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Abstract—This review article provides a comprehensive analysis
of advanced technologies for detecting, analyzing, and controlling
food spoilage, with a focus on perishable foods such as fruits,
vegetables, and meats. Although traditional methods such as mi-
crobiological testing and sensory evaluation remain fundamental,
emerging technologies such as machine learning (ML), computer
vision, and electronic noses (enoses) offer transformative poten-
tial for real-time monitoring and predictive analytics. However,
practical implementation of these technologies faces significant
challenges, including heterogeneity in data, computational con-
straints, and environmental variability. For example, ML models,
particularly deep learning architectures, require extensive labeled
datasets and high-performance computing resources, which are
often inaccessible in resource-constrained settings. Similarly, elec-
tronic noses, while effective in detecting volatile organic com-
pounds (VOCs) associated with spoilage, suffer from sensor drift
and cross-sensitivity issues, necessitating frequent recalibration.
Blockchain technology, though promising for improving traceabil-
ity and transparency in the food supply chain, struggles with
scalability and energy efficiency. This review critically evaluates
these limitations, highlighting gaps in current methodologies, such
as the overreliance on external spoilage indicators in computer
vision systems and the lack of standardized protocols for data
collection and model evaluation. By addressing these challenges,
future research can advance the development of robust, scalable
and cost-effective solutions for food spoilage detection, ultimately
contributing to improved food safety, reduced waste, and enhanced
supply chain efficiency.
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I. INTRODUCTION

Food spoilage remains a critical global challenge, with ap-
proximately one-third of all food produced for human consump-
tion equivalent to 1.3 billion tons annually lost or wasted due to
inefficiencies in detection and management [1]. This not only
exacerbates food insecurity, but also contributes significantly to

greenhouse gas emissions, accounting for nearly 8% of global
emissions related to food waste [2]. Traditional methods for
detecting spoilage, such as microbiological culture and sen-
sory evaluation, have long served as foundational approaches.
However, these methods are increasingly inadequate to address
the complex modern supply chain due to their time-consuming
nature, subjectivity, and inability to detect spoilage in the
early stages [3]. For example, conventional microbiological
tests require 5-7 days for results, in which time perishable
goods such as leafy greens or poultry may already be unusable
[4], while sensory evaluation suffers from human bias and
inconsistent thresholds for “spoiled” classification [5].

The advent of advanced technologies including machine
learning (ML), electronic noses (enoses), and the transformative
potential of computer vision to overcome these limitations.
ML algorithms, for example, can analyze real-time sensor data
to predict the probability of spoilage with more than 95%
precision, enabling proactive interventions [6]. Similarly, as
shown in Fig. 1. e-noses equipped with metal-oxide semi-
conductor (MOS) sensors detect volatile organic compounds
(VOCs) such as ethanol and geosmin, providing rapid, non-
destructive spoilage assessments [7]. Computer vision further
improves traceability by creating immutable records of stor-
age conditions and handling practices in supply chains [8].
However, these innovations are not without challenges. ML
models often require large annotated datasets that are scarce for
niche food products, while e-noses face sensor drift and cross-
sensitivity to environmental variables such as humidity [9,10].
Blockchain energy-intensive consensus mechanisms (e.g. proof-
of-work) and lack of standardization also hinder scalability in
decentralized food networks [11].

This review critically examines as shown in Fig. 1 the
efficacy of these emerging technologies in addressing the short-
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comings of traditional spoilage detection methods. Specifically,
we (1) evaluate the origin of spoilage and analytical tool for de-
tection; (2) presents non-conventional approaches such as ML;
(3) describes machine models for food food spilages; (5) and
(6) evaluate the technical capabilities and limitations of ML, e-
noses, and computer vision in perishable food monitoring; (7)
analyze gaps in current methodologies, such as the overreliance
on superficial spoilage indicators in computer vision systems;
and (8) present interdisciplinary strategies to enhance robust-
ness, scalability, and cost-effectiveness. Through the synthesis
of advances in artificial intelligence, sensor technology, and
decentralized systems, this study seeks to guide researchers and
industry stakeholders toward integrated solutions designed to
reduce food waste, improve safety, and optimize the resilience
of the supply chain.

Fig. 1. Flowchart to visually represent the research framework

II. ORIGINS OF SPOILAGE AND ANALYTICAL TOOLS FOR
DETECTION

Microbiological spoilage of fruits and vegetables can be
caused by various microorganisms that contaminate the food
at any stage from producer to consumer [8, 9]: Gram-positive
and Gram-negative bacteria, as well as fungi, yeasts, and molds,
represent common culprits [10]. Physiological changes during
ripening and spoilage make fresh vegetables more susceptible to
microbial contamination [11]. The probability of contamination

at any stage depends on factors such as morphology, stage
of development, and post-harvest handling [12]. Once fruits
and vegetables lose their natural supply of nutrients, quality
begins to deteriorate, with ripening and aging being the most
vulnerable periods to spoilage [13]. Food spoilage is of crucial
importance due to the different consequences influencing peo-
ple’s quality of life, for example, socioeconomic losses, threats
to public health, allergic reactions, gastrointestinal infections,
and other health issues [14, 15]. Certain spoilage-causing
fungal pathogens, such as Aspergillus, Fusarium, Penicillium,
Alternaria, etc., produce mycotoxins, which are recognized as
dangerous to human health [16]. More than 250 recognized
pathological conditions can result from eating foods contami-
nated with bacteria, viruses, heavy metals, and other substances
[17]. Foods may also contain pesticides [18], antibiotics [19],
and various chemical agents [20] in harmful amounts, which
might lead to health risks such as food poisoning, allergies,
and even cancer.

Contamination can occur under various agronomic and eco-
logical conditions [21]. Vegetables and fruits are vulnerable
because they are grown in unprotected natural environments [22
- 24], such as soil, which serves as a habitat for many different
microorganisms, bacteria and fungi [21]. Natural protective
mechanisms and barriers can be compromised by insect bites or
agricultural machinery during harvesting. The internal tissues of
vegetables and fruits, rich in nutrients and carbohydrates, pro-
vide a nourishing environment for the growth and proliferation
of foreign microflora [25]. Sources of biological contamination
during the growing season include soil, fertilizers, seeds, irriga-
tion water, solid biological waste, biological additives, domestic
animals, wildlife, insects, and humans [26 - 32]. Often, the
disinfecting agents used for crop processing are ineffective
against the mechanisms of contamination of crops under field
conditions [25]. For example, natural epiphytic microflora (epi-
phytes), such as Aureobasidium pullulans, can co-exist with
pathogenic microorganisms responsible for spoilage. Strains
like Arthrobacter sp., Bacillus sp., B. Polymyxa, B. pumilis, B.
cereus, B. megaterium, Agrobacterium sp., and the Cytophagus
Flavobacterium complex, identified using fatty acid profiles,
have been reported in sterilized potato tubers with a healthy
surface [33]. These bacterial species are natural endobionts
(endophytes) of tubers [34]. However, latent infections can
become active after harvest and cause spoilage [35].

Harvesting methods significantly influence the quality and
contamination levels of fruits and vegetables throughout the
food supply chain. [36 - 38]. Coarse or mechanical harvesting
practices often damage the integrity of the cellular and tissue,
creating pathways for microbial infiltration and growth within
the cellular sap [9, 35, 38, 39, 40]. Microorganisms responsible
for decay secrete hydrolytic enzymes, such as pectinases, cellu-
lases, proteases, and xylanases, which degrade plant cell walls
and accelerate spoilage [41]. A prominent example is soft rot
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caused by the Erwinia carotovora bacterium, a common and
devastating disease in potatoes that leads to significant yield
losses [42 - 44]. This pathogen, widely present in soil, poses a
continuous threat during storage, highlighting the importance of
safeguarding healthy tubers against mechanical and biological
damage [45]. In the case of Ready to Eat (RTE) vegetables and
fruits post-harvest handling introduces additional risks for fresh-
cut products subjected to processes such as cleaning, trimming,
washing, and slicing [47]. Tissue damage during these processes
triggers the oxidation of phenolic compounds via polyphenol
oxidase, resulting in undesirable discoloration (e.g., browning
or reddening) that reduces marketability [48]. Unlike typical
enzymatic browning, fluorescent Pseudomonads, which are
primarily responsible for plant tissue breakdown, cause rapid
browning and severe decay, particularly on cut surfaces such as
lettuce leaves [49]. Specific pathogens, including Pseudomonas
marginalis, are closely associated with vegetable deterioration,
while Pseudomonas cichorii induces necrotic spots in iceberg
lettuce, significantly compromising its visual and structural
quality [50][51]. Furthermore, spoilage by P. viridiflava and
P. chromraphis involves the production of pectolytic enzymes,
such as aspartate lyase, which degrade the tissue integrity of
fresh cut products, particularly during cold storage [52, 53].
Another significant concern is the spoilage caused by Bacillus
subtilis, a microorganism that is often implicated in the decay
of vegetables and food products. Although most of the spoilage
associated with B. subtilis involves nonpathogenic strains and
does not cause direct illness, its activity contributes to methane
emissions, a greenhouse gas with 21 times the global warming
potential of carbon dioxide [54]. Such environmental implica-
tions underline the dual importance of managing spoilage both
for food security and sustainability.

Comprehensive measures to mitigate these risks include
improving harvesting techniques to minimize tissue damage,
optimizing post-harvest processing to reduce oxidative reac-
tions, and implementing advanced storage protocols to limit
microbial growth and enzymatic activity. These practices are
essential to maintain the quality, safety and environmental
sustainability of fresh produce. Currently, spoilage is detected
through temperature control in the store, expert visual inspec-
tion (sensory analysis), and the presence of characteristic odors.
However, these methods do not detect the critical early stages
of spoilage. Thus, store and warehouse managers, as well as
food processors, require an early detection system that applies
conventional microbiological testing or analytical evaluation for
spoilage-causing microorganisms and instances of spoilage to
take corrective measures before changes begin. Microbiological
testing includes conventional microbiological and biochemical
testing, and analytical methods:

o Conventional microbiological and biochemical methods,
which rely on bacterial culture, are user-friendly, cost-
effective, and highly reliable. However, these methods

require cell culture for at least five to six days in a
specialized laboratory with trained personnel [55]. Other
detection techniques, such as ELISA, single radial im-
munodiffusion, and immunofluorescence analysis, are fast
but complex to use, and they often struggle to provide
high detection performance. Polymerase chain reaction
(PCR)-based analysis is a more modern approach that
offers significant potential as shown in Fig. 2. Multiplex
PCR enables the simultaneous detection of multiple tar-
gets, in addition to the advantages of conventional PCR
methods; it also improves identification accuracy [56, 57,
58]. However, this method requires expensive reagents and
specialized laboratory equipment.

Fig. 2. An overview of processes and issues concerning food quality, test methods, and
analytes as a result of fungal and microbial activities

« Moreover, analytical evaluation is a mandatory procedure
for certifying the food quality before it is declared suitable
for individual consumers and large retail chains. This
process verifies that the food characteristics listed on the
label and/or accompanying documents are compliant with
the requirements of regulatory standards [59]. Analytical
evaluation criteria fall into two categories: sensory and
physicochemical instrumental methods [60]:

1) Sensory analysis is a method used to determine quality
indicators based on the organoleptic characteristics of
the food under study. According to the international
analytical standards [60], [61], the organoleptic proper-
ties of food products are determined by indicators of
sensory characteristics [62, 63]. These characteristics
should remain unchanged during transportation, pack-
ing, and storage. They provide a preliminary evalu-
ation of the freshness and quality of the food [64].
Organoleptic evaluation of food products is carried
out by an accredited commission of experts [65], who
assess the condition of vegetables and fruits based on
visual, tactile, olfactory, and taste characteristics. The
advantages of organoleptic methods include availability,
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speed, and lack of need for expensive analytical equip-
ment for identifying standard inconsistency. However,
these methods are subjective due to individual sensory
perception differences, and they cannot estimate the
nutritional properties or contaminant content. Therefore,
organoleptic evaluation is often supplemented by quan-
titative instrumental analytical methods [66, 67].

2) Current physicochemical instrumental methods include
Infrared spectroscopy, electrochemical biosensors, sur-
face plasmon resonance, gas or liquid chromatography,
high-performance liquid chromatography (HPLC), and
tandem analytical units with mass spectrometry (MS)
and ion mobility spectrometry. These methods, however,
require complex sample preparation for separation and
concentration of target molecules using different extrac-
tion techniques [69]-[71]. These methods are applied to
the release of mycotoxins or other harmful microbial
metabolic compounds. Most of these toxins, such as
patulin, ochratoxin A, trichothecenes, and Alternaria
toxins, are organic compounds with carcinogenic and
mutagenic effects on humans [68]. Due to the presence
of a multicomponent matrix in fruits and vegetables,
accurate detection of small amounts of such toxins is
a difficult task. The chosen analytical method should
be able to selectively detect the target analytes or their
mixture, or separate and determine several required
compounds.

Thus, the use of traditional and accredited methodologies for
testing fruit and vegetable quality should take into consideration
such drawbacks: (1) the subjectivity of an expert panel using
organoleptic evaluation; (2) complex procedures of sample
preparation for microbiological screening by immunofluores-
cence analysis or PCR, and (3) cost of analytical equipment
for instrumental analysis.

III. NON-CONVENTIONAL APPROACHES
A. 1. Machine Learning (ML)

Machine learning is a subset of artificial intelligence (AI) that
focuses on creating algorithms and statistical models that allow
computers to perform tasks related to food spoilage without
explicit instructions. Instead, these systems learn from data,
identifying patterns, and making decisions based on that in-
formation. For example, an ML model could analyze historical
data on food storage conditions and spoilage rates to predict
the likelihood of spoilage for different food items under various
conditions. Artificial intelligence (AI) encompasses a broader
range of technologies, including ML, which is specifically
concerned with the ability of machines to learn and adapt.
In the context of food spoilage, Al could involve the use of
sensors, image recognition, and other technologies to monitor
food quality and detect spoilage. For example, an Al system
could use computer vision to analyze food images and identify

signs of spoilage, such as mold or discoloration. Within ML,
there are several key classes, as defined below and shown in
Fig. 3.

Fig. 3. Food spoilage assessment approaches

1) Supervised Learning (SL) In supervised learning, you
could train a model to predict whether a food item is
spoiled or not based on labeled data. For example, you
might have a dataset where each entry includes features
like temperature, humidity, storage time, and a label indi-
cating whether the food is spoiled. The model learns from
these data and can then predict spoilage for new, unseen
data. Common applications could include classifying food
as fresh or spoiled (classification) or predicting the number
of days until spoilage (regression).

2) Unsupervised Learning (UL) Unsupervised learning could
be used to identify patterns or groupings in data without
predefined labels. For example, you might use clustering
algorithms to group different types of food based on
their spoilage characteristics. This could help identify
which foods spoil under similar conditions or discover
new patterns in spoilage data that were not previously
known. Association tasks could help in finding relation-
ships between different spoilage factors, such as certain
temperature and humidity combinations that lead to faster
spoilage.

3) Reinforcement Learning (RL) Reinforcement learning
could be applied to optimize storage conditions to min-
imize food spoilage. An agent (e.g., a smart refrigerator
system) could be trained to adjust the temperature and
humidity settings to extend the shelf life of food items.
The agent would receive rewards for actions that success-
fully preserve food and penalties for actions that lead to
spoilage. Over time, the agent learns the best strategies for
maintaining optimal storage conditions.

4) Deep Learning (DL) Deep learning could be used to
analyze complex patterns in large datasets related to food
spoilage. For example, deep neural networks could be
employed to analyze images of food to detect signs of
spoilage, such as discoloration or mold. Additionally, deep
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learning models could process sensor data from storage
environments to predict spoilage more accurately by con-
sidering multiple factors simultaneously. This approach is
particularly useful when dealing with large and complex
datasets where traditional machine learning methods might
fall short.

ML is increasingly recognized as a powerful tool for combat-
ing food spoilage, offering advanced detection and prediction
capabilities across a wide range of food products. Using ML
in conjunction with complementary technologies such as the
Internet of Things (IoT) and spectroscopy, researchers are
creating innovative systems capable of real-time monitoring and
accurate prediction of spoilage. These systems not only improve
food safety, but also significantly reduce waste, contributing to
more sustainable food management practices. ML algorithms
are particularly effective in optimizing food storage conditions
and minimizing spoilage. They achieve this by analyzing vast
amounts of data collected from various sensors, which monitor
environmental factors such as temperature, humidity, and gas
composition, as well as shelf life and consumption patterns.
This data-driven approach allows ML models to detect subtle
changes that may indicate the onset of spoilage, enabling
timely interventions. For instance, predictive models can sug-
gest optimal storage arrangements, ensuring that food products
are stored under conditions that maximize their freshness and
longevity. This not only reduces waste, but also improves the
efficiency and sustainability of food storage systems. Further-
more, ML techniques are being integrated with computer vision
to analyze visual cues, such as changes in color, texture, or the
presence of mold, which are critical indicators of food quality.
Additionally, ML models can assess gas composition data to
detect the release of spoilage-related gases, such as ethylene
or ammonia. By combining these diverse data sources, ML
provides a comprehensive assessment of the factors influencing
food quality over time. This multimodal approach enables more
accurate and reliable spoilage detection, ensuring that food
safety standards are maintained throughout the supply chain.
The integration of ML with IoT, spectroscopy, and computer
vision is revolutionizing the way food spoilage is detected and
managed. These technologies work together to create intelligent
systems that not only predict and prevent spoilage but also
optimize storage conditions, reduce waste, and improve food
safety. As these systems continue to evolve, they have the
potential to transform the global food supply chain into a more
sustainable and efficient ecosystem, as shown in Fig. 4.

An extreme gradient boosting model was developed to pre-
dict Leuconostoc spp. growth in cooked deli foods, achieving
98% precision and outperforming the conventional Baranyi
model [71]. Known for its robustness and efficiency in handling
large datasets, the extreme gradient boosting model was trained
on various environmental and microbial growth parameters.
The model’s high accuracy indicates its potential for practical

applications in the food industry, where precise predictions
of microbial growth are crucial for ensuring food safety and
quality. Research using IoT sensors to monitor environmental
factors and ML to identify spoilage patterns improves food
safety and reduces waste [72].

Fig. 4. Al and its sub classes

IoT sensors were deployed to continuously collect data
on temperature, humidity, and other relevant environmental
conditions. The machine learning algorithms were then applied
to this data to detect patterns indicative of spoilage. This
approach not only improves the accuracy of spoilage detection,
but also allows real-time monitoring, enabling timely interven-
tions to prevent food waste. Another study combines electrical
impedance spectroscopy and data augmentation-based ML to
detect spoiled apple juice with precision 98% [73]. Electrical
impedance spectroscopy, a technique that measures the resis-
tance of a material to an electrical current, was used to gather
data on the apple juice samples. Data augmentation techniques
were used to enhance the dataset, allowing the machine learning
model to achieve high accuracy in distinguishing between fresh
and spoiled juice.

K.B. Anusha, K. Uma, Jayasri Kotti, et al. [74] employ
ML algorithms within an IoT system to monitor and predict
spoilage, achieving 92% accuracy. The integration of machine
learning algorithms with IoT systems enables continuous mon-
itoring of food products. The algorithms analyze data from
various sensors to predict spoilage, providing early warnings
and reducing the risk of consuming spoiled food. Research uti-
lizing Back Propagation Neural Networks and Linear-Support
Vector Machines to classify spoilage stages in chicken breast
fillets with high accuracy demonstrates the models’ ability
to accurately classify the spoilage stages, helping in better
managing the shelf life of poultry products [75]. Using re-
sistance values from gas sensors and a neural network to
classify food as fresh or spoiled, gas sensors were used to
detect volatile compounds emitted by food products [76]. The
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resistance values from these sensors were fed into a neural
network, which classified the food as fresh or spoiled based
on the detected gas patterns. Another study employs ML to
classify contamination in leftover cooked foods based on smell,
achieving 90-100% accuracy [77]. Electronic noses, devices
that mimic the human sense of smell, were used to detect odors
from leftover cooked foods. Machine learning algorithms were
then used to classify the level of contamination based on the
detected odors. A prediction algorithm combining ML and data
mining to forecast grocery spoilage provides notifications about
potential spoilage [78]. The algorithm analyzes historical data
on grocery spoilage and environmental conditions to predict
future spoilage events. Notifications are sent to grocery store
managers, allowing them to take preventive measures to reduce
waste. A smartphone application with an ML classifier for real-
time food spoilage monitoring, achieving 98.8% accuracy , uses
the smartphone’s camera and sensors to collect data on food
products [79]. Machine learning algorithms analyze this data
to determine the freshness of the food, providing users with
real-time information on spoilage.

Another research article discussing the use of ML algorithms
to process real-time data from IoT sensors for detecting food
quality and spoilage highlights the importance of real-time
data processing in ensuring food safety [80]. Machine learning
algorithms analyze data from IoT sensors to detect changes in
food quality, allowing for immediate action to prevent spoilage.
ML analyzes sensor data to detect meat spoilage, enabling
timely alerts to prevent consumption of spoiled meat [81].
Sensors placed in meat storage areas collect data on tempera-
ture, humidity, and gas emissions. Machine learning algorithms
analyze this data to detect spoilage, sending alerts to prevent
the consumption of spoiled meat. A CNN model designed to
predict and prevent food spoilage by monitoring gas emissions,
humidity, and temperature uses convolutional neural networks
to analyze complex patterns in the data collected from sensors
[82]. The model predicts spoilage based on gas emissions,
humidity, and temperature, providing a comprehensive solution
for food spoilage detection. ML algorithms analyze data from
IoT sensors to detect deviations in food freshness, predicting
spoilage likelihood and alerting suppliers and retailers [83].
By predicting spoilage likelihood, suppliers and retailers can
take proactive measures to ensure food quality. ML analyzes
data on temperature, humidity, and storage time to predict food
spoilage, enabling timely interventions to prevent waste [84].
Machine learning algorithms analyze environmental data and
storage conditions, helping in making informed decisions to
prevent food waste. An ML algorithm to predict food spoilage
and the number of days until spoilage, integrated into an app
for consumers, provides users with information on the freshness
of their food and the estimated number of days until spoilage,
helping them manage their food consumption more effectively
[85].

Deep learning algorithms are used to analyze real-time data
from IoT sensors for food quality monitoring [86]. These
algorithms process large volumes of data from IoT sensors,
providing accurate and timely information on food quality.
A CNN model that monitors food spoilage by assessing gas
emissions, humidity, and temperature uses convolutional neural
networks to analyze sensor data, providing a reliable method for
detecting food spoilage [87]. An IoT-based framework utilizing
Adaptive Random Forest prediction to monitor environmental
parameters affecting food spoilage (Nov, 2022) [88] combines
IoT technology with adaptive random forest algorithms to mon-
itor and predict food spoilage, providing a scalable solution for
the food industry. A CNN for gas identification related to food
spoilage, achieving a 96.67% accuracy rate [89], demonstrates
the effectiveness of convolutional neural networks in identifying
gases associated with food spoilage, providing a non-invasive
method for spoilage detection. A CNN for gas identification
related to food spoilage, achieving a 96.67% accuracy rate,
highlights the potential of CNNs in gas identification for food
spoilage detection. Using CNNss for efficient and nondestructive
detection of fruit freshness, addressing food spoilage [90],
convolutional neural networks analyze images of fruits, pro-
viding a non-destructive method for assessing freshness and
detecting spoilage. A Deep Learning model designed to detect
food spoilage, specifically distinguishing between fresh and
rotten fruits, uses deep learning techniques to analyze visual
and sensor data, accurately distinguishing between fresh and
rotten fruits [91]. ML, particularly using Random Forest and
XGBoost regressors, effectively predicts food spoilage by ana-
lyzing sensor data [92]. The study highlights the effectiveness
of random forest and XGBoost algorithms in predicting food
spoilage, providing a robust solution for the food industry.

ML methods, particularly CNNss, for detecting fruit spoilage,
highlight their effectiveness in classifying defective fruits [93].
Convolutional neural networks analyze images of fruits, accu-
rately classifying them based on their freshness and detecting
spoilage. A mobile application using deep learning techniques
for rapid detection of meat freshness uses deep learning al-
gorithms to analyze data from sensors and images, providing
users with real-time information on meat freshness [94]. A
real-time detection and sorting system for spoiled fruits using
deep learning uses deep learning algorithms to analyze images
of fruits, automatically sorting them based on their freshness
and detecting spoilage [95]. ML, specifically using CNNS, is
employed to detect food spoilage by monitoring gas emissions,
humidity, and temperature [96]. Convolutional neural networks
analyze complex patterns in sensor data, providing a reliable
method for detecting food spoilage in Table I. ML models,
including Logistic Regression and Random Forest, classify
fruits and vegetables into fresh, semi-fresh, and spoiled cat-
egories [97]. Logistic regression and random forest algorithms
analyze data on fruits and vegetables, accurately classifying
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them based on their freshness. Predicting food wastage using
ML, specifically highlighting XGBoost’s effectiveness , demon-
strates the effectiveness of XGBoost algorithms in predicting
food wastage, providing a valuable tool for reducing waste
in the food industry [98]. Implementing ML to estimate the
likelihood and duration of food spoilage based on vendor-
specific data uses machine learning algorithms to analyze data
from vendors, providing accurate estimates of the likelihood
and duration of food spoilage, helping vendors manage their
inventory more effectively[99].

IV. MACHINE LEARNING MODELS FOR FOOD SPOILAGE
DETECTION: A TECHNICAL TAXONOMY

The integration of machine learning (ML) into food spoilage
detection has enabled rapid, non-destructive, and scalable so-
lutions. This section categorizes key ML algorithms, their
architectures, and applications in food quality monitoring, em-
phasizing performance metrics, limitations, and domain-specific
implementations.

A. Supervised Learning Approaches

1) Convolutional Neural Networks (CNNs) : CNNs excel in
processing spatially structured data, such as hyperspectral or
RGB images, by leveraging convolutional layers to extract hi-
erarchical features (e.g., texture, color gradients). Applications
include:

1) Fruit Freshness Analysis: Detection of spoilage indicators
(discoloration, mold) in apples and strawberries through
image classification, achieving 95% precision [93].

2) Environmental Monitoring: Multimodal CNN architectures
correlate gas emissions (e.g., ethylene, ammonia) with
temperature/humidity data to predict microbial activity in
perishables [96].

3) Non-Destructive Testing: Real-time sorting systems for
fruits using CNN reduce physical damage, as demonstrated
in mango quality grading (F1-score: 0.94) [100].

B. Support Vector Machines (SVMs)

SVMs identify optimal hyperplanes for classification in high-
dimensional spaces. Variants include:

1) Linear-SVM: Binary classification of spoilage stages in
chicken breast fillets using spectral data (accuracy: 89%)
[101].

2) Kernel-SVM: Non-linear separation of VOC profiles from
electronic noses (e-noses) to detect contamination in
cooked foods [102].

C. Gradient Boosting Algorithms

1) XGBoost: A gradient-boosted decision tree framework
achieves 98% accuracy in predicting microbial growth

(e.g., Leuconostoc spp.) in deli meats, outperforming ki-
netic models like Baranyi [71]. It also analyzes vendor-
specific sales data to forecast spoilage risks (RMSE: 1.2
days) [92, 98].

2) Adaptive Random Forest (ARF): Combines IoT sensor
streams with incremental learning for real-time spoilage
prediction in supply chains, maintaining 92% precision
under concept drift [107].

D. Deep Learning Architectures

1) Hybrid Neural Networks:

1) Backpropagation Neural Networks (BPNNs): Utilize gra-
dient descent to classify spoilage stages in chicken fillets
(accuracy: 91%) by training on spectral reflectance data
[101].

2) Recurrent Neural Networks (RNNs): Process temporal
sensor data (e.g., temperature fluctuations) to model time-
dependent spoilage kinetics in dairy products [105].

E. Data-Augmented Models

Synthetic dataset expansion via rotation, scaling, and noise
injection improves generalization in CNN-based freshness clas-
sifiers, reducing overfitting in small datasets (e.g., 15% accuracy
gain in leafy greens).

1) Gas Sensor-Driven Networks: MLPs (Multilayer Percep-
trons) and 1D-CNNs analyze resistance patterns from metal-
oxide semiconductor (MOS) sensors to detect VOCs (e.g.,
ethanol, acetone) emitted during spoilage, achieving 97% speci-
ficity in meat quality assessment [103].

FE. Ensemble and Traditional Methods

1) Random Forest (RF): An ensemble of decision trees
classifies fruits/vegetables into freshness tiers (fresh, semi-fresh,
spoiled) using multispectral features (x-score: 0.88) [109].
RF’s feature importance metrics also identify critical spoilage
predictors (e.g., pH, CO, levels).

2) Logistic Regression: A baseline for binary classification,
logistic regression achieves 85% accuracy in fruit freshness
categorization, though it underperforms non-linear models in
complex VOC datasets [109].

G. Integrated Systems and Deployment Platforms

1) Electronic Nose (E-Nose) Systems: E-noses paired with
ML (e.g., PCA-SVM, LDA classifiers) detect spoilage-induced
VOC:s in cooked leftovers, achieving 94% accuracy via sensor
array fusion [103].

2) loT-Edge Frameworks:

« Smartphone-Based Solutions: Mobile CNNs analyze pro-
duce images captured by built-in cameras, providing
consumer-facing freshness scores (AUC: 0.91) [104].
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TABLE I. ML AND IOT IN FOOD SPOILAGE DETECTION

Study

Objective

Method

Outcome

Reference

Extreme Gradient Boost-

Predict Leuconostoc spp.

Developed an extreme

Achieved 98% accuracy,

Mayumi Kataoka et al.

Detection

factors  and
spoilage patterns.

identify

time data (temperature,
humidity), and ML algo-
rithms detected spoilage
indicators.

racy and enabled real-time
interventions.

ing for Microbial Growth | growth in cooked deli | gradient boosting model | outperforming the Baranyi | [71]
Prediction foods. trained on environmental | model.
and microbial parameters.
IoT and ML for Spoilage | Monitor  environmental | IoT sensors collected real- | Enhanced detection accu- | Keerthana Mogilipalem et

al. [72]

Electrical
Spectroscopy

Data Augmentation with
Impedance

Detect spoiled apple juice.

Combined  spectroscopy
data and  augmented
datasets with ML
algorithms.

Achieved 98% classifica-
tion accuracy.

Zhenchang Gao et al. [73]

tegration

IoT Systems with ML In-

Predict spoilage of various
food products.

IoT data analyzed via ML
algorithms for real-time
monitoring.

Achieved 92% accuracy,
reducing spoilage risks.

K.B. Anusha et al. [74]

Neural Networks for Gas-
Based Food Classification

Classify food as fresh or
spoiled.

Neural networks analyzed
resistance values from gas
SEensors.

Provided accurate
spoilage detection.

Andrei Tamaian et al. [76]

Freshness Detection

Deep Learning for Meat

Detect spoilage stages in
chicken breast fillets.

Back Propagation Neu-
ral Networks and Linear-
Support Vector Machines
analyzed spoilage data.

High classification accu-
racy achieved.

Aftab Siddique et al. [75]

itoring

Mobile Applications for
Real-Time Spoilage Mon-

Develop consumer-
friendly tools for spoilage
detection.

Smartphone-based ~ ML
classifiers analyzed sensor
data.

Achieved 98.8% accuracy.

Vakkas Dogan et al. [79]

IoT Frameworks

Adaptive Algorithms

Monitor  environmental
parameters affecting
spoilage.

Adaptive Random For-
est algorithms within IoT
frameworks.

Scalability and predictive
efficiency demonstrated.

Ahmed et al. 2022 [88]

ment

CNN Models for Non-
Invasive Quality Assess-

Monitor food freshness
and quality.

Convolutional Neural
Networks analyzed sensor
and image data.

High reliability in
spoilage prediction.

Sai Prasad Baswoju et al.
[82]

Management

Data-Driven Supply Chain

Reduce waste through
predictive analytics.

Random  Forest  and
XGBoost algorithms
predicted spoilage

likelihood and timelines.

Enhanced inventory man-
agement.

Paul Wunderlich et al.
[92]

o Cloud-Edge Pipelines: Federated learning frameworks
train global models on distributed IoT data (temperature,
humidity) while preserving data privacy [105].

3) Blockchain-ML Integration: Decentralized ledgers times-
tamp sensor data validated by ML anomaly detectors (e.g.,
autoencoders), ensuring tamper-proof traceability in seafood

supply chains [78].

V. COMPARATIVE ANALYSIS AND CHALLENGES

A critical evaluation of ML algorithms for food spoilage
detection reveals trade-offs between computational efficiency,
accuracy, and deployability. The Table II synthesizes these
aspects, while subsequent sections detail domain-specific chal-

lenges.

Domain-Specific Challenges
A. Data Heterogeneity

e Sensor Variability: Differences in gas sensor calibration
(e.g., MOS vs. electrochemical) and spectral sensor res-
olutions lead to inconsistent feature spaces, complicating
model generalization.

« Environmental Noise: Fluctuations in lighting (for imag-
ing) and ambient VOCs (for e-noses) introduce spurious

correlations, requiring robust preprocessing (e.g., wavelet

denoising).
o Labeling Inconsistencies: Subjective spoilage thresholds
(e.g., “semi-fresh” vs. “spoiled”) across studies hinder

dataset interoperability.

B. Computational Constraints

« Edge Deployment: CNN/XGBoost models often exceed
the memory and power budgets of IoT nodes (e.g., ARM
Cortex-M4 devices with 256 KB RAM).

o Energy Costs: Training deep models on high-resolution hy-

perspectral data consumes 100 W/h, which is inconsistent
with sustainability goals.

C. Interpretability and Trust

critical applications.

« Black-Box Decisions: Regulatory agencies (e.g., FDA)
demand explainable spoilage predictions, but CNNs/ARFs
lack intrinsic interpretability, delaying adoption in safety-
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TABLE II. COMPARISON OF MACHINE LEARNING ALGORITHMS FOR FOOD SPOILAGE DETECTION

Algorithm Strengths Limitations Use Case Performance Optimization Strate-
Metrics gies

CNN Superior spatial fea- | High computational | Image-based Model pruning,
ture extraction; Ro- | load (GPU | fruit/vegetable quantization,
bust to translational | dependency); grading [56,93] | MobileNet
invariance in images; | Requires large | Accuracy: 92-98%; | architectures
State-of-the-art for vi- | labeled datasets; Poor | Fl-score: 0.89-0.94
sual spoilage detec- | interpretability
tion

XGBoost Handles Overfitting on small | Microbial growth pre- | RMSE: 1.2 days; Ac- | Early stopping, regu-
missing/sparse data; | datasets (j1,000 sam- | diction in meats [71]; | curacy: 98% larization (X, y), syn-
Feature  importance | ples); Limited to tab- | Food waste forecast- thetic data generation
rankings; High speed | ular data; Hyperpa- | ing [92]
on structured data rameter sensitivity

SVM Effective in high- | Kernel selection | VOC classification | Accuracy: 85-89%; | Linear kernels for
dimensional spaces; | impacts performance; | using e-noses [103]; | Precision: 0.88 scalability, PCA
Robust to outliers; | Scalability issues | Spectral data analysis for  dimensionality
Versatile via kernel | with large datasets; | [101] reduction
tricks Memory-intensive for

multiclass tasks
Adaptive Random | Handles concept drift | High memory foot- | Real-time IoT | Precision: 92%; Re- | Feature hashing, dy-

Forest (ARF)

in streaming data;

print; Slower infer-

monitoring in supply

call: 89%

namic ensemble re-

Parallelizable for | ence than static mod- | chains [107] sizing
distributed ~ systems; | els; Complex hyper-
Robust to noise parameter tuning
Logistic Regression Simple, interpretable; | Limited to linear | Binary freshness clas- | Accuracy: 82-85%; | SMOTE for balanc-
Low computational | decision boundaries; | sification [109] AUC: 0.79 ing, polynomial fea-
cost; Stable with | Poor performance ture expansion
small datasets on imbalanced data;
Assumes feature
independence
BPNN Flexible architecture | Vanishing/exploding Spectral spoilage | Accuracy: 88-91%; | Batch normalization,
(adaptable  layers); | gradients; Slow | staging in poultry | MSE: 0.12 Adam optimizer
Suitable for non- | convergence; Risk of | [101]
linear patterns; | local minima

End-to-end training

o Stakeholder Skepticism: Farmers and suppliers distrust
models trained on lab data, citing domain shift (e.g.,
controlled vs. field conditions).

D. Scalability and Integration

o Cross-Domain Generalization: Models trained on specific
foods (e.g., poultry) fail on others (e.g., leafy greens) due
to divergent spoilage biomarkers.

o Legacy System Compatibility: Integration with existing
SCADA/WMS platforms requires API standardization,
which is lacking in proprietary IoT frameworks [107].

E. Mitigation Strategies

Although CNN and XGBoost dominate current research,
their real-world efficacy depends on addressing sensor noise,
energy efficiency, and stakeholder trust, as shown in Table III.
Hybrid approaches (e.g., CNN-SVM cascades) and lightweight
edge Al frameworks offer promising pathways. Future work
must prioritize reproducibility through open-source benchmarks
(e.g., FSLab) and industry-academia partnerships to bridge lab-
to-field gaps.

VI. COMPUTER VISION IN FOOD SPOILAGE DETECTION

Computer vision is a pivotal technique for analyzing food
spoilage in both the food and agricultural sectors, as it evalu-
ates external and internal quality attributes. External attributes,
such as color, size, and surface texture, are assessed through
image analysis, while internal parameters, including defects
and texture, are detected using advanced techniques like X-
rays and hyperspectral imaging [114]. A standard computer
vision system typically includes a camera, a light source, image
processing software, and a computer (Fig. 3). For hyperspec-
tral or multispectral systems, additional components such as
wavelength dispersion devices (e.g., spectrographs or filters) are
required [115]. Since spoilage is often manifested as changes
in color and texture, precise calibration of the light source is
crucial to minimize software misinterpretation of normal versus
defective produce.

The implementation of computer vision technology follows
a systematic process:

1) Image Acquisition: Images of food products are captured
using cameras or imaging devices.

2) Pre-processing: These images undergo enhancements like
resizing [116], [117], noise reduction for X-ray images
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3)

4)

5)

[117], and transformations from RGB to alternative color
spaces, such as Lab, to improve quality and ensure con-
sistency [118], [119].

Segmentation: Segmentation techniques are employed to
isolate individual objects, such as fruits or vegetables, for
focused analysis. Techniques include thresholding, edge
detection, and region-based methods.

Feature Extraction: Key features such as color, texture,
and shape are extracted from segmented images. Some
studies also incorporate statistical features such as mean
and standard deviation for a comprehensive analysis [118].
Classification and Detection: Advanced algorithms analyze
the extracted features to detect defects, anomalies, or
discolorations indicative of spoilage. Deep learning models
such as CNNs have become predominant in these tasks,
supported by traditional machine learning algorithms such
as SVM, Random Forest, KNN, Decision Trees, and
Linear Regression [118] [119] [120] [121].

A. Systematic Process of Computer Vision Technology

Implementation of computer vision technology, as illustrated
in Fig. 5, follows a structured approach:

Fig. 5. Machine Learning-Based Food Spoilage Detection Framework

1))

2)

3)

4)

Image Acquisition: Images of food products are captured
using cameras or imaging devices.

Pre-processing: These images undergo enhancements such
as resizing [116], [117], noise reduction for X-ray images
[117], and transformations from RGB to alternative color
spaces, such as Lab, to improve quality and ensure con-
sistency [118], [119].

Segmentation: Segmentation techniques are employed to
isolate individual objects, such as fruits or vegetables, for
focused analysis. Techniques include thresholding, edge
detection, and region-based methods.

Feature Extraction: Key features such as color, texture,
and shape are extracted from segmented images. Some
studies also incorporate statistical features such as mean
and standard deviation for a comprehensive analysis [118].

5) Classification and Detection: Advanced algorithms analyze
the extracted features to detect defects, anomalies, or
discolorations indicative of spoilage shown in Fig. 6. Deep
learning models such as CNNs have become predominant
in these tasks, supported by traditional machine learning
algorithms like SVM, Random Forest, KNN, Decision
Trees, and Linear Regression [118],[119],[120],[121].

Fig. 6. A computer vision system application procedure. Systematic Process of
Computer Vision Technology

B. Advanced Methodologies in Computer Vision

1) Pre-processing Techniques::

o Resizing: Standardizes image dimensions to ensure uni-
form input for algorithms [116], [117] .

« Noise Reduction: Enhances the clarity of X-ray images,
particularly useful for detecting internal defects [117].

o Color Space Transformation: Converts images from RGB
to Lab, which aligns more closely with human vision, fa-
cilitating better differentiation of spoilage indicators [118],
[119].

2) Segmentation Techniques: Techniques such as threshold-
ing and edge detection are used to isolate objects. Region-
based segmentation is especially effective for analyzing grouped
items, such as clustered vegetables.

3) Feature Extraction: Features like color (hue, saturation),
texture (smoothness, roughness), and shape (roundness, irreg-
ularity) are analyzed. Statistical measures such as mean and
standard deviation further enhance the detection accuracy [118].

4) Advanced Algorithms:

e Deep Learning Models: State-of-the-art models like
ResNet and DenseNet have been deployed to improve
classification and detection accuracy. Their architecture,
leveraging residual learning and densely connected layers,
outperform traditional CNNs in many tasks.
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TABLE III. CHALLENGES AND TECHNICAL SOLUTIONS IN ML AND IOT FOR FOOD SPOILAGE DETECTION

Challenges

Technical Solutions

Industry Partnerships

Data Heterogeneity

Federated learning for multi-sensor data harmoniza-
tion

Collaborate with sensor manufacturers (e.g., Figaro,
AMS AG)

Computational Costs

TinyML frameworks (TensorFlow Lite for Microcon-
trollers)

Edge hardware vendors (Arduino, NVIDIA Jetson)

Interpretability

SHAP/LIME for model explainability

Regulatory bodies (FDA, EFSA)

Scalability

Transfer learning with domain adaptation (e.g.,

Cloud providers (AWS IoT, Google Cloud)

CORAL)

e Model Comparisons: Studies have shown CNNs to achieve
higher accuracy compared to traditional machine learning
models such as SVM, particularly in large datasets. Perfor-
mance metrics such as precision, recall, and the F1 score
further validate these findings.

5) Integration with IoT for Real-time Monitoring:

o IoT Sensors: Real-time data acquisition from IoT-enabled
sensors, combined with computer vision algorithms, en-
ables continuous monitoring of food quality.

o Data Fusion: Integrating data from multiple sensor types
(e.g., visual, thermal, hyperspectral) enhances detection
accuracy and provides a more comprehensive assessment
of spoilage.

VII. ELECTRONIC NOSE

The AI protocols provide additional capabilities to rapidly
test, identify and visualize complex data sets that could be
associated with the generation of a broad range of analytes
that stimulate the ripening or spoilage processes, or visual,
mechanical and physical factors related to the changes in food
in inappropriate storage conditions. In particular, one of the
methods, so-called gas multisensory arrays or electronic noses
(e-noses), enables us to identify spoiled stages according to
gas/volatile molecule profiles related to bacterial or fungal
metabolism in the food environment [122]. An electronic nose,
or e-nose, is a device that mimics the operation of a mam-
malian olfactory system. It comprises an array of cross-sensitive
sensors and an algorithm. An e-nose delivers a smell pattern,
which is used to distinguish various, often complex smells.
Here, for estimating the activities of microbial communities
in the ripening and spoilage processes, the different volatiles
associated with metabolism might be observed and detected by
such sensing arrays. Particularly, the following volatile com-
pounds were identified in the processes at the post-harvesting
stages as spoilage markers:

1) Aliphatic biogenic amines such as putrescine and spermi-
dine, released from spoiled meat [123, 124, 125].

2) Acids, alcohols, and sulfurous compounds as major
metabolites of microbial fermentation [126, 127].

3) Volatile compounds associated with fungal production, in-
cluding 2-methyl-1-propanol, 3-methyl-1-butanol, 1-octen-
3-ol, 3-octanone, 3-methylfuran, ethyl acetate, 2-methyl-
isoborneol, and geosmin [128, 129, 130].

4) Inorganic gases including H,S and NHj, related to high-
protein food decomposition, as well as CO,, CO, CHy,
and NHj [131].

The diversity of the spoilage markers demonstrates the com-
plexity and labor intensity of their identification by standard
analytical methods, e.g., GC-MS, due to complicated sample
preparation and discrimination of individual analytes in the
gas mixtures. Here, the combination of sensor array and Al
protocol looks promising to minimize the sample preparation
step and to help to interpret the output multidimensional data.
Currently, E-nose applications in the food industry include the
analysis of fruit and vegetable ripeness, spoilage or freshness
evaluation, storage management [132], shelf-life management
[133], and the detection of oxidation and environmental im-
pacts. It is also used in food packaging, food production, and
contaminant identification [134]. Other interesting applications
are food processing and preparation [135]. Several reviews
consider e-nose as a tool for food analysis [136, 137]. Some
reviews evaluate spoilage, off-flavors, and fermentation [138].
A recent review by Mingyang Wang & Chen discusses existing
commercial solutions, algorithms employed with e-noses, and
highlights studies on freshness assessment of olives, kiwifruits,
strawberries, and the drying and fermentation of green tea,
garlic, ginger, and peppermint leaves [139]. The review also
discusses the use of an e-nose in processing grapes and ginger,
testing flavors of various fruits and vegetables like lemon,
kiwifruit, pumpkin, zha-chili, and tomato, and the authenticity
of crab apples. In most studies, metal oxide-based sensors have
been used, with about 10 sensors in the array, up to 16, 18,
or 32 sensors. Quality control is highlighted as an application
for sweet potato, garlic, and olives. The authors discuss origin
traceability and pesticide residue detection for apples, ginger,
cherries, mint, and potatoes.

Additionally, studies on spinach, pepper, onion, and broccoli
have been discussed in a review by H. Anwar, T. Anwar, and
M. Sh. Murtaza [140]. They highlighted using e-noses for
freshness/spoilage, selenite effect, cultivar difference, fungus
detection, disease detection, variety differences, soft rot de-
tection, classification as sweet or spicy, and treatment effect,
indicating that many studies use self-made e-nose devices.
Several reviews discuss fruit quality assessment and emphasize
the importance of data fusion at different levels, such as
combining e-nose and computer vision techniques [141 - 143].
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Specifically, the e-nose has been used to evaluate the smell
of green coffee [144] to address mycotoxins from Aspergillus
spp. contamination. Numerous studies have focused on tomato
spoilage, such as cherry tomatoes spoiled by fungi [145], and
the detection of spoilage due to microbial contamination [146].
Fresh-cut green bell pepper (Capsicum annuum var. grossum)
stored at 7 £ 1 °C [147] has been examined with an e-nose.
These studies suggest that the pepper stays fresh for up to 5 days
and spoils by the 7th day, particularly as evidenced by a surge in
aerobic plate count and malondialdehyde content on subsequent
days. The authors showed that the e-nose data combined with
hierarchical cluster analysis (HCA) could distinguish between
fresh (days O, 1, 3, and 5) and spoiled (days 7 and 9) samples.
The ripening and spoilage classification of green and yellow
mangos has been achieved using a wireless electronic nose
[148]. The microbial quality in edible seaweed was evaluated
using FT-IR sensors, multispectral imaging, and e-nose [149].
A combination of methods is gaining popularity. For instance,
an e-nose combined with GC-MS, sensory evaluation, and
microbiological tests. Strawberries in food containers have been
assessed using an e-nose, GC-MS, and sensory evaluation for
edibility [150]. To reveal the potential relationship between
the bacterial community and quality attributes of vacuum-
packaged peeled potatoes, the bacterial community dynamics,
visual quality, organic acids, flavor, and volatile organic com-
pounds (VOCs) during 12 days of storage under 10° C were
studied, and a correlation analysis was performed between the
bacterial community and VOCs [151]. The effects of controlled
atmosphere packaging with 3% O2 and 7% CO2 on changes in
the nutritional quality, taste, and volatile compounds of fresh-
cut cucumber caused by Pseudomonas plecoglossicida were
studied by using electronic tongue, electronic nose, and gas
chromatography-mass spectrometry [151]. The sensory quality
and volatile profile of Spanish-style table olives inoculated with
different strains of spoilage molds were analyzed using an e-
nose. Pasteurized olives with brine were inoculated with nine
spoilage mold strains: 1 strain of Galactomyces (G. geotrichum,
G.G.2). 4 strains of Penicillium (3 P. expansum, P.E.3, PE.4
and P.E.20; and 1 P. glabrum P.G.19). 3 strains of Aspergillus
(A. flavus A.F.9, A.F.18 and A.F.21). 1 of Fusarium (F. solani
F.S.11). Sensorial and volatile compound analysis showed the
table olives inoculated with the strains of Aspergillus flavus
A.F.18 and Penicillium expansum P.E.20 to be the most altered.
E-nose, sensory analysis, and GC were used in this study [152].

Electronic nose was applied to successfully analyze varieties
of fruits, edible and rotten, with 100% success of discrimination
for New Hall oranges, Golden apples, Kiwis, and William
pears, and with 97.2% success for the Starking apples [153].
It is suggested that without forming fruit variety subsets, dis-
crimination between edible and rotten fruit was achieved with
95% success. Additionally, the aroma and spoilage of apples
have been analyzed by detecting key compounds using gas

chromatography and mass spectrometry. The differences were
observed after 6 days of exposure to artificially induced damage
in the form of a cut. The authors detected the differences in the
volatile compounds between undamaged and damaged apples
four or more days after the cut. Several cuts also had some
effect on volatile compound emissions [154]. The spoilage of
apples by Penicillium expansum was traced using enose, GC-
MS, and correlated to HPLC quantification of patulin to develop
a prediction model for patulin concentration in apples that can
be used for apple juice, prediction of mycotoxin. In this study,
the authors compared the results of the control sample with
those treated by surface inoculation and core inoculation with
P. expansum [155]. Also, regarding apple transportation and
storage, Aspergillus niger, Penicillium expansum, Penicillium
chrysogenum, and Alternaria alternata, were inoculated on
apple samples [156]. An e-nose has been applied for quality
testing of Royal Delicious apples by detecting pathogen con-
tamination. This study revealed the presence of Staphylococcus,
Salmonella, and Shigella bacteria species. GC-MS spectra
of contaminated samples confirmed the presence of bacterial
spoilage markers namely acetone, ethyl acetate, ethanol, and
acetaldehyde [157].

The e-nose has been used for assessing the spoilage of
bananas, peaches, carrots, and grapes operating at low tem-
peratures, particularly in the refrigerator using a PCA - K
Nearest Neighbors method [158]. Banana fruit spoilage has
been tested [159]. An e-nose was applied for the detection of
the freshness of carrot salad and the evaluation of the smell of
rotting bananas [160]. Studying fungal contamination by an e-
nose often includes inoculation. For example, peaches’ storage
was studied by inoculating with three common spoilage fungi,
Botrytis cinerea, Monilinia fructicola, and Rhizopus stolonifera;
then the peaches were stored for various periods [161]. Grape
spoilage stages were investigated using infrared spectra of
their volatiles and an e-nose [162]. A shelf-life considering
outdoor aerobic storage has been tested for tomato puree-
emitted gas samples with varying shelf life [163]. The freshness
of kiwifruit, pork, and beef was tested with a sensor array [164].

While the e-nose is a self-sustained tool, studies have often
combined various methods including GC-MS, sensory evalu-
ation, microbiological analysis, metagenomics, and computer
vision. Moreover, the current limitations of these devices are
also interconnected to the capabilities to produce the identical
sensors with low sensor-to-sensor variation [165], stability of
sensor elements [166], sufficient selectivity towards the broad
range of gas mixtures [167], and identification of individual
volatiles [168].

VIII. CRITICAL ANALYSIS OF TECHNOLOGICAL
LIMITATIONS IN FOOD SPOILAGE DETECTION SYSTEMS

The integration of advanced technologies into food spoilage
detection has yielded significant progress, yet persistent chal-
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lenges impede scalability, reliability, and adoption. This section
critically evaluates key limitations across machine learning, sen-
sor systems, and blockchain frameworks, supported by empir-
ical evidence and contextualized within real-world constraints.

A. Machine Learning: Data Dependency and Computational
Barriers

1) Challenge: ML models, particularly deep learning ar-
chitectures like convolutional neural networks (CNNs), rely
on extensive labeled datasets and high-performance computing
resources. Overfitting risks escalate with small or imbalanced
datasets, compromising generalization to diverse food types or
environmental conditions.

2) Evidence: CNNs applied to fruit spoilage detection
demand thousands of annotated images for robust training
[93], while XGBoost models predicting microbial growth re-
quire structured datasets with precise microbial counts [71].
Resource-constrained settings often lack infrastructure for data
acquisition (e.g., hyperspectral imaging) or GPU-powered com-
putation.

3) Significance: These limitations disproportionately affect
small-scale enterprises, widening the gap between experimental
prototypes and deployable solutions. For instance, a CNN
achieving 98% accuracy in lab-controlled environments may
fail in field conditions due to dataset bias or hardware limita-
tions [56].

B. Standardization: Methodological Fragmentation

1) Challenge: The absence of uniform protocols for data
pre-processing, model evaluation, and performance reporting
undermines reproducibility and cross-study comparisons.

2) Evidence: Studies on electronic nose (e-nose) systems
report accuracy metrics ranging from 85% to 94% for similar
spoilage tasks, yet discrepancies in gas sensor calibration,
feature extraction methods, and validation splits obscure direct
comparisons [103].

3) Significance: Methodological heterogeneity stifles con-
sensus on optimal practices, delaying regulatory approval and
industrial adoption. Standardized benchmarks, similar to Ima-
geNet for computer vision, are urgently needed to harmonize
research efforts.

C. Practical Deployment: Environmental and Operational Vul-
nerabilities

1) Challenge: Real-world environmental variability—such
as fluctuating temperatures, humidity, and lighting—degrades
sensor accuracy and model performance.

2) Evidence: In loT-based frameworks, temperature shifts
exceeding +2°C introduce noise in gas sensor readings, re-
ducing the precision of the VOC classification by 15% [105].

Similarly, computer vision systems for produce grading exhibit
20% accuracy drops under suboptimal lighting [56].

3) Significance: Such vulnerabilities erode stakeholder trust,
particularly among farmers and logistics providers seeking con-
sistent performance across diverse operational environments.

D. Computer Vision: Contextual and Technical Constraints

1) Challenge: Vision-based systems for food spoilage de-
tection are constrained by their reliance on controlled imaging
environments (e.g., uniform lighting, high-resolution cameras)
and superficial visual features (e.g., color, texture), which often
do not correlate with internal biochemical spoilage indicators
such as pH changes or accumulation of microbial metabolites.

2) Evidence:

o Surface vs. Internal Spoilage: Although CNNs achieve
95% precision in detecting surface mold in strawberries
under laboratory conditions [93], they do not identify
internal spoilage in packaged meats or fruits (e.g. bacterial
contamination in vacuum-sealed chicken breasts) without
integrating X-ray or near-infrared (NIR) imaging [94].

« Dataset Scarcity: Publicly available food spoilage image
datasets are limited to 10,000 annotated images across
repositories like Kaggle and ImageNet, compared to 1
million images for generic object detection [110]. For
example, the ”SpoiledFruits-1K” dataset contains only
1,200 images of apples and tomatoes, which is insufficient
to train robust models for diverse produce [112].

« Environmental Sensitivity: A field trial in 2023 revealed
that vision systems trained in laboratories suffered 25 to
30% accuracy drops when deployed in outdoor markets
due to variable lighting (e.g., shadows, glare from sunlight)
and occlusions (e.g., dirt, packaging wrinkles) [113].

3) Significance: This overreliance on external characteristics
limits the applicability of computer visionputer vision to foods
with non-visual spoilage(for example, shifts in dairy pH,e,
shifts in dairy pH, fish biogenic amines). For SMEs, the high
cost of auxiliary technologies such as hyperspectral cameras
(20,000-20,000-50,000/unit) further exacerbates adoption bar-
riers.

E. Electronic Noses: Stability and Maintenance Costs

1) Challenge: E-nose sensors suffer from drift due to
environmental exposure, which requires frequent recalibra-
tion. Cross-sensitivity to nontarget VOCs further complicates
spoilage detection.

2) Evidence: Metal-oxide semiconductor (MOS) sensors in
e-noses exhibit baseline resistance shifts of 10-15% after 100
hours of operation, requiring weekly recalibration to maintain
90% classification accuracy [103]. Humidity variations ;60%
RH exacerbate false positives in meat spoilage detection [102].
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3) Significance: Recalibration costs and downtime render e-
noses economically unviable for small-to-medium enterprises
(SME?s), which constitute 85% of global food suppliers [107].

FE. Synthesis and Mitigation Pathways

While ML and IoT technologies hold transformative po-
tential for food spoilage mitigation, their real-world impact
hinges on resolving data quality, environmental robustness, and
cost-effectiveness shown in Table IV. Prioritizing open-source
toolkits for dataset generation (e.g., SpoilageNet), sensor fusion
standards, and policy incentives for SME adoption will bridge
these gaps. Future research must align with industrial pain
points, ensuring technologies evolve from academic curiosities
to field-ready solutions.

IX. FUTURE RESEARCH DIRECTIONS IN FOOD SPOILAGE
DETECTION AND SUPPLY CHAIN MANAGEMENT

The advancement of food spoilage detection and supply
chain management requires multidisciplinary innovations across
data science, sensor technology, and decentralized systems.
Below, we outline critical research directions to address current
limitations and enable scalable, reliable solutions.

A. Data Infrastructure Development

1) Standardized Dataset Creation: A foundational challenge
lies in the scarcity of high-quality, diverse datasets. Future ef-
forts should prioritize the development of open-access datasets
encompassing varied food products, spoilage conditions (e.g.,
microbial growth, chemical changes), and environmental pa-
rameters (temperature, humidity). Standardized annotation pro-
tocols and metadata structures are essential to ensure cross-
study reproducibility and benchmarking.

2) Unified Methodological Frameworks: The establishment
of universal standards for data acquisition, preprocessing (e.g.,
noise filtering, normalization), and evaluation metrics (accuracy,
sensitivity, computational efficiency) is critical. Harmonized
methodologies will enhance comparability between studies and
accelerate the translation of research into industrial applications.

B. Algorithmic Advancements for Edge Computing

1) Lightweight Machine Learning Models: Optimizing ma-
chine learning (ML) architectures for edge deployment—such
as pruning, quantization, and knowledge distillation—can re-
duce computational overhead while maintaining accuracy. Pri-
oritizing resource-efficient models (e.g., TinyML) will enable
real-time spoilage detection on IoT devices, smartphones, and
low-cost sensors, particularly in resource-constrained environ-
ments.

2) Hybrid Model Architectures: Integrating deep learning
with traditional ML techniques (e.g., SVM, decision trees)
or physics-based models may balance performance and inter-
pretability. For instance, convolutional neural networks (CNNs)
could extract spectral features from hyperspectral imaging,
while simpler classifiers categorize spoilage stages, reducing
inference time.

C. Multimodal Sensor Systems

1) Enhanced Electronic Nose (E-Nose) Technologies: In-
vestments in advanced sensor materials (e.g., graphene oxide,
metal-organic frameworks) could improve e-nose selectivity
toward volatile organic compounds (VOCs) associated with
spoilage. Concurrently, self-calibrating mechanisms leveraging
reference gas chambers or onboard ML algorithms would
mitigate sensor drift, enhancing long-term reliability.

2) Fusion of Sensing Modalities: Multimodal systems in-
tegrating computer vision (e.g., browning detection), gas sen-
sors, spectroscopic analysis (NIR, Raman), and RFID-based
temperature logs can provide holistic spoilage assessments.
Cross-modal data fusion techniques, such as attention-based
neural networks, may improve detection robustness in dynamic
environments.

D. Blockchain-Enabled Supply Chain Traceability

1) Energy-Efficient Consensus Protocols: Transitioning
from proof-of-work (PoW) to lightweight consensus algorithms
(e.g., proof-of-authority, directed acyclic graphs) is crucial to
minimize blockchain’s energy footprint. This shift will enhance
scalability for large supply chains while maintaining immutabil-
ity.

2) Al-Driven Data Validation: Automated validation of sen-
sor data—using anomaly detection models or digital twin sim-
ulations can ensure the integrity of blockchain records. Smart
contracts may enforce predefined quality thresholds, triggering
alerts for non-compliant shipments.

3) Privacy-Preserving Architectures: Hybrid blockchain de-
signs (e.g., private sidechains for sensitive data, public chains
for audit trails) combined with zero-knowledge proofs or homo-
morphic encryption will safeguard stakeholder privacy without
compromising transparency.

E. Scalable Deployment Strategies

1) Cost-Optimized Hardware-Software Co-Design: Deploy-
ing spoilage detection systems at scale demands hardware
innovations, such as paper-based microfluidic sensors or frugal
spectroscopic tools, paired with optimized ML pipelines. Mod-
ular designs will allow customization for diverse food types and
supply chain nodes.
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TABLE IV. SYNTHESIS OF FOOD SPOILAGE DETECTION TECHNIQUES, INTERCONNECTIONS, AND ECONOMIC FEASIBILITY

Detection Technique Key Limitations

Interconnections & Trade-offs

Scalability & Economic Feasibil-
ity

Machine Learning (ML)

High dependency on large,
well-labeled datasets.

High computational resource
demands (e.g., GPU-
powered computation).
Overfitting risks in con-
trolled environments versus
diverse field conditions.

Can be fused with data from
e-noses and computer vision
systems.

Balances computational cost
against compensating for
sensor errors (e.g., e-nose
drift).

Extensive data and hardware
requirements raise costs.
May not be cost-effective for
SMEs without efficient or
subsidized solutions.

Electronic Noses (E-
Noses)

Sensor drift due to environ-
mental exposure.

Frequent recalibration
requirements.
Cross-sensitivity to  non-
target VOCs.

Provide real-time chemical
detection that can comple-
ment ML predictions.
Integration challenges arise
from the need to account for
sensor drift.

High maintenance and recal-
ibration costs reduce viabil-
ity for SMEs.

Increased downtime and la-
bor costs hinder economic
feasibility.

Computer Vision

Reliance on controlled imag-
ing conditions (e.g., uniform
lighting, high resolution).
Limited to surface-level indi-
cators; fails to capture inter-
nal spoilage.

Vulnerability to environmen-
tal variability.

Often integrated with ML for
enhanced feature extraction.
Requires supplementary
technologies (e.g.,
hyperspectral or NIR
imaging) which complicate
system design.

High costs associated with
advanced imaging hardware.
Increased complexity limits
deployment in uncontrolled,
real-world environments, es-
pecially for SMEs.

Standardization
& Methodological
Uniformity

Lack of consistent protocols
for data preprocessing, cali-
bration, and evaluation.
Hinders reproducibility and
cross-study comparisons.

Harmonized standards can
facilitate the integration of
ML, e-nose, and computer
vision data.

Reducing fragmentation can

Establishing  standardized
benchmarks could lower
long-term costs.

Enhanced adoption potential
for SMEs.

mitigate trade-offs between
high-tech approaches.

Practical Deployment in

Field Environments e Environmental  variability

(fluctuating temperature,
humidity, lighting) impacts
sensor and imaging
performance.

o Significant lab-to-field per-
formance gap.

All techniques are impacted e Robust, cost-effective solu-
by environmental challenges. tions are essential for consis-
Integrated systems must ad- tent performance in uncon-
dress these external variables trolled settings.

for robust operation. e Overcoming environmental
sensitivities is critical for
scalable SME adoption.

2) Industrial Pilot Programs: Collaborative trials with food
producers, retailers, and logistics providers are needed to vali-
date system robustness under real-world conditions. Economic
analyses should quantify waste reduction and ROI to drive
adoption.

The comparative analysis of ML models for food spoilage
detection highlights distinct strengths and limitations across
methodologies. Convolutional neural networks (CNNs) and
hybrid deep learning architectures (e.g., CNNs+LSTM) demon-
strate superior accuracy (often ;95%) in processing spectral or
image-based data, such as hyperspectral imaging of microbial
growth or produce browning. However, their computational
complexity and reliance on large, annotated datasets limit de-
ployment in resource-constrained environments. In contrast, tra-
ditional models like SVMs and gradient-boosted trees achieve
moderate accuracy (80-90%) but excel in scenarios with limited
data or low-cost hardware, particularly for time-series sensor
data (e.g., pH, gas sensors). While deep learning models
are promising for real-time, high-resolution spoilage detection,

their practicality hinges on addressing critical challenges: miti-
gating data heterogeneity across food types, reducing computa-
tional costs for edge deployment, and improving interpretability
for stakeholder trust.Addressing these priorities will require
interdisciplinary collaboration among material scientists, data
engineers, and supply chain experts. By advancing standardized
datasets, efficient algorithms, resilient sensor systems, and
secure traceability frameworks, the food industry can mitigate
spoilage risks, reduce economic losses, and improve global food
security. Future work must also consider regulatory alignment
and stakeholder education to ensure seamless implementation.

X. CONCLUSION

This review article underscores the profound potential in-
herent in integrating advanced technologies—such as ML,
electronic noses (e-noses), and computer vision for the detection
of food spoilage. However, despite these promising advances,
several critical challenges remain that may impede their real-
world application, particularly for SMEs. A significant lim-
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itation is the high computational cost associated with ML
models. Deep learning architectures, including CNNs, require
extensive labeled datasets and powerful hardware, which not
only increase the overall cost but also increase the likelihood of
overfitting when models are developed in controlled laboratory
settings. This inconsistency between laboratory performance
and field robustness can lead to considerable prediction errors
when deployed in environments characterized by variability in
temperature, humidity, and lighting. Similarly, while e-noses
provide rapid and non-destructive detection of spoilage through
the monitoring of VOCs, their practical utility is constrained
by issues of sensor drift and cross-sensitivity. The necessity
of frequent recalibration to maintain detection accuracy in-
troduces further operational costs and complexity. These fac-
tors collectively make e-nose-based systems less economically
viable for resource-constrained SMEs, which constitute the
backbone of the global food supply chain. In addition, the
review highlights the lack of standardized methodologies in data
acquisition, pre-processing, and performance evaluation. This
methodological fragmentation not only complicates cross-study
comparisons but also hinders the integration of complementary
technologies. For example, while computer vision systems can
detect external indicators of spoilage with a flair, they often
fail to identify internal biochemical changes, necessitating a
fusion with other sensing modalities. However, such integration
introduces additional trade-offs in terms of cost, complexity,
and scalability. In addition to these technical challenges, the
ethical and operational ramifications of deploying blockchain
for traceability must not be overlooked. Energy-intensive con-
sensus mechanisms and data privacy concerns pose significant
barriers to large-scale adoption in the food industry, where
sustainability and cost-effectiveness are paramount. Meanwhile,
computer vision frameworks, when combined with IoT sen-
sors, create immutable records of environmental conditions,
enhancing transparency and accountability across decentralized
supply chains. In general, while advances in smart detection
technologies have considerable promise in reducing food waste
and improving food safety, their real-world impact will depend
on the surmounting of these critical limitations. Future research
should focus on developing lightweight and resource-efficient
models, establishing unified protocols, and creating adaptive
sensor fusion strategies that can operate reliably under diverse,
real-world conditions. By addressing these challenges, the field
can transition from academic prototypes to scalable and cost-
effective solutions that meet the practical needs of the food
supply chain.
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