8.61 A. The HGBC
steps up this voltage to 350 V, with a duty cycle of 0.6 and a
switching frequency of 30 kHz. The converter operates in two
distinct phases: the switch-on phase, during which the inductors
store energy, and the switch-off phase, where the stored energy
is transferred to the output capacitor and load.

The component values of the HGBC are designed to ensure
stable operation under continuous conduction mode while min-
imizing ripples in both inductor current and capacitor voltage.
The inductor value is calculated to limit the ripple current to an
acceptable level. Using the volt-second balance principle [63],
the inductor value is determined by the following equation:

L =
Vin ·D

fsw ·∆IL
(1)

Here, Vin is the input voltage, D is the duty cycle, fsw is
the switching frequency, and ∆IL is the desired inductor ripple
current. For the given system parameters, the inductor value is
calculated to be 3 mH.

Similarly, the output capacitor value is determined based on
the allowable ripple voltage at the output. The capacitor value
is given by:

C =
Iout ·D

fsw ·∆VC
(2)
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In this equation, Iout is the output current, and ∆VC is the
allowed ripple voltage. With the system’s parameters, the
capacitor value is designed to be 260 µF . These values ensure
that the converter maintains continuous conduction mode and
stable voltage regulation with minimal ripple, improving overall
system efficiency and reliability under fluctuating environmen-
tal conditions.

The voltage gain of the converter is described using the volt-
second balance principle and is expressed as:

G =
Vo

Vin
=

1 +D

(1−D)2
(3)

For the given duty cycle of 0.6, the expected voltage gain is
computed as:

G =
1 + 0.6

(1− 0.6)2
= 10 (4)

This confirms that the designed HGBC successfully increases
the voltage of the photovoltaic module from 32V to the desired
350V, ensuring stable operation for DC loads.

B. ANN Controller Design and Training Process

The proposed ANN controller addresses the limitations of
traditional controllers by dynamically adapting to non-linear
and time-varying conditions. This adaptability is crucial in PV
systems, where environmental variations such as irradiance and
temperature fluctuations significantly affect performance [48]–
[52]. The ANN’s ability to approximate complex non-linear
functions enhances the stability, efficiency, and voltage regula-
tion of the system under dynamic scenarios. By leveraging this
capability, the system can achieve more precise control than
conventional techniques [64].

The ANN is designed as a three-layer feedforward network
optimized for the HGBC [53], [54], [65]. The architecture
consists of an input layer, two hidden layers, and an out-
put layer. The input layer processes four critical signals: the
reference voltage (Vref ), the measured output voltage (Vout),
the photovoltaic array voltage (Vpv), and the error signal
(e = Vref − Vout). These inputs provide comprehensive real-
time data, enabling precise voltage regulation by accurately
modeling system dynamics. The hidden layers use the sigmoid
activation function, defined by:

f(x) =
1

1 + e−x
(5)

This function was chosen for its effectiveness in modeling
non-linear behavior, ensuring smooth transitions and stable
control [66]. The number of neurons and layers was deter-
mined through iterative optimization to balance computational
efficiency and model accuracy, minimizing the risk of both
underfitting and overfitting [67]. Fig. 3 illustrates the ANN
architecture used in this study.

Vref

Vout

Vpv

e

D

Input Layer Hidden Layer 1 Hidden Layer 2

Output Layer

Fig. 3. ANN architecture for controlling the high-gain boost converter

To train the ANN, a dataset was generated by simulating
various environmental and load conditions, including fluctua-
tions in solar irradiance and PV voltage. The network’s training
objective was to minimize the error between the predicted and
target duty cycle values, achieved through the backpropagation
algorithm [56], [57]. The mean squared error (MSE) served as
the objective function for training, where Di and D̂i denote the
target and predicted duty cycles, respectively and it is defined
by:

MSE =
1

n

n∑
i=1

(
Di − D̂i

)2

(6)

Hyperparameters such as the learning rate, number of neu-
rons, and number of epochs were tuned through experimen-
tation to optimize convergence speed and accuracy [68]. The
training process was monitored using metrics such as MSE
reduction between epochs and validation accuracy. Fig. 4 and
Fig. 5 illustrate the training results, showing significant im-
provements in MSE throughout the training, validation, and test
phases.

Fig. 4. Mean squared error (MSE) convergence during training.
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Fig. 5. Comparison of MSE across training, validation, and testing phases.

To enhance the clarity of the training methodology, a
flowchart summarizing the process is provided in Fig. 6. This
diagram details each stage, from data preparation to model
validation.

Start: Initialize Network Parameters

Generate Training Dataset

Perform Forward Pass

Calculate MSE

Update Weights and Biases via
Backpropagation 

Converged?

Training Complete

YES

NO

Fig. 6. Training process flowchart for the ANN-based control system.

C. Co-Simulation Framework

The proposed co-simulation framework was developed to
address the need for accurate and realistic evaluation of both

control strategies and circuit dynamics. This hybrid approach
integrates MATLAB and OrCAD, combining the strengths of
both platforms to achieve comprehensive system validation.
MATLAB is chosen for control development because it excels
in numerical simulations, ANN training, and algorithm opti-
mization, while OrCAD offers detailed circuit modeling with
non-ideal real-world components [59].

MATLAB employs ideal models for components and is
optimized for control algorithm simulations. This makes it
highly efficient for tasks such as training ANNs, optimizing
performance, and fine-tuning control strategies. However, MAT-
LAB’s limitations in accurately capturing real-world circuit
characteristics require an additional platform. OrCAD, on the
other hand, provides a circuit simulation environment that
accounts for real-world component behavior, including non-
linearities, switching losses, and parasitic elements [60]. By
integrating both tools, the co-simulation framework bridges
the gap between ideal control theory and practical circuit-level
performance.

Through this integration, dynamic real-time data is ex-
changed between the control system and circuit model via
the SLPS interface. Key control signals, such as the refer-
ence voltage (Vref ), output voltage (Vout), and error signal
(e = Vref − Vout), are communicated in both directions
between MATLAB and OrCAD. This setup enables the ANN
controller to interact with a realistic converter model in real-
time, ensuring synchronized transient response and accurate
steady-state performance assessment.

Environmental parameters, such as solar irradiance and tem-
perature, are introduced in the OrCAD model to simulate real-
istic operating conditions. This allows the control system to be
evaluated under dynamic scenarios, including rapid irradiance
fluctuations and varying reference voltage demands, further
enhancing reliability. Fig. 7 illustrates the co-simulation frame-
work, showing the flow of control and circuit-level signals.

This co-simulation approach provides several advantages
over standalone simulations in either platform. MATLAB sim-
ulations, while fast and efficient, may not fully reflect the
practical limitations of real-world components. Conversely, Or-
CAD simulations alone may be computationally expensive and
less efficient for control algorithm development. By combining
the two, this framework ensures that both control and circuit
behaviors are validated in a synchronized manner.

Finally, this framework allows us to verify the ANN con-
troller’s ability to regulate the output voltage, minimize tran-
sient overshoots, and achieve fast settling times under real-
world conditions. This integration strengthens confidence in the
controller’s performance and reliability before potential real-
time hardware implementation.
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Fig. 7. Co-simulation framework integrating MATLAB and OrCAD for ANN-based control system validation.

III. RESULTS AND DISCUSSION

The performance of the proposed HGBC and its adaptive
ANN-based controller is critically analyzed through extensive
simulations under various operating conditions. This analysis
is designed to emulate realistic scenarios encountered by PV
systems, including fluctuations in solar irradiance and changes
in reference voltage. The results provide a comprehensive
assessment of the system’s transient and steady-state behavior,
focusing on key performance indicators such as voltage sta-
bility, response time, and control adaptability. These metrics
are pivotal in determining the reliability and efficiency of
the converter in dynamic environments, where conventional
controllers often face limitations.

The photovoltaic module used in this study, the Jinko Solar
JKM275PP-60, is rated at 275 W under standard test conditions
(STC). Its selection was based on a balance between perfor-
mance reliability and efficiency, aligned with standard practices
for the evaluation of the PV system.

The electrical parameters of the PV module and the specifi-
cations of the HGBC components were optimized to minimize
ripple, improve the transient response and maintain steady-
state stability. Table I presents these key parameters, which
form the basis for evaluating the performance of the system
under various operating conditions. The component choices,
particularly for inductors, capacitors and MOSFET switches,
were based on trade-offs between switching frequency, voltage
gain, and energy storage requirements.

The analysis includes a comparative evaluation of the pro-
posed ANN-based controller and a conventional PID controller.
The comparison focuses on critical performance metrics such as
rise time, overshoot, settling time, and steady-state error. These

metrics are essential for ensuring stable and efficient system
operation under fluctuating environmental conditions. While
the PID controller’s fixed-gain structure limits its adaptability
to nonlinear system dynamics, the ANN leverages its training
on varying input scenarios to dynamically adjust the control
strategy, resulting in superior performance in both transient and
steady-state responses.

TABLE I. KEY PARAMETERS OF THE PV MODULE AND BOOST CONVERTER

Component Value
Photovoltaic Module (Jinko JKM275PP-60)

Maximum Power (Pmax) 275 W
Voltage at Pmax (Vmp) 32.0 V
Current at Pmax (Imp) 8.61 A

Open Circuit Voltage (Voc) 38.7 V
Short Circuit Current (Isc) 9.38 A

Boost Converter Components
Inductors (L1, L2, L3) 3 mH each

Capacitors (Cin, C1, Co) 260 µF each
Switches (S1, S2, S3) IRFP264 MOSFET

Diodes (D1, Do) MUR840

A. Constant Irradiance with Constant Reference Voltage

Fig. 8 illustrates the response to the output voltage of the
HGBC during startup under a constant solar irradiance of 1000
W/m2 and a reference voltage of 250 V. In this scenario, the
duty cycle is set to approximately 0.6 to achieve the required
voltage gain. ANN and PID controllers are compared based on
their ability to regulate output voltage, focusing on key metrics
such as rise time, overshoot, and settling time, as summarized
in Table II.

The ANN controller rapidly stabilizes the output voltage,
achieving an increase time of 109.62 ms, with a minimal
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overshoot of 1.53% (3.83 V) and a settle time of 0.39 s. This
performance is attributed to the ANN’s real-time prediction and
adjustment capabilities, which dynamically regulate the duty
cycle to match the system’s energy transfer needs. ANN effi-
ciently manages inductor charging and capacitor stabilization,
preventing large voltage spikes during transient conditions.

Fig. 8. Output voltage waveform during start-up at STC and 250 V reference.

TABLE II. PERFORMANCE METRICS COMPARISON OF ANN AND PID CONTROLLERS

Metric ANN Controller PID Controller
Rise Time (ms) 109.62 820.88
Overshoot (%) 1.53 4.48

Overshoot (Volts) 3.83 11.2
Settling Time (s) 0.39 Not Settling

In contrast, the PID controller exhibits an increase time of
828.88 ms and an overshoot of 4.48% (11.2 V), failing to
settle within the observation period. This inferior performance
is primarily due to the static gain parameters of the PID, which
cannot adapt to the highly non-linear behavior of the HGBC.
As a result, the controller struggles to mitigate rapid changes in
inductor current, causing prolonged instability and oscillatory
behavior.

The voltage waveform in Fig. 8 highlights the superior
transient response of the ANN controller, characterized by a
smooth trajectory toward the reference voltage with negligible
oscillations. In contrast, the PID controller exhibits significant
overshoot and oscillation during the start-up phase, reflecting
its inability to handle complex nonlinearities without extensive
tuning.

The ANN’s performance improvement over PID control
is further evidenced by the steady-state error reduction. By
continuously adapting its control parameters based on system
feedback, the ANN minimizes both transient and steady-state
deviations, demonstrating robust voltage regulation under con-
stant operating conditions.

The results presented here demonstrate the superior capabil-
ity of the ANN controller in dynamic regulation under constant

conditions. The next subsection examines how both controllers
perform under variable reference voltage conditions.

B. Dynamic Voltage Transitions under Constant Irradiance

The system’s transient and steady-state performance is as-
sessed under constant solar irradiance of 1000 W/m2, with the
reference voltage varied between 250 V, 200 V, and 220 V.
This test emulates operational scenarios where reference voltage
adjustments are necessary to accommodate fluctuating demands
in PV applications. The output voltage profiles during these
transitions are shown in Fig. 9.

Fig. 9. Output voltage response for varying reference voltages at 1000 W/m2 irradiance.

During the transition from 250V to 200V, the ANN controller
achieves an overshoot of 15.48% (30.96V), a settling time
of 0.408s, and a steady-state error of 1.5V. This overshoot
results from the sudden release of stored inductor and capacitor
energy, which momentarily exceeds the target voltage. The
ANN promptly adjusts the duty cycle, minimizing oscillations
and restoring stability. This rapid convergence highlights the
predictive capabilities of ANN in adapting to non-linear system
variations through real-time feedback.

On the other hand, the PID controller faces significant
performance degradation, with an overshoot of 39.25% (78.5
V) and prolonged instability. Its static gain structure impairs
the response time, preventing effective error correction. The
accumulated error of the integral term delays the adjustment
of the control signal, while the proportional term excessively
amplifies deviations, leading to sustained oscillations.

The transition from 200V to 220V further underscores the
adaptability of the ANN controller. It maintains zero overshoot,
a settling time of 0.22s, and a minimal steady-state error of
0.4V. This performance demonstrates the ability of the ANN
to anticipate and counteract rapid changes in system voltage,
ensuring stable energy transfer and output regulation. In con-
trast, the PID controller experiences an overshoot of 28.08%
(56.16V) and remains unable to achieve stability, emphasizing
its limited capacity to handle dynamic transitions effectively.
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The voltage waveforms in Fig. 9 highlight the smooth regula-
tion achieved by the ANN controller, with minimal oscillations
and rapid convergence to the reference voltage. In contrast, the
PID controller shows erratic voltage swings and delayed error
correction, emphasizing its limitations in managing dynamic
transitions.

These findings, summarized in Table III, confirm the supe-
riority of the ANN controller to handle rapid voltage changes.
Its adaptive response minimizes both transient and steady-
state errors, making it a reliable solution for real-time PV
applications that require dynamic voltage regulation.

TABLE III. PERFORMANCE METRICS UNDER VARIABLE REFERENCE VOLTAGES

Reference Voltage
(V)

250 200 220

ANN Controller
Overshoot (%) 1.53 15.48 0
Overshoot (V) 3.83 30.96 0

Settling Time (s) 0.109 0.408 0.22
Steady-State Error

(V)
2.0 1.5 0.4

PID Controller
Overshoot (%) 3.44 39.25 28.08
Overshoot (V) 8.6 78.5 56.16

Settling Time (s) Not Settling Not Settling Not Settling
Steady-State Error

(V)
1.9 5.4 4.65

C. Dynamic Irradiance with Constant Reference Voltage

The system’s voltage regulation is evaluated under dynamic
solar irradiance conditions while maintaining a constant refer-
ence voltage of 250 V. Irradiance levels were varied between
1000 W/m2, 500 W/m2, and 800 W/m2, simulating real-world
conditions such as partial shading and passing clouds. This
analysis aims to assess how both controllers handle transient
and steady-state responses during fluctuating input power.

The voltage profiles during these transitions are illustrated
in Fig. 10, with performance metrics summarized in Table IV.
The ANN controller exhibits strong adaptability at all irradiance
levels, with rapid stabilization and minimal overshoot. Its
dynamic regulation is achieved by continuous adjustments to
the duty cycle, ensuring efficient energy transfer and steady-
state accuracy.

Under an irradiance drop to 500 W/m2, the ANN controller
achieves a settling time of 0.315 s and a steady-state error of
5.4 V. This performance is attributed to the ANN’s capacity
to recalibrate based on reduced input power, maintaining volt-
age regulation by efficiently compensating for lower energy
availability. On the other hand, the PID controller is unable
to stabilize under this condition, with a steady-state error of
2.1 V. Its inability to adapt to sudden changes in input power
results in oscillations and prolonged instability.

At 800 W/m2, the ANN controller continues to demonstrate
optimal control, achieving zero overshoot, a settling time of

0.22 s, and a minimal steady-state error of 1.1 V. This reflects
the ANN’s ability to generalize effectively across various input
conditions, even when such conditions were not explicitly
part of its training. In contrast, the PID controller records an
overshoot of 3.08% (7.7 V) and remains unstable, underscoring
the limitations of fixed-gain control in dynamic environments.

Fig. 10. Output voltage waveform under varying irradiance conditions and a constant
reference voltage of 250 V.

TABLE IV. PERFORMANCE METRICS UNDER VARIABLE IRRADIANCE CONDITIONS

Irradiance (W/m2) 1000 500 800
ANN Controller

Overshoot (%) 1.53 0 0
Overshoot (V) 3.83 0 0

Settling Time (s) 0.39 0.315 0.22
Steady-State Error (V) 1.8 5.4 1.1

PID Controller
Overshoot (%) 4.49 0 3.08
Overshoot (V) 11.22 0 7.7

Settling Time (s) Not Settling Not Settling Not Settling
Steady-State Error (V) 2.0 2.1 1.1

The voltage waveforms in Fig. 10 clearly demonstrate the
ANN’s superior transient response, characterized by smooth
convergence to the reference voltage without oscillations. By
comparison, the PID controller struggles with erratic swings,
unable to adjust control parameters rapidly enough to mitigate
disturbances.

These observations reinforce the ANN controller’s reliability
and efficiency in real-time PV applications where fluctuating
environmental conditions are prevalent. The next subsection
examines the system’s behavior under simultaneous changes
in both irradiance and reference voltage.

D. Combined Irradiance and Reference Voltage Variations

The adaptability of the system is evaluated under simultane-
ous changes in solar irradiance and reference voltage, simulat-
ing dynamic real-world scenarios. Irradiance levels were varied
between 700 W/m2, 500 W/m2, and 800 W/m2, while reference
voltages were adjusted to 250 V, 200 V, and 220 V, respectively.
This test examines how well the ANN and PID controllers
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can regulate the output voltage under fluctuating environmental
and operational conditions. The voltage profiles are shown
in Fig. 11, and key performance metrics are summarized in
Table V.

At 700 W/m2 and a reference voltage of 250 V, the ANN
controller achieves zero overshoot, a settling time of 0.465 s,
and a steady-state error of 1.3 V. This performance highlights
the ANN’s ability to dynamically adapt the duty cycle, main-
taining precise control over energy transfer despite fluctuating
input power. The absence of overshoot demonstrates effective
synchronization between inductor charging and output voltage
stabilization. Conversely, the PID controller records an over-
shoot of 2.08% and fails to settle, underscoring its limited capa-
bility to address the non-linear and rapidly changing dynamics
of the system.

During the transition to 500 W/m2 and 200 V, the ANN
exhibits a transient overshoot of 16.1% (32.2V) and a settling
time of 0.296s. This temporary overshoot is a result of the
system’s internal energy rebalancing as it adapts to the reduced
irradiance. The ANN’s rapid recalibration minimizes oscilla-
tions, leading to swift stabilization with a steady-state error
of 3.6V. In contrast, the PID controller struggles with severe
performance degradation, failing to stabilize and exhibiting
a steady-state error of 4.65 V. Its static gain configuration
exacerbates instability when faced with simultaneous irradiance
and voltage changes.

Under 800 W/m2 and 220 V, the ANN controller once again
demonstrates optimal performance, achieving zero overshoot,
a settling time of 0.239 s, and a steady-state error of 2.9
V. This result confirms the ANN’s robustness in managing
dynamic conditions through continuous real-time adjustments.
The controller efficiently balances input power variations and
reference voltage demands, ensuring stable output regulation.
By contrast, the PID controller remains unstable, unable to
respond adequately to the changing parameters, further high-
lighting its limitations in adaptive control scenarios.

The voltage profiles in Fig. 11 clearly illustrate the ANN’s
smooth regulation, with rapid convergence to the target voltage
and minimal oscillations. In contrast, the PID controller shows
erratic swings and persistent instability, indicating its failure to
manage dynamic interactions between input power and output
voltage effectively.

These findings underscore the ANN controller’s superior
adaptability in handling complex, real-time operating con-
ditions. Its enhanced transient and steady-state performance
positions it as a reliable solution for PV systems that experience
simultaneous environmental and operational fluctuations.

The performance evaluation confirms the superiority of the
ANN controller in regulating output voltage under both constant
and dynamic conditions. Its ability to predict and adapt to non-
linear system variations enabled faster stabilization, reduced

overshoot, and minimal steady-state error. In contrast, the
static gain structure of the PID controller led to significant
overshoot, prolonged instability, and failure to settle under
rapidly changing conditions.

Fig. 11. Output voltage under combined irradiance and reference voltage variations.

TABLE V. PERFORMANCE METRICS OF ANN AND PID CONTROLLERS
UNDER VARIABLE IRRADIANCE AND REFERENCE VOLTAGE

Metric ANN (250V,
700 W/m2)

ANN (200V,
500 W/m2)

ANN (220V,
800 W/m2)

Overshoot (%) 0 16.1 0
Settling Time (s) 0.465 0.296 0.239

Steady-State Error
(V)

1.3 3.6 2.9

Metric PID (250V,
700 W/m2)

PID (200V,
500 W/m2)

PID (220V,
800 W/m2)

Overshoot (%) 2.08 Not settling Not settling
Settling Time (s) Not settling Not settling Not settling

Steady-State Error
(V)

1.8 4.65 7.1

The ANN controller demonstrated resilience across all sce-
narios but showed transient overshoot during rapid reference
voltage drops, highlighting a limitation in handling extreme
transitions. This performance depends on the quality of the
training data, which may need to be expanded for greater
adaptability. Additionally, ANN controllers have higher com-
putational demands compared to PID control, which can be a
constraint in resource-limited systems.

The co-simulation framework integrated MATLAB/Simulink
and OrCAD to accurately capture both control dynamics and
circuit non-linearities, providing realistic performance valida-
tion. These findings establish the ANN controller as a reliable
solution for real-world photovoltaic applications, offering en-
hanced voltage stability and system efficiency under varying
environmental conditions. Future improvements could involve
hybrid control strategies or dynamic retraining to further opti-
mize performance.

IV. CONCLUSION

This study presented an adaptive ANN-based voltage con-
trol strategy for a HGBC in PV systems. Simulated under
dynamic conditions using a MATLAB/OrCAD co-simulation
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platform, the ANN controller outperformed a conventional PID
controller by achieving faster stabilization, reduced overshoot,
and minimal steady-state errors. This demonstrates the ANN’s
adaptability to complex nonlinear system dynamics, making it
suitable for real-world PV applications.

Although the ANN controller exhibited strong performance,
occasional transient overshoot during rapid transitions high-
lights a need for further refinement. Furthermore, its reliance on
extensive training data and computational complexity pose chal-
lenges for large-scale deployment. Future enhancements could
include hybrid control strategies and reinforcement learning to
improve scalability and efficiency.

Future work will focus on experimental validation and
expanding the training dataset to cover extreme operating
conditions. These improvements will strengthen the reliability
of ANN, offering a robust and efficient solution for next-
generation photovoltaic systems in dynamic environments.
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