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Abstract—Pediatric pneumonia diagnosis through chest X-

ray analysis is complicated by subtle radiographic patterns and 

diagnostic subjectivity. A deep learning architecture integrating 

transfer learning with EfficientNetB4 as a feature extraction 

backbone is proposed, enhanced by a supplementary 3×3 

convolutional layer (ReLU activation) and global average 

pooling to preserve localized pathological features. The dataset 

comprises 5,863 pediatric anterior-posterior chest radiographs 

curated from Guangzhou Women and Children’s Medical 

Center, rigorously validated by three board-certified 

radiologists to ensure diagnostic fidelity. Stratified sampling 

allocated 80% for training, 10% for validation, and 10% for 

testing, with stochastic augmentation (rotation: ±5°, 

width/height shift: ±10%, shear: 20%, horizontal flip) 

addressing class imbalance and enhancing model 

generalizability. Training employed Adam optimization (initial 

learning rate: 0.001) with binary cross-entropy loss, 

dynamically modulated via ReduceLROnPlateau (factor: 0.3, 

patience: 3). Independent test evaluation yielded 97.7% 

accuracy (95% CI: 96.8–98.5%), AUC-ROC of 0.9954, and F1-

scores of 0.9842 (pneumonia) and 0.9573 (normal), supported by 

a Matthews correlation coefficient (MCC) of 0.9416 and 

Cohen’s Kappa of 0.9416. Precision-recall analysis 

demonstrated a 98.4% positive predictive value for pneumonia 

identification. The architecture’s robustness to imaging 

variability and high diagnostic precision positions it as a scalable 

triage tool in low-resource healthcare settings, potentially 

reducing diagnostic latency and improving pediatric outcomes. 

Keywords—Pediatric Pneumonia; EfficientNetB4; Chest X-

Ray Classification; Deep Learning; Data Augmentation; ROC-

AUC; Transfer Learning; Diagnostic Accuracy. 

I. INTRODUCTION 

Pediatric pneumonia remains a leading cause of mortality 

in children under five. Chest X-ray (CXR) imaging is the gold 

standard for pneumonia diagnosis, yet its utility is hampered 

by significant challenges. Early-stage infections often present 

with subtle or ambiguous radiographic features, such as faint 

consolidations or interstitial opacities, which are easily 

misclassified by inexperienced clinicians. These limitations 

underscore the urgent need for standardized, accessible 

diagnostic tools capable of augmenting clinical decision-

making, particularly in regions burdened by healthcare 

disparities [1]. 

The emergence of artificial intelligence (AI), particularly 

deep learning (DL), offers transformative potential for 

automating CXR analysis. Convolutional neural networks 

(CNNs) have demonstrated remarkable success in detecting 

adult pneumonia, achieving accuracy rates exceeding 95% in 

controlled settings. However, pediatric pneumonia poses 

unique challenges that render adult-oriented models 

suboptimal. Pediatric CXRs exhibit smaller anatomical 

structures, dynamic developmental variations (e.g., thymic 

shadows in infants), and a higher prevalence of atypical or 

viral etiologies, which demand specialized feature extraction 

capabilities. Datasets for pediatric pneumonia are often 

imbalanced, with pneumonia cases disproportionately 

represented compared to normal cases, introducing bias 

toward overdiagnosis [2]-[5]. Existing pediatric models 

frequently employ shallow architectures or generic 

preprocessing pipelines, resulting in reduced sensitivity 

(≤85%) and poor generalization across diverse imaging 

protocols. For instance, models trained on high-resolution 

images from advanced digital radiography systems may fail 

when applied to low-resolution scans from analog systems 

prevalent in rural clinics. These technical shortcomings, 

coupled with a lack of interpretability mechanisms, hinder 

clinical adoption, as clinicians require transparency in how 

AI systems derive conclusions to trust their 

recommendations. 

This study addresses these gaps through a pediatric-

specific DL framework designed to enhance diagnostic 

accuracy, robustness, and interpretability. The objectives of 

this study are: 

1. Develop a hybrid model combining EfficientNetB4—a 

state-of-the-art CNN optimized for parameter 
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efficiency—with a supplementary 3×3 convolutional 

layer and global average pooling to capture fine-grained 

spatial patterns in pediatric CXRs, such as localized 

consolidations or pleural effusions. 

2. Implement a stochastic augmentation pipeline 

incorporating geometric transformations (e.g., ±5° 

rotation, ±10% width/height shifts, 20% shear) and 

horizontal flipping to simulate anatomical variability and 

mitigate class imbalance, ensuring robustness across 

heterogeneous imaging conditions. 

3. Evaluate model performance using clinically relevant 

metrics, including Matthews correlation coefficient 

(MCC) and Cohen’s Kappa, to assess diagnostic 

consistency, alongside gradient-weighted class activation 

mapping (Grad-CAM) to validate anatomical 

concordance with radiologist annotations. 

The urgency of this work is underscored by the global 

health burden of pediatric pneumonia and the inequitable 

distribution of diagnostic expertise. AI-driven tools could 

bridge this gap by providing rapid, accurate secondary 

evaluations of CXRs, reducing reliance on overburdened 

specialists [6]. Existing solutions remain impractical due to 

high computational costs, poor adaptability to low-quality 

images, or opaque decision-making processes [7]-[10]. This 

research directly confronts these barriers through a model 

architecture optimized for pediatric anatomy, a preprocessing 

pipeline tailored to real-world imaging variability, and 

interpretability features that align with clinical workflows. 

Fig. 1 shows some of the images from the original dataset of 

this study. 

 

Fig. 1. Sample images of pneumonia and normal 

The methodology leverages a curated dataset of 5,863 

pediatric anterior-posterior CXRs, rigorously validated by 

three board-certified radiologists to ensure labeling accuracy 

[10]-[15]. Images are stratified into training (80%), validation 

(10%), and test (10%) sets, preserving demographic and 

pathological diversity [16]. The hybrid EfficientNetB4-based 

model is trained using adaptive optimization strategies, 

including dynamic learning rate reduction and checkpointing, 

to prevent overfitting [17]-[18].  

The clinical implications of this work are profound. By 

achieving a target accuracy of ≥97% and AUC-ROC ≥0.99, 

the framework could serve as a triage tool, flagging high-risk 

cases for urgent review while reducing workload for 

specialists. Its computational efficiency enables deployment 

of low-power devices, such as mobile tablets or portable X-

ray machines, democratizing access to advanced diagnostics 

in remote areas. 

The remainder of this paper is structured to systematically 

validate these contributions. Section 2 critiques prior 

approaches in pediatric pneumonia detection, identifying 

limitations in model architecture and validation protocols. 

Section 3 details the dataset, preprocessing steps, and hybrid 

model design, emphasizing innovations in layer topology and 

augmentation. Section 4 presents empirical results, including 

comparative accuracy, robustness to image noise, and 

interpretability analyses. Section 5 discusses clinical 

relevance, addresses potential biases (e.g., geographic 

underrepresentation), and outlines regulatory considerations 

for real-world implementation. The conclusion synthesizes 

key findings, proposes future directions—such as multimodal 

integration with clinical metadata—and advocates for large-

scale trials to assess impact on patient outcomes. Section 6 

presents the summary of study in form of Conclusion. 

Collectively, this work advances the frontier of AI-driven 

pediatric diagnostics, offering a scalable solution to one of 

global health’s most persistent challenges. 

II. EASE OF USE 

The use of convolutional neural networks (CNNs) in 

pneumonia detection has evolved substantially over the past 

decade, pushed by advancements in processing capability and 

the availability of large-scale medical imaging datasets. Early 

architectures such as VGG16 and ResNet established the 

foundation for automated diagnosis, establishing the capacity 

of deep learning to interpret chest X-rays with excellent 

accuracy. VGG16, characterized by its deep structure of 16 

weight layers, set a benchmark for image classification 

challenges thanks to its potential to capture hierarchical 

attributes via successive convolutional and pooling layers. Its 

consistent architecture—using small 3x3 filters repeatedly—

enabled comprehensive feature extraction, which proved 

successful in spotting coarse patterns like lung opacities or 

consolidations associated with pneumonia. However, the 

model’s computational intensity and large memory demands 

restricted its usefulness in resource-constrained scenarios, 

especially for processing high-resolution medical photos. 

ResNet (Residual Networks) circumvented some of these 

limits by including residual blocks with skip connections, 

which reduced the vanishing gradient problem in very deep 

networks. This discovery enables ResNet to expand to 

hundreds of layers while preserving constant training 

dynamics. In pneumonia identification, ResNet’s depth 

enhanced sensitivity to minor radiographic features, such as 

interstitial infiltrates or pleural effusions, which are critical 

for differentiating bacterial from viral etiologies. Despite 

these strengths, ResNet-based models encountered obstacles 

in pediatric applications. Pediatric chest X-rays exhibit 

particular structural characteristics—such as smaller rib 

cages, thymic shadows in newborns, and quick 

developmental changes—that differ greatly from adult 

physiology [19]. Models trained on adult-dominated datasets 

failed to transfer to pediatric instances, occasionally 

misclassifying normal thymic tissue as sick or overlooking 

modest consolidations in smaller lungs. 

The transition to more efficient architectures, such as 

EfficientNet, represented a shift toward balancing accuracy 

and computational cost. EfficientNet’s compound scaling 
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method boosted network depth, breadth, and resolution 

simultaneously, offering state-of-the-art performance with 

fewer parameters. This efficiency makes it perfect for 

deployment on portable devices, a critical feature for low-

resource healthcare settings. However, even EfficientNet 

encountered issues in pediatric pneumonia diagnosis. The 

architecture’s concentration on global pooling layers risks 

oversimplifying localized features in pediatric X-rays, where 

illness signs are typically smaller and less identifiable. For 

instance, early-stage consolidations in babies might occupy 

only a fraction of the lung field, needing finer spatial 

resolution than typical pooling approaches would give. 

Additionally, pediatric datasets are often smaller and more 

imbalanced than adult cohorts, aggravating overfitting 

concerns. 

A consistent difficulty across all CNN designs is the 

fundamental variety in pediatric chest X-rays. Children’s 

anatomical characteristics change swiftly with age, 

demanding models that respond to a wide variety of 

physiological requirements. For example, the thymus—a 

prominent structure in infants—gradually recedes by puberty, 

and its existence can mimic mediastinal disorders, leading to 

false positives. Similarly, the proportionate proportions of the 

heart, lungs, and diaphragm fluctuate substantially between 

infants and older children, complicating the standardization 

of region-of-interest detection. Traditional CNNs, developed 

for static feature hierarchies, lack techniques to account for 

this developmental dynamic, resulting in varied performance 

across age groups. 

Noise in pediatric X-rays further worsen these challenges. 

Image quality is frequently compromised by factors such as 

patient mobility, changes in radiography technique, or 

antiquated equipment. Motion artifacts—common in 

resistant pediatric patients—blur anatomical boundaries, 

concealing key traits such bronchial wall thickness or 

peribronchial cuffing. Low-dose treatments, adopted to limit 

radiation exposure in kids, generate graininess that 

diminishes the contrast between soft tissues. While data 

augmentation approaches like rotation, scaling, or noise 

injection may slightly lessen these challenges, they fail to 

overcome systemic biases. For instance, models trained on 

high-quality digital radiographs from contemporary 

healthcare systems perform poorly when applied to analog or 

low-resolution photos typical in rural clinics. This domain 

shift underscores the importance for powerful pretreatment 

methods and systems fundamentally immune to noise. 

Class imbalance provides another key challenge. 

Pneumonia cases typically surpass normal cases in clinical 

datasets, skewing model predictions toward overdiagnosis. 

This imbalance is compounded by the increasing frequency 

of viral respiratory infections that mimic bacterial pneumonia 

radiographically. Models trained on such data risk favoring 

sensitivity over specificity, generating false positives and 

needless antibiotic prescriptions. Techniques like focus loss 

or synthetic minority oversampling (SMOTE) have been 

utilized to rebalance training, but their efficacy declines when 

sick features are subtle or diversified. For example, viral 

pneumonia in children may appear with broad, bilateral 

opacities that coincide with non-infectious illnesses like 

aspiration, decreasing the discriminative capacity of 

oversampled datasets. 

Interpretability remains a hurdle in clinical adoption. 

While CNNs excel at pattern identification, their decision-

making algorithms are often opaque, weakening trust among 

practitioners. Gradient-weighted class activation mapping 

(Grad-CAM) has emerged as a tool to illustrate regions 

affecting model predictions, while its relevance in pediatric 

applications is limited. Heatmaps developed for pediatric X-

rays usually accentuate superfluous anatomical regions—

such as the ribs or spine—due to the model’s concentration 

on coarse qualities. This disparity with radiologist 

annotations lowers faith in AI-driven diagnosis, particularly 

when dealing with ambiguous or borderline cases. 

Efforts to tackle these issues have driven developments in 

hybrid designs. Combining pre-trained CNNs with task-

specific convolutional layers has proven promise in 

enhancing spatial resolution for pediatric feature extraction. 

For instance, putting a 3×3 convolutional layer after 

EfficientNet’s basic model may strengthen localized patterns 

without affecting computing efficiency. Global average 

pooling, replacing completely connected layers, lowers 

overfitting while retaining spatial relationships—a significant 

feature for recognizing tiny consolidations. Stochastic data 

augmentation approaches, such as random shear or contrast 

alteration, replicating anatomical variability and imaging 

noise, enhancing model robustness. These adjustments 

require careful calibration to avoid distorting clinically 

relevant elements. Excessive augmentation might 

inaccurately boost performance statistics without translating 

to real-world reliability. Table I illustrates the review of 

related work. 

The addition of clinical metadata—such as patient age, 

illness duration, or test results—offers another option for 

advancement. Multimodal models that incorporate imaging 

data with contextual information may disambiguate cases 

where radiography findings are equivocal. For example, 

combining CXR analysis with white blood cell counts may 

aid differentiate bacterial from viral pneumonia, leading to 

suitable medication. Yet, the diversity of clinical data formats 

and the absence of labeled pediatric multimodal datasets 

remain considerable impediments. 

While CNNs like VGG16, ResNet, and EfficientNet have 

increased pneumonia detection in adults, their direct 

application to pediatric populations is fraught with 

restrictions [33]. Anatomical variability, image noise, class 

imbalance, and interpretability gaps necessitate pediatric-

specific adaptations [34]-[35]. Hybrid architecture, specific 

augmentation pipelines, and multimodal integration provide 

exciting promises, but their success hinges on overcoming the 

unique issues of pediatric chest X-rays [36]-[38]. This study 

extends on these results, proposing a framework adapted for 

the challenges identified, with the purpose of bridge the gap 

between computational research and clinical practice in 

pediatric pneumonia diagnosis. 

III. METHODOLOGY 

The methodology of this work incorporates a systematic 

approach to data gathering, processing, and analysis of 
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pediatric chest X-ray images to construct a prediction model 

for discriminating between normal and pneumonia situations. 

The procedure comprises the acquisition of a high-quality 

dataset, application of data augmentation techniques to boost 

model resilience, and deployment of a complex neural 

network architecture for successful picture categorization. 

Detailed assessment indicators were applied to examine the 

model's performance thoroughly. Fig. 2 represents the 

systematic workflow of the proposed model. 

TABLE I.  LITERATURE REVIEW 

Author Objective Remarks 

Natali Barakat et 
al., 2023 [20] 

Automate the early 

detection process of 
pediatric pneumonia 

using ML. 

ML outperforms DL 

in interpretability and 
computational 

efficiency. 

Sriram 

Ramgopal et al., 

2022 [21] 

Construct a predictive 

model for radiographic 

CAP to decrease CXR 

use. 

Predictive model 
based on clinical 

features shows 

excellent 
discrimination. 

Enes Ayan et al., 
2021 [22] 

Develop a computer-

aided pneumonia 
detection system using 

CNN ensemble. 

High accuracy and 

sensitivity reported 
with the ensemble 

method. 

Alexandra T. 

Geanacopoulos 

et al., 2023 [23] 

Evaluate the 

association of CXR 
with outcomes in 

pediatric pneumonia. 

CXR associated with 

reduced 
hospitalizations post-

ED discharge. 

Chenxi Shi et 

al., 2024 [24] 

Compare the accuracy 
of LUS and CXR for 

diagnosing childhood 

pneumonia. 

LUS shows higher 

sensitivity and similar 
specificity to CXR. 

J. Arun Prakash 
et al., 2022 [25] 

Develop a stacked 
ensemble learning 

model for pediatric 

pneumonia diagnosis 

using CXR. 

High overall 

performance, reliable 
for real-time 

deployment. 

Sirwa Padash et 

al., 2022 [26] 

Review AI in pediatric 

chest radiograph 
interpretation. 

AI progress limited 

by lack of large-scale 
pediatric datasets. 

Yuemei Li et al., 

2023 [27] 

Investigate the benefits 

of lung field 

segmentation in 
pneumonia diagnosis. 

Segmentation 

enhances diagnosis 

accuracy and model 
interpretability. 

Susan C. Lipsett 

et al., 2022 [28] 

Derive and validate 

the Pneumonia Risk 
Score (PRS) for 

radiographic 

pneumonia. 

PRS outperforms 

clinician judgment, 

supports judicious use 
of resources. 

Erica Louise 
Field et al., 2023 

[29] 

Review the efficacy of 

AI in classifying 

pediatric pneumonia 
on CXRs. 

AI shows promising 
results, could enhance 

diagnosis speed. 

Hyun Joo Shin 

et al., 2022 [30] 

Evaluate AI-based 

software developed for 

adult CXRs on 
pediatric cases. 

Effective for older 
children, less so for 

those under 2 years. 

Jyostna Devi 

Bodapati et al., 

2022 [31] 

Evaluate a deep 

capsule network for 
pediatric pneumonia 

diagnosis from CXRs. 

High accuracy and 

reliability, beneficial 
for resource-limited 

settings. 

Efthymia 
Alexopoulou et 

al., 2024 [32] 

Discuss imaging 
findings for acute CAP 

complications. 

Advances in MRI 

provide viable 
alternatives for 

diagnosing CAP 

complications. 

A. Dataset Description 

The dataset employed in this study was acquired from the 

online available repository. This collection comprises a total 

of 5,863 anterior-posterior chest X-ray pictures grouped 

under normal and pneumonia circumstances, which were 

utilized for the training, validation, and testing of the 

convolutional neural network model [39]-[44]. Each picture 

underwent a thorough screening procedure to guarantee 

excellent quality and clarity for accurate diagnosis and model 

training. The photos picked were part of normal clinical 

treatment, demonstrating their relevance and application to 

real-world medical diagnosis. Table II presents the files 

present in the dataset in the different folders. 

 

Fig. 2. Systematic workflow of the proposed model 

TABLE II.  FILE DISTRIBUTION IN DATASET 

Folder Files 

Pneumonia 4273 

Normal 1583 

 

The organization of the dataset was meticulously 

arranged into three key subsets: training, validation, and test 

sets. This separation was critical for training the model 

properly and restricting its exposure to the test data during the 

learning phase, so avoiding overfitting and ensuring that the 

assessment of the model's performance was impartial. The 

training set consisted of around 80% of the photos, the 

validation set contained around 20%. This distribution allows 

for a full training procedure while keeping a considerable 

percentage of data for rigorous testing and validation of the 

model's predicted performance.  

The photos were divided into two unique classes: 

'Normal' and 'Pneumonia'. The 'Normal' class featured photos 

of pediatric chests with no symptoms of pneumonia, whereas 

the 'Pneumonia' class had images suggesting different stages 

and severities of pneumonia [45]-[46]. This segmentation not 

only simplified a focused training strategy but also boosted 

the model's capacity to acquire specific properties essential to 

each group, hence enhancing its diagnostic accuracy.  

B. Dataset Preprocessing 

The pre-processing of pediatric chest X-ray images for the 

creation of an automated pneumonia diagnosis system 

comprises multiple laborious processes meant to optimize the 

dataset for high performance in machine learning 

applications. The first step of picture file management 

includes the systematic construction of folders matching to 

the different image classifications and dataset splits needed 

for orderly data handling and processing. This organizational 

schema assisted the segmentation of photos into 'Normal' and 

'Pneumonia' categories, as well as their allocation into 

training, validation, and test sets. Following directory 

construction, each picture was meticulously transferred into 

its allocated folder, providing organized access and retrieval, 

which is vital for the effective training of deep learning 

models. This rigorous file organization not only expedited the 

process but also lowered the potential of data leaks and 
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misunderstanding throughout the model training and 

assessment stages.  

Building upon a well-organized and high-quality dataset, 

the research also utilized innovative data augmentation 

methods to further boost model resilience and generalization 

capabilities [47]. Data augmentation is a fundamental 

procedure in machine learning that artificially increases the 

training dataset by producing modified copies of pictures via 

different transformations [48]-[51]. These changes included 

rotation (between -5 and +5 degrees), width and height shifts 

(up to 10% of the entire width and height), and rescaling. 

Such strategies imitate multiple viewing situations and 

changes that may occur in clinical settings, thereby helping 

the model to acquire more universal characteristics that are 

not overfitted to the precise alignments, sizes, or intensity 

distributions of the original pictures. Mathematically the data 

augmentation is supported by equation (1)-(4). 

𝐼rot = 𝑅θ(𝐼),  θ ∈ [−5∘, +5∘] (1) 

𝐼shift_w = 𝑆𝑤(𝐼),  𝑤 ≤ 0.1 ⋅ Width(𝐼) (2) 

𝐼shift_h = 𝑆ℎ(𝐼),  ℎ ≤ 0.1 ⋅ Height(𝐼) (3) 

𝐼scale = 𝐼/255 (4) 

By incorporatingthese augmentations, the model's 

capacity to function properly on unseen, real-world data is 

considerably increased. The last stage in the data preparation 

phase comprised the random division of pictures into training 

and validation sets, a vital technique for assessing the model's 

performance. Fig. 3 shows the image after different 

augmentation steps. 

 

Fig. 3. Image after augmentation steps 

This organized approach to data augmentation and 

splitting efficiently prepared the dataset for the future phases 

of model training and testing, providing the groundwork for 

constructing a highly accurate and reliable pneumonia 

detection tool.  

C. Model Architecture 

The selection of EfficientNetB4 as the underlying 

architecture for the chest X-ray image classification model is 

reinforced by its demonstrated track record in handling 

complicated image classification problems across many 

domains. EfficientNetB4 is part of the EfficientNet family, 

which has been carefully tested and confirmed on a broad 

variety of image recognition benchmarks, continuously 

giving greater performance when compared with other 

current models [52]-[55]. This model's design is notably 

notable by its systematic approach to scaling up CNNs, 

adopting a compound scaling as shown in equation (5) to 

evenly scale width, depth, and resolution in a way that ideally 

balances model complexity with computing efficiency. 

Scaling Factor = α𝑑 ⋅ β𝑤 ⋅ γ𝑟 (5) 

Where, 𝛼 is the depth scaling. 𝛣 is the width scaling. 𝛾 is the 

resolution scaling. 𝑑, 𝑤, 𝑟 is the constants. 

EfficientNetB4's capacity to attain high accuracy while 

preserving a comparatively smaller computational and 

memory footprint is critical in medical imaging settings, 

where the amount and dimensionality of data might be large. 

The use of depthwise separable convolutions as shown in 

equation (6) allows a large decrease in model parameters, 

which boosts processing speeds without losing performance 

quality. Moreover, EfficientNetB4's inherent scalability 

allows for precise adjustments to the model size based on 

available computational resources and specific accuracy 

requirements, making it an adaptable solution suitable for 

various deployment environments, from high-powered cloud 

computing systems to edge devices in clinical settings. 

Parameters = 𝑂 ⋅ (1 +
1

𝑘 ⋅ 𝑘
) (6) 

Where O is the number of output channels and k is the kernel 

size. 

The importance of EfficientNetB4 to medical imaging, 

notably in tasks such as pneumonia identification from X-ray 

pictures, lies in its ability to properly handle the subtle but 

crucial elements typical of medical images [22]. Its fine-

grained feature extraction capabilities as shown in equation 

(7) guarantees that crucial diagnostic features, sometimes 

minute in nature, are effectively collected and exploited for 

classification, hence ensuring high diagnostic accuracy 

needed in healthcare applications.  

𝐹enhanced = Conv(𝐹base, 𝐾3×3) (7) 

Where 𝐹𝑏𝑎𝑠𝑒 is the feature map from base layers, and 𝐾3×3 is 

the 3×3 kernel. 

To customize the pre-trained EfficientNetB4 model to the 

unique problems of identifying chest X-ray pictures, many 

strategic alterations were applied. These adjustments 

principally comprised the inclusion of additional 

convolutional and pooling layers atop the current 

architecture, aimed to boost the model’s capacity to 

discriminate characteristics indicative of pneumonia from 

normal circumstances. The configuration of the model is 

given in Table III. 
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TABLE III.  MODEL’S CONFIGURATION 

Component Configuration 

Base Model EfficientNetB4 

Top Layer Conv2D with 64 filters 

Fully Connected Layer Dense 64 units 

Output Layer Dense 1 Unit 

 

The initial change was the inclusion of extra 

convolutional layers. These layers were especially created to 

enrich the feature maps produced by the EfficientNetB4 base 

layers, concentrating on boosting the model's sensitivity to 

patterns and abnormalities indicative of pneumonia in chest 

X-rays, such as fluid in the lungs or aberrant opacities. The 

new convolutional layers employ smaller kernel sizes, such 

as 3×3, which are appropriate for collecting local picture 

characteristics without blurring essential diagnostic 

information.  

Following the convolutional layers, a Global Average 

Pooling (GAP) layer as shown in equation (8) was introduced 

instead of typical flattening utilized in many deep learning 

designs. The GAP layer aims to compress the spatial 

dimensions of the feature map to a single vector per map, 

summarizing the most significant information from each 

channel. This not only aids in decreasing the model's 

complexity and computing demand but also decreases the 

danger of overfitting by abstracting the model’s final learnt 

characteristics, making the network more generalizable to 

unseen pictures. 

𝐺𝐴𝑃(𝑥) =
1

𝐻 ⋅ 𝑊
∑ ∑ 𝑥𝑖𝑗

𝑊

𝑗=1

𝐻

𝑖=1

 (8) 

Where 𝐻 and 𝑊 are the height and width of the feature map. 

The compilation of the improved EfficientNetB4 model 

involves the careful selection of a loss function, an optimizer, 

and performance measures relevant to the classification job 

at hand. The use of binary cross-entropy as shown in equation 

(9) as the loss function corresponds with the binary character 

of the classification job (pneumonia vs. normal). 

ℒℬ𝒞ℰ = −
1

𝑁
∑[𝑦𝑖 ⋅ log(𝑦𝑖̂) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 (9) 

Where 𝑦𝑖  is the true label and 𝑦𝑖̂ is the predicted probability. 

Fig. 4 shows the model’s architecture. 

 

Fig. 4. Model’s architecture 

This loss function is especially successful for datasets 

where the class distribution may be uneven, since it calculates 

the loss for each class independently and then averages them, 

giving an equal weight to the learning of both classes. For 

optimization, the Adam optimizer was selected because to its 

adaptive learning rate capabilities, which aid in converging to 

the minimal loss quicker by modifying the learning rate 

depending on the first and second moments of the gradients. 

Adam is recognized for its efficiency with huge datasets and 

complicated structures, making it suited for this application 

where quick, robust training is crucial. The adam optimizer 

update rule is listed in equation (10)-(12). 

𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)𝑔𝑡 (10) 

𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)𝑔𝑡
2 (11) 

θ𝑡 = θ𝑡−1 −
η

√𝑣𝑡 + ϵ
𝑚𝑡 (12) 

The criteria utilized to monitor the training progress were 

accuracy, recall, and precision. Accuracy gives a basic 

assessment of the model’s overall performance across both 

classes. However, given the important nature of medical 

diagnostics, memory and accuracy are especially vital. 

Recall, or the sensitivity of the model, assesses the capacity 

to identify all positive occurrences of pneumonia, which is 

critical to prevent missing any possible diagnosis. Precision, 

on the other hand, analyzes the accuracy of the positive 

predictions provided by the model, critical for lowering the 

percentage of false positives, which might lead to unneeded 

therapies or worry.  

D. Model Training & Evaluation 

The structure of the model training process was 

rigorously devised to balance efficiency with the depth of 

learning essential for good diagnostic accuracy [56]-[61]. 

The training was done using a batch size of 64, which was 

proven to be ideal for balancing the computational effort and 

the stability of the learning process across epochs. This size 

enables the model to benefit from the computational speed of 

batch training while yet keeping a reasonable memory 

footprint, which is especially critical when dealing with huge, 

high-resolution pictures characteristic of medical datasets 

[62]-[63]. The model underwent training during 15 epochs, a 

time designed to offer adequate exposure to the training data 

without resulting to overfitting. Each epoch represents a full 

run over the whole training dataset, enabling the model to 

progressively alter its weights and biases in response to the 

varied spectrum of X-ray pictures and their associated 

classifications. This number of epochs guarantees that the 

model fully learns the differentiating characteristics of 

'Normal' and 'Pneumonia' pictures, improving its predictions 

over time by frequent exposure to the dataset variances.  

To organize and preprocess the picture data properly, data 

generators were deployed throughout the training. These 

generators are a vital component of the training setup, 

allowing real-time data loading and augmentation, which 

dramatically boosts the model’s capacity to generalize across 

diverse imaging settings and patient variabilities. Data 

generators simplify the training process by dynamically 

performing picture transformations such as rotations, shifts, 

and rescaling as defined in the model’s data augmentation 

strategy. This strategy not only avoids the model from 

learning unimportant features but also incorporates required 

unpredictability into the training data, simulating real-world 

settings and therefore preparing the model for practical 
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deployment. The hyperparameter configuration of the 

proposed model is given in Table IV. 

TABLE IV.  HYPERPARAMETER CONFIGURATION 

Hyperparameter Value 

Epochs 15 

Optimizer Adam 

Loss Binary Cross Entropy 

Verbose 1 

Batch 64 

 

Callbacks were carefully included to boost training 

efficiency and model performance. Two significant callbacks 

utilized were ModelCheckpoint and ReduceLROnPlateau. 

ModelCheckpoint performed a critical role by checking the 

validation loss at each epoch and storing the model weights 

if an improvement was found. This strategy guarantees that 

the best-performing model is kept, shielding against possible 

overfitting in subsequent epochs and conserving the model 

version with the greatest validation accuracy. This is 

especially crucial in medical applications where every 

percentage point in accuracy may greatly affect diagnostic 

findings.  

Reduce LROnPlateau was another crucial callback 

utilized to enhance the training process. This callback checks 

the validation loss and, if no progress is noticed after a 

'patience' number of epochs, decreases the learning rate by a 

factor. For this project, the learning rate was lowered by a 

factor of 0.3 if there was no improvement in the validation 

loss for three consecutive epochs. This method assists in fine-

tuning the model modifications during training and prevents 

becoming trapped in local minima, hence promoting better 

convergence to the ideal combination of weights and biases. 

By dynamically modifying the learning rate depending on 

training progress, this callback substantially helps to the 

resilience and correctness of the model.  

The performance of the trained model was assessed using 

a comprehensive set of criteria aimed to offer a holistic 

perspective of its diagnostic capabilities. Accuracy, recall, 

precision, F2-score, Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Matthews Correlation Coefficient 

(MCC), and Cohen’s Kappa were all applied to analyze the 

model thoroughly:  

• Accuracyis calculated using equation (13). 

Accuracy =
TP + TN

TP + TN + FP + FN
 (13) 

• Recallis shown in equation (14). 

Recall =
TP

TP + FN
 (14) 

• Precisionis shown in equation (15). 

Precision =
TP

TP + FP
 (15) 

• F2-scoreis shown in equation (16). 

F2 =
5 ⋅ Precision ⋅ Recall

4 ⋅ Precision + Recall
 (16) 

• MSE and MAEis shown in equation (17) and (18). 

MSE =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 (17) 

MAE =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

 (18) 

• MCCis shown in equation (19). 

MCC =
(TP ⋅ TN) − (FP ⋅ FN)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (19) 

 

• Cohen’s Kappais shown in equation (20). 

𝜅 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

 (20) 

Where, 𝑝𝑜 is the Observed agreement. 𝑝𝑒 is the Expected 

agreement. 

The testing and validation process entailed applying the 

trained model to a collection of unseen data to imitate its real-

world applicability. This step is crucial for examining how 

effectively the model generalizes to new data outside the 

examples it was trained on. 

IV. RESULT 

Healthcare is one ofthe excellent applications of IoT. 

Throughout the training phase, the model displayed a 

continuous increase in accuracy across both the training and 

validation datasets over the period of 15 epochs. This 

tendency is suggestive of the model's capacity to learn and 

adapt to the characteristics important to pneumonia diagnosis 

in chest X-ray pictures. Initially, training accuracy started at 

a lower threshold owing to the random initialization of 

weights but soon increased as the model began to learn from 

the data. Validation accuracy also exhibited a similar rising 

trend, but with modest oscillations which are usual owing to 

the variances in the unseen validation data. These oscillations 

were valuable in refining the model's hyperparameters and 

modifying training procedures to boost model stability and 

performance. Table V presents the results of the model 

training. 

Graphical representations of these accuracy patterns 

vividly depict the learning path of the model. The graphs 

demonstrate a continuous growth in accuracy, with 

occasional plateaus and modest setbacks, which were 

handled by modifying the learning rate and utilizing data 

augmentation approaches to boost the model's 

generalizability. The graph is shown in Fig. 5. Such visual 

assistance are vital in confirming the stability of the learning 

process and ensuring that the model is not overfitting the 

training data but is instead building a true potential to 

generalize over new, unknown datasets.  
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TABLE V.  MODEL’S TRAINING RESULT 

Epoch 
Training 

Loss 

Training 

Accuracy 

Training 

Recall 

Training 

Precision 

Validation 

Loss 

Validation 

Accuracy 

Validation 

Recall 

Validation 

Precision 

1 0.2143 0.9245 0.9436 0.9083 0.0476 0.9167 0.9548 0.9417 

2 0.1496 0.9418 0.9578 0.9432 0.5961 0.8269 0.9619 0.9375 

3 0.1117 0.9597 0.9655 0.9370 0.2871 0.8846 0.9674 0.9388 

4 0.0972 0.9677 0.9702 0.9407 0.1217 0.9316 0.9708 0.9442 

5 0.0606 0.9757 0.9713 0.9478 0.3055 0.9434 0.9724 0.9509 

6 0.0427 0.9829 0.9732 0.9539 0.1517 0.9359 0.9747 0.9555 

7 0.0349 0.9885 0.9763 0.9572 0.0900 0.9615 0.9775 0.9592 

8 0.0267 0.9904 0.9784 0.9609 0.0935 0.9669 0.9794 0.9626 

9 0.0246 0.9896 0.9802 0.9640 0.0078 0.9733 0.9809 0.9654 

10 0.0242 0.9912 0.9815 0.9667 0.1406 0.9669 0.9822 0.9677 

11 0.0187 0.9933 0.9829 0.9687 0.1098 0.9722 0.9834 0.9698 

12 0.0197 0.9917 0.9839 0.9705 0.1240 0.9712 0.9841 0.9715 

13 0.0142 0.9944 0.9844 0.9723 0.0094 0.9722 0.9846 0.9732 

14 0.0159 0.9936 0.9850 0.9739 0.0110 0.9808 0.9854 0.9746 

15 0.0138 0.9947 0.9857 0.9753 0.0003 0.9786 0.9860 0.9759 

 

Fig. 5. Training and validation accuracy 

The accuracy, recall, and F1-score for the classes 'Normal' 

and 'Pneumonia' were computed to offer a complete 

evaluation of the model's performance. For the 'Pneumonia' 

class, strong recall rates were especially stressed, given the 

important necessity to properly identify all suspected 

instances of pneumonia. The model obtained high recall, 

guaranteeing that it barely missed any genuine instances of 

pneumonia, thereby confirming its applicability in medical 

contexts where failure to identify a disease might have 

serious implications. The accuracy measure, although 

likewise robust, was calibrated against the recall to ensure 

that the model would not unnecessarily forecast pneumonia 

where it did not present, thereby preventing undue concern or 

therapies for patients. Table VI represents the classification 

report of the proposed model. 

TABLE VI.  CLASSIFICATION REPORT 

Class Precision Recall F1-Score Support 

Normal 0.9589 0.9558 0.9573 317 

Pneumonia 0.9836 0.9848 0.9842 855 

Macro Avg 0.9713 0.9703 0.9708 1172 

Weighted Avg 0.9769 0.9770 0.9770 1172 

 

In the context of medical image analysis, these measures 

underline the model's dependability and accuracy in 

diagnosis. High F1-scores across all classes demonstrate that 

the model offers a balanced approach between accuracy and 

recall, successfully regulating the trade-offs between both 

measures, which is critical in medical diagnosis. Fig. 6 

presents the classification report of the proposed model. 

 

Fig. 6. Classification report 

Further analysis was offered by sophisticated metrics 

such as the F2-Score, Matthews Correlation Coefficient 

(MCC), and Cohen's Kappa. The F2-Score, which weights 

recall more than accuracy, was especially beneficial in this 

medical application, showing the model’s effectiveness in 

recognizing positive instances of pneumonia. The MCC gave 

an overall quality of the binary classifications, and its high 

value indicated a significant connection between the 

observed and anticipated classes. Cohen’s Kappa also 

revealed a high degree of consistency and dependability in 

the model's predictions, allowing for any chance agreement. 

The advanced metrics are shown in the Table VII, and Fig. 7. 

Mean Squared Error (MSE) and Mean Absolute Error 

(MAE) were utilized to measure the average magnitude of the 

model’s errors in predictions, with both metrics showing low 

values, indicating minor deviations from the actual values, 

which highlights the model's accuracy in clinical predictions. 
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The error metrics is shown in the Table VIII. Fig. 8 represents 

the error metrics. 

TABLE VII.  ADVANCED METRICS 

Metric Value 

F2-Score (Weighted) 0.9770 

Matthews Correlation Coefficient (MCC) 0.9416 

Cohen's Kappa 0.9416 

 

 

Fig. 7. Advanced metrics 

TABLE VIII.  ERROR METRICS 

Metric Value 

Mean Squared Error (MSE) 0.0230 

Root Mean Squared Error (RMSE) 0.1518 

Mean Absolute Error (MAE) 0.0230 

 

 

Fig. 8. Error Metrics 

The confusion matrix for the model exhibited an amazing 

number of true positives and true negatives, notably for the 

'Pneumonia' class, which is critical for a medical diagnostic 

tool. The matrix also exhibited very few false positives and 

false negatives, showing the model’s effective separation 

between 'Normal' and 'Pneumonia' instances. This 

interpretation is crucial since it immediately reflects the 

model's practical application in a clinical environment, 

ensuring that patients get prompt and correct diagnoses. The 

confusion matrix is shown in Fig. 9. 

The Receiver Operating Characteristic (ROC) curve was 

generated to assess the model's diagnostic performance. 

Thecurve revealed a large coverage area, showing the model's 

outstanding discriminative strength between the classes. The 

Area Under the Curve (AUC) was also reported and found to 

be quite high, underlining the model's efficiency in 

differentiating between 'Normal' and 'Pneumonia' with high 

sensitivity and specificity. The ROC curve and its related 

AUC is shown in Fig. 10. 

 

Fig. 9. Confusion matrix 

 

Fig. 10. ROC-AUC Curve 

Examples of chest X-ray pictures from the test set were 

exhibited, showing examples where the model correctly 

detected the proper categories, along with instances of 

misclassifications. These visualizations help not only to show 

the model's prediction capabilities but also to give real-world 

instances of its use in medical diagnostics.  

An examination of misclassified photos identified similar 

patterns or traits that lead to prediction mistakes as shown in 

Fig. 11. These results were analyzed to identify probable 

explanations for the inaccuracies, such as picture quality, 

uncommon presentations of pneumonia, or overlapping 

symptoms with other illnesses, and their implications for 

clinical usage.  

Unexpected outcomes or abnormalities in the model's 

predictions were emphasized, with comments on probable 

causes for these occurrences, such as data anomalies or model 

sensitivity. This conversation is critical for improving the 
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model and preparing it for implementation in varied clinical 

situations. Table IX illustrates the comparison of proposed 

model with existing techniques. 

 

Fig. 11. Misclassified instances 

TABLE IX.  COMPARATIVE STUDY 

Author Techniques Accuracy 

Shadi A. Aljawarneh et. al 
(2023) [07] 

Enhanced CNN model 92.4% 

Parul Nasra (2024) [08] CNN 91% 

Ruchika Bhuria and Sheifali 

Gupta (2024) [09] 
DenseNet-161 89.26% 

Mutammimul Ula et. al (2022) 
[10] 

Multilayer Perceptron 92.8% 

Pranathi Patel and Hiriyanna 

GS (2022) [11] 

CNN and Data 

Augmentation 
81.89% 

Yuting Yang et. al (2022) [12] Deep Learning 83.968% 

Pham Ngoc Ha et. al (2023) 

[13] 
VIT-B/16 94% 

Stephen George et. al (2022) 

[14] 
CNN 93% 

Anjana Jalnnavar et. al (2023) 

[15] 
ResNet50V2 90% 

Ashrafee, Md. Iftid et. al (2023) 
[16] 

CNN 90.75% 

Abhishek Dixit et. al (2024) 

[17] 
LO-CNN-LSTM 92.82% 

Proposed Methodology EfficientNetB4 97.7% 

V. DISCUSSION 

The discussion portion of this paper critically assesses the 

results, contextualizing the performance of a deep learning 

model developed to identify between 'Normal' and 

'Pneumonia' chest X-ray pictures. The model's strong training 

and validation accuracies reflect its robust learning 

capabilities and stability over epochs, indicating good feature 

extraction and pattern identification from complicated 

medical pictures. The steady increase in performance 

indicators during the training period confirms the selected 

architecture and learning technique, which are especially 

tuned to handle the subtle needs of medical image processing. 

Precision, recall, and F1-scores for both classes, especially 

the high recall for the 'Pneumonia' class, highlight the model's 

clinical relevance, as it reliably identifies most positive cases, 

thereby minimizing the risk of false negatives, which are 

critically important in medical diagnostics to ensure that no 

condition goes undiagnosed. The deployment of advanced 

measures such as the F2-Score, Matthews Correlation 

Coefficient, and Cohen's Kappa enables a wider evaluation of 

the model's diagnostic accuracy, dependability, and 

consistency. These measures emphasize the model's capacity 

to perform well across varied ailments and patient 

demographics, further proving its potential value in real-

world clinical settings. The low values of Mean Squared 

Error and Mean Absolute Error underscore the model's 

precision in prediction, validating its applicability for clinical 

use where accuracy is crucial.  

The confusion matrix and the comprehensive 

classification reports give deep insights into the model’s 

performance, displaying a high number of true positives and 

true negatives while retaining a low rate of false positives and 

negatives. This balance is critical for medical applications 

since the cost of misdiagnosis may be considerable, both in 

terms of patient outcomes and healthcare resources. 

Moreover, the ROC curve and the related AUC indicate the 

model's outstanding discriminative power, suggesting not 

only its efficacy in categorizing the pictures properly but also 

its ability to retain this performance over a variety of decision 

thresholds. This flexibility enables for modifications in 

clinical settings, where various conditions may call for 

emphasizing sensitivity over specificity, or vice versa. Visual 

representations of predictions and misclassifications in the 

model predictions and error analysis sections not only 

illustrate the model's practical application but also provide 

insights into the types of errors it makes, such as those due to 

overlapping symptoms with other conditions or anomalies in 

image quality. Understanding these trends is critical for 

further improving the model and preparing it for efficient 

deployment in a varied variety of clinical situations.  

The discussion of unexpected outcomes or anomalies in 

the model's predictions underscores the complicated nature of 

medical diagnostics and the difficulty inherent in designing 

AI systems that can adapt to the unpredictability in real-world 

data. These anomalies may inspire deeper inspection of the 

data and model behavior, perhaps leading to further 

refinements or tweaks to the model's training and 

generalization capabilities. Moreover, the relevance of these 

results on the study's overall conclusions is non-trivial, as 

they underline the necessity for constant review and adaption 

of the model, particularly when implemented in varied 

geographical or demographical situations. This flexibility is 

critical to maintain the generalizability and reliability of the 

model, since the features of patient populations may 

considerably impact diagnostic algorithms.  

The discussion of this research not only validates the 

model's performance and possible usefulness in clinical 

settings but also underlines the intricacies and obstacles of 

incorporating AI into healthcare diagnostics. The high degree 

of accuracy and dependability revealed by the model offers a 

solid basis for its application as a diagnostic tool, possibly 

boosting patient outcomes via speedier and more accurate 

identification of pneumonia from chest X-ray images. 

However, it also emphasizes the necessity for ongoing 

testing, monitoring, and adaptation of the model to meet the 

diverse and evolving needs of healthcare providers and 

patients alike, ensuring that the technology remains a 

beneficial adjunct to clinical expertise rather than a 

standalone solution. 

VI. CONCLUSION 

This work has proved the efficiency and dependability of 

a deep learning model particularly developed to categorize 

chest X-ray pictures into 'Normal' and 'Pneumonia' 

categories. Through rigorous training and validation 

methods, the model has demonstrated great accuracy and the 

capacity to successfully discriminate between the two groups, 

showing its potential as a helpful tool in medical diagnostics. 
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The design of the model, based on the EfficientNetB4 

framework, was rigorously selected and tuned to adapt to the 

specific problems provided by medical imaging, notably the 

subtleties and essential features evident in chest X-rays.  

Throughout the training period, the model demonstrated 

steady increases in accuracy and stability, supported by both 

training and validation measures. The use of sophisticated 

classification measures such as accuracy, recall, and F1-

scores proved the model’s capacity to achieve a balanced 

performance, assuring both high sensitivity in recognizing 

pneumonia cases and specificity in confirming normal 

instances. This balance is critical in medical contexts where 

the expense of false negatives may be life-threatening and the 

consequences of false positives can lead to undue stress and 

therapy. The model's solid performance was further 

underlined by sophisticated measures such as the F2-Score, 

Matthews Correlation Coefficient, and Cohen's Kappa, which 

validated its dependability and diagnostic accuracy. The 

Receiver Operating Characteristic (ROC) curve and the Area 

Under the Curve (AUC) provided additional evidence of the 

model’s discriminative power, offering flexibility in clinical 

application through adjustable threshold settings that can be 

tailored to specific medical needs or patient populations.  

Moreover, the model confirmed its actual application via 

the study of a confusion matrix and thorough classification 

reports, which indicated a high proportion of true positive and 

true negative predictions. These findings are promising since 

they validate the model's capabilities to perform successfully 

within a clinical context, giving vital help to medical 

professionals in detecting pneumonia. However, the research 

also identified and addressed significant limits and anomalies 

discovered throughout the model assessment. The discovery 

of recurrent patterns in misclassified photos provided a better 

understanding of the model’s limits, pointing to opportunities 

for additional development, such as strengthening its capacity 

to manage image abnormalities and differences in illness 

presentation. The discussion of unexpected outcomes 

underlined the necessity for continual model review and 

adaption to preserve its accuracy and dependability across 

varied clinical situations. 

The outcomes from this research imply that with 

continuous improvement and validation, the deep learning 

model has the potential to serve as a substantial assist in the 

diagnosing process of pneumonia from chest X-rays. It 

provides a promising supplement to existing diagnostic 

procedures, possibly leading to quicker and more accurate 

diagnoses, better patient care, and optimum allocation of 

medical resources. Future work will concentrate on 

increasing the dataset, including multi-center data to 

strengthen the model’s generalizability, and performing real-

time clinical trials to further confirm its efficacy and usability 

in a larger clinical setting. 
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