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Abstract—Deepfake detection has become increasingly vital in
the era of sophisticated fake media generation techniques. Threats
posed by these deep fakes make deep fake detection inevitable.
Research on Deep fake detection has been conducted extensively.
But problems like resource intensive models, generalizability
across datasets are still existing. To overcome the above problems,
we propose a framework which embraces the transfer learning
and lightweight architecture of xception model. The framework
consists of three major inherent steps for deep-fake detection.
The first step involves a feature extractor that uses the pre-
trained Xception as the backbone. The feature extractor has two
branches for global and local feature extraction. The global feature
branch uses the pre-trained Xception for feature extraction,
while the local feature branch uses the xception model enhanced
through Convolutional Block Attention Module (CBAM) enhanced
to effectively extract deepfake-specific features and contrastive
learning to equip Xception with discriminative power for feature
extraction. Once the local and global features are extracted, two
separate Random Forest classifiers are trained on these features.
Finally, the predicted probabilities from these two models are
ensembled using a logistic regression meta-model. To avoid the
effects of class imbalance on the model performance, care was
taken to balance samples in each category through augmentations.
The model is trained on Face Forensics++ dataset and evaluated
for cross datasets on Celeb-Df and UADFV datasets. Given that
generalization across datasets is a major challenge faced by deep-
fake detection models,we integrate domain adaptation where our
model performs noticeably well minimal fine-tuning using 10 %
data. The proposed framework showed significant improvements
with a 5% increase in accuracy, a 1% increase in ROC, and a 2%
increase in precision compared to state-of-the-art (SOTA) models.

Keywords—Deepfake Detection; Convolutional Block Attention
Module; Contrastive Learning; Ensemble Learning; Domain Adap-
tation; Cross Data Set Generalization

I. INTRODUCTION

Deep Fake technology has evolved rapidly since the intro-
duction of Generative Adversarial Networks (GANs) in 2014
[1], facilitating the creation of hyper-realistic synthetic me-
dia.Initially utilized for entertainment, it has raised significant
concerns regarding privacy and misinformation while prompt-

ing advancements in detection methods as the technology has
matured.

Since 2017, Deep Fakes have grown to be a serious prob-
lem [2]. GANs, Autoencoders, and open-source programs like
DeepFaceLab are some of the methods used to create deep-
fakes [3]. While famous people and celebrities are regularly
portrayed, deepfake makers are typically unidentified actors or
individual content creators [4].

Deep Fakes of audio and video can be created with the
help of several apps. Reface App [5] and ZAO [6] are well-
known for using celebrities’ faces to create lifelike deepfake
videos. FaceApp [7]provides face-changing as well as other
facial changes, such as gender swapping and aging. Sound
Forge [8] has professional-grade features, whereas Audacity is
a free, open-source program that offers substantial audio editing
capabilities for audio deepfakes [9].

Deepfake detection has evolved significantly over time, tran-
sitioning from traditional methods to advanced deep learning
techniques [10].Traditional methods for deepfake detection
included techniques such as image quality assessment, face
recognition, and splicing detection. These methods were often
rule-based and relied on specific features within the images
or videos to identify inconsistencies. While these methods
provided a foundation for deepfake detection, they were limited
in their ability to generalize across different datasets and
scenarios [11].In comparison to conventional machine learning
and artifact analysis techniques, deep learning-based techniques
have demonstrated higher accuracy in deepfake identification
[12].Early developments can be traced back to generative
adversarial networks (GANs), introduced by Ian Goodfellow
and his colleagues in 2014 [1].

Despite the advantages deep learning models which are com-
putationally intensive require high end resources making them
unsuitable for few real time and mobile environments.Xception
model on other hand being lightweight and pretrained on the
huge ’IMAGENET’ dataset is considered suitable for deep
fake detection approaches in such scenarios.The Xception
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model leverages depthwise separable convolutions, making it
lightweight and efficient compared to other CNN-based pre-
trained models [13].Xception model has been widely used
in various image processing tasks due to its efficiency and
performance.

Another major concern is these detection algorithms based
on deep learning frequently have trouble generalizing across
datasets. Table I summarizes CNN based deep learning
models highlighting their generalization and resource re-
quirements.Problem or gap identified from above discus-
sion is resource intensive models and generalizability across
datasets. To address this we propose a less resource intensive
and generalizable approach. our approach suggests a unique
two-branch framework that uses enhanced pretrained Xcep-
tion(IMAGENET) using contrastive learning and CBAM (Con-
volutional Block Attention Module) and pretrained Xception
(IMAGENET),where Former used for the extraction of local
features,and later for the extraction of global features.Using
these features, two Random Forest Classifiers [14] are trained.
The predictions from these Random Forest models are then
combined using a Stacking Classifier, which uses Logistic
Regression as the meta-model to achieve better performance
and robustness in deepfake detection.In the proposed approach
CBAM attention module aids in extracting deep fake specific
features by leveraging channel and spatial attention.On the other
hand the contrastive learning gives the model discriminative
power to effectively extract features that are separable from
fake features effectively.

Generalizability across multiple datasets is achieved through
domain adaptation, wherein a minimal number of labeled
samples from the target (unseen class) are used to fine-tune
the model. This process updates the model’s weights to ac-
commodate new data representations, enhancing its ability to
perform effectively on previously unseen domains. The model
is optimized using the AdamW optimizer along with weight
decay to promote convergence and generalization. The main
objectives of this study are to:

• Propose a feature extraction branch for Global and Local
feature extraction using pretrained Xception on IMA-
GENET(Xception(IMAGENET)) and pretrained Xception
enhanced through CBAM and Contrast learning for deep-
fake detection.

• Train and evaluate two Random Forest classifiers on local
and global features, and combine their predictions using a
logistic regression based Stacking Classifier.

• Fine tune the models to new unseen datasets using domain
adaptation.Evaluate the results to provide evidence-based
arguments for the efficacy of the proposed method.

The rest of the paper is organized as section 2:Literature Re-
view, section 3:Proposed Deep Fake Framework Section 4 Im-
plementation Details, section 5:Results and Evaluation,section
6 Conclusion.

II. LITERATURE REVIEW

Traditional Deep Fake detection techniques such as Gabor
filters, local binary patterns [15], and frequency domain-based
detection [16], [17], [18]. These methods rely on specific
features and patterns to identify deepfakes, often requiring
manual feature engineering. latex

Deep learning-based techniques automate feature learning
to some extent. The rise of deep learning has transformed
deepfake detection, enabling more sophisticated techniques
that automatically learn features from data. Key advancements
include Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs),Auto encoders and Generative Adver-
sarial Networks (GANs). CNNs have become a cornerstone of
deepfake detection due to their ability to automatically extract
hierarchical features from images.

Pretrained Xception The Xception model, a pre-trained
CNN, has been effectively utilized for deepfake detection in
recent works [26]. Known for its established use in image clas-
sification tasks, Xception leverages depthwise separable convo-
lutions to enhance performance and efficiency. This method [27]
combines features obtained from two prominent deep learning
models, Xception and EfficientNet-B7. By utilizing a ranking-
based method to select a near-optimal subset of features,
final classification of real and fake videos is achieved. Recent
works [28], [29], [30] have effectively explored Xception and
its variants in deepfake detection.Xception has been recently
explored in [31] which combines the Prerained model with
Snake Optimization technique to achieve improved results.
Contrastive Learning

[32] utilized contrastive learning for unsupervised deepfake
detection. A notable approach [33] combines unsupervised
contrastive learning and supervised contrastive learning for
deepfake detection. Additionally, [34] proposes a tailor-made
loss for deepfake detection.

Convolutional Block Attention Module (CBAM) Re-
cent research has highlighted the effectiveness of attention
mechanisms in deepfake detection. A hybrid Xception-LSTM
model with Convolutional Block Attention Module (CBAM)
achieved 93% accuracy and 0.98 AUC on the Div-DF dataset
[35]. A VGGish model with CBAM demonstrated excellent
performance in detecting audio deepfakes, achieving low Equal
Error Rates for Physical and Logical Access attacks [36].
The Attention-based DeepFake Detection (ADD) approach
significantly improved classifier performance, achieving over
98.3% accuracy on the Celeb-DF (V2) dataset by focusing
on potentially manipulated areas [37]. Incorporating attention
mechanisms into CNNs also resulted in an 8% AUC improve-
ment over conventional CNNs for deepfake detection (Waseem
et al., 2023).

Domain Adaptation
Domain adaptation is a technique frequently utilized in deep
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TABLE I. COMPARISON OF DEEP LEARNING-BASED DEEPFAKE DETECTION MODELS

Title Deep Learning
Model

Training Dataset Train
Acc.
(%)

Cross-
Dataset
Acc. (%)

Computational Resources

XceptionNet
Deepfake
Detector [19]

Xception CNN FaceForensics++ 95.73 65.88 (Wild-
Deepfake)

Needs 8GB GPU VRAM; trained on RTX
2080Ti; inference on RTX 2060.

EfficientNet-B7
Detector [20]

EfficientNet-B7 DFDC 98.70 61.20
(Celeb-
DF)

Needs 16GB GPU VRAM; trained on RTX
3080; inference on RTX 2070.

MesoNet [21] Custom CNN Ar-
chitecture

UADFV 94.62 47.3 (Celeb-
DF)

Lightweight; 4GB GPU VRAM; CPU infer-
ence possible.

Capsule-
Forensics [22]

Capsule Neural
Network

FaceForensics++ 96.50 57.5 (DFDC) Needs 8GB GPU VRAM; trained on RTX
2070; slow CPU inference.

Two-Stream
CNN [23]

Dual-path CNN DFDC + FF++ 97.60 73.1 (Wild-
Deepfake)

Needs 12GB GPU VRAM; trained on RTX
3070; dual GPU recommended.

Vision
Transformer
[24](ViT)

Transformer DFDC + WildDeep-
fake

96.80 76.2 (Unseen
DFDC Test)

High memory usage; trained on RTX
3090/A100; needs 16GB GPU VRAM.

Multi-task CNN
[25]

Modified ResNet FF++ + DFDC 98.10 69.4 (Cross-
Dataset)

Needs 12GB GPU VRAM; trained on RTX
3080; multi-GPU training recommended.

learning tasks that involves fine-tuning a pre-trained model to
adapt to unseen scenarios or domains. This approach enhances
the model’s ability to generalize and perform accurately across
different datasets or environments, a crucial factor in applica-
tions such as deepfake detection where data distribution can
vary significantly. Recent studies have emphasized the effec-
tiveness of stacking classifiers in domain adaptation, allowing
for the integration of multiple models to better address specific
requirements and enhance performance across various domains
[38]–[40]

Random Classifier and Logistic Regression logistic regres-
sion is a well known statistical model for binary classification
tasks [41].It has been used in Deep Fake detection tasks
predominantly in recent studies [42], [43]

Random Forest known for their sensitivity to handle high
dimensional data have been utilized to some extent in the task
of deep fake detection [44], [48]

Meta-classifiers have become an essential tool for detecting
deepfakes because of their capacity to combine and improve
the results of different deep learning models. Numerous models
and meta-classifiers have been included into a variety of archi-
tectures in recent studies, making this approach a major trend
in addressing the growing complexity of deepfake technology.
This increased focus demonstrates how well they work to
increase detection accuracy, dataset adaptability, and resistance
to progressively more sophisticated generative techniques [49],
[51].

However, the major concerns identified in the literature
include resource-intensive models. These models struggle to
generalize across different datasets or identify unseen samples.
To address these challenges, we propose a novel framework
that utilizes contrastive learning and CBAM to enhance the pre-

trained Xception model, followed by training random classifiers
using the features(Local & Global) extracted by the fine-tuned
Xception model. The essence of this approach is a domain
adaptation strategy, which fine-tunes the model to identify
unseen samples effectively.

By integrating these methodologies, our proposed model
aims to offer a comprehensive and efficient framework for deep-
fake detection.

III. PROPOSED DEEP FAKE FRAME WORK

The approach proposed in this paper comprises a strong and
organized pipeline that is intended to help detect deepfakes
in a cross-dataset setting. The architecture depicted in Fig. 1
illustrates the proposed method. This comprehensive approach
integrates several critical phases, including pre-training, feature
extraction, classification, and model adaptation. Each phase is
meticulously detailed in the subsequent sections, providing an
in-depth understanding of the methodology.

Fig. 1. Proposed Architecture

Phases of the Methodology:
1. **Pre-Training**: The Xception model is enhanced using
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contrastive learning and CBAM on video frames extracted from
the FF++ dataset. This step involves applying data augmenta-
tions and training the model to differentiate between real and
fake frames effectively.
2. **Feature Extraction**: Local and Global Features are
extracted from the video frames using the trained Xception-
CBAM model and Xception model Pre-trained on ’IMA-
GENET’. These features are stored in separate CSV files for
both real and fake frames to facilitate efficient access during
the classification phase.
3. **Classification**: Two random forest classifiers are trained
separately on the local features and global features. The use
of Random Forests is due to their ability to handle complex
classification tasks and high-dimensional data effectively.
4. **Model Adaptation (Stacking Classifier)**: The final clas-
sification is performed using a Stacking Classifier, which com-
bines the predictions from the two Random Forest models
using logistic regression as the meta-model. This approach takes
advantage of the strengths of both sets of features, improving
the overall accuracy and robustness of classification.

Thanks to its lightweight design and the integration of
CBAM and contrastive learning, the enhanced Xception model
achieves efficient feature extraction with fewer parameters.
The subsequent use of ensemble learning methods like the
Stacking Classifier ensures high performance and reliability in
deepfake detection across various datasets, where computational
resources and processing speed are critical.

A. Datasets

We have trained tested the suggested approach on the fol-
lowing three public benchmark Deepfake datasets to confirm
its effectiveness:

FF++ (FaceForensics++) [52]: This dataset contains 1,000
original video sequences that have been manipulated using four
advanced face manipulation methods: Deepfakes, Face2Face,
FaceSwap, and NeuralTextures. Sourced from YouTube, the
dataset ensures the realistic nature of the forgeries, providing
a rich and varied resource for training and evaluating face
manipulation detection models.

Celeb-DF: The Celeb-DF [53]dataset is a large-scale collec-
tion featuring 590 original videos of celebrities, along with
5,639 corresponding DeepFake videos. This dataset includes
a diverse array of subjects across different ages, ethnic groups,
and genders, making it an important benchmark for challenging
deepfake detection tasks. Its extensive range of facial variations
poses significant challenges for model robustness and general-
ization.

UADFV (University at Albany DeepFake Video Dataset)
[54]: UADFV consists of 49 real videos and 49 corresponding
fake videos, created specifically by the University at Albany.
Despite its smaller size, this dataset presents a unique chal-
lenge for deepfake detection due to its highly realistic video

conditions. The limited number of samples encourages models
to focus on detecting subtle differences between authentic and
manipulated content.

B. Frame Extraction

In the initial phase of the methodology, video frames were
systematically extracted from the three primary datasets [55]:
Face Forensics++ (FF++), UADFV, and CelebDF. This process
was vital for organizing the data into distinct categories, fa-
cilitating the training and evaluation of the proposed deepfake
detection model.
To achieve this, the following steps were undertaken:

• **Dataset Selection**: The datasets used were carefully
selected to ensure diversity in the training samples. FF++
is notable for its breadth of high-quality deepfake videos,
while UADFV and CelebDF provide a variety of real and
fake content that helps enhance model robustness.

• **Frame Extraction Process**: Dedicated scripts were
employed to extract frames at regular intervals from each
video file. This method ensured that both keyframes and
intermediary frames were captured, maintaining a compre-
hensive representation of the video content.

• **Directory Organization**: Following extraction, the
frames were organized into separate directories according
to their classification as real or fake. This systematic
organization is crucial for streamlined data management
and facilitates subsequent data handling during the model
training phase.

By employing this structured approach to frame extraction,
the methodology was equipped with a solid foundation of
training data, significantly contributing to the success of the
deepfake detection process.

C. Feature Extraction

Feature extraction is carried out in two independent branches
where:

• Gobal Feature Branch: Employs the pretrained Xception
model with ’IMAGENET’ weights to extract the features
which we are addressing Global features.

• Local Feature Branch: initially the Xception model is
trained using contratsive loss on 50 real and 50 fake vedios
from FF++ dataset. The model is further enhanced using
CBAM module to extract features from the FF++ vedio
frames extracted in the previous phase. These features are
addressed as Local features.

D. Model Training

The Xception model is initially pre-trained on a subset of 50
real and fake video frames obtained from the Face Forensics++
(FF++) dataset. This pre-training phase prominently employs
contrastive learning, a technique that has proven particularly
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effective in tasks requiring the differentiation of closely related
classes, such as real and fake frame identification. Contrastive
learning has also been prominently employed in recent deepfake
detection tasks [56], [57].Contrastive learning operates by cre-
ating embeddings that encourage the model to associate similar
instances while repelling dissimilar ones, thereby enhancing
the model’s ability to learn discriminative features crucial for
accurate deepfake detection.

To maximize our model’s performance, we carefully selected
the following hyperparameters for this study: For contrastive
learning, an embedding dimension of 128 was used to capture
compact and discriminative features, with a batch size of 16
chosen after testing various values such as 32 and 64 for
optimal performance while managing memory constraints. The
learning rate was set to 0.0001 using the Adam optimizer, and
a temperature value of 0.07 was employed in the NT-Xent
loss function to control the similarity between positive pairs.
Dropout was applied at a rate of 0.5 in the final embedding
layer to prevent overfitting, and weight decay was set to 1e-5
for regularization.

For CBAM (Convolutional Block Attention Module), the
reduction ratio for channel attention was set to 16, with a
kernel size of 7 for spatial attention. The channel attention
module used ReLU activation, while both the channel and
spatial attention modules used Sigmoid activation, with pool-
ing mechanisms including adaptive average pooling and max
pooling to capture both global and local features effectively.

By leveraging contrastive learning, the model is able to focus
on the subtle nuances that distinguish genuine video frames
from manipulated ones. Additionally, to further enhance the
robustness of the model and mitigate the risk of overfitting,
various data augmentation techniques are employed. Specifi-
cally, transformations such as rotation, scaling, color jittering,
and grayscale conversion are applied to introduce diversity
within the training dataset. This combined approach not only
enriches the data but also reinforces the model’s generalization
capabilities across different scenarios, ultimately leading to
more reliable classification performance. Fig. 2 shows loss of
Xception over epochs.

The contrastive loss function plays a vital role in learn-
ing effective representations, especially in tasks like deepfake
detection. It aims to minimize the distance between simi-
lar pairs while maximizing the distance between dissimilar
pairs,equation 1 is a mathematical representation of contrastive
loss.

L =
1

N

N∑
i=1

(
yi ·D2 + (1− yi) ·max(0, α−D)2

)
(1)

[58]

• L: The overall loss calculated over all pairs of data.
• N : The total number of pairs in the dataset.

Fig. 2. XceptionLoss

• yi: An indicator variable where 1 signifies similar pairs
and 0 signifies dissimilar pairs.

• D: The Euclidean distance between the embeddings of the
pair.

• α: A margin parameter that determines the threshold
distance for dissimilar pairs.

The margin α significantly influences the learning process.
For similar pairs, the loss encourages distances to be minimized
to ideally zero, promoting compact clustering. Conversely, for
dissimilar pairs, if their distance falls below .α a penalty is
applied to reinforce separation. This strategic use of the margin
fosters robust representation learning, ensuring that dissimilar
instances are distinctly represented, ultimately enhancing the
model’s capability in differentiating genuine from fake media
effectively.

E. Classifier Training

We employ two Random Forest classifiers to train on Global
and Local features separately due to their well-established
efficacy in handling complex classification tasks, particularly
in scenarios characterized by high dimensionality and diverse
data distributions. The extracted feature vectors from the FF++
dataset are systematically organized into distinct subsets for
training (60%), validation (20%), and testing (20%). This
structured approach ensures a balanced representation across
all categories, which is essential for effective model evaluation
and robust performance across various scenarios.

To leverage the strengths of both feature sets, we combine
the predictions of the two Random Forest classifiers using
a Stacking Classifier. The Stacking Classifier uses Logistic
Regression as a meta-model to integrate the predictions from
the base models, thereby enhancing classification accuracy and
robustness while mitigating the risk of overfitting.

Random Forest and ensemble learning methods, such as the
Stacking Classifier, combine the predictions of multiple models
to enhance classification accuracy and robustness.

Pseudo code for Stacking Classifier
This approach has gained substantial recognition and pop-

ularity in various domains [59]–[63] owing to its ability to
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Algorithm 1 Stacking Classifier with Random Forest and
Local/Global Features

1: Input: Local features, Global features, Labels
2: Output: Trained Stacking Classifier and evaluation metrics
3: procedure LOAD AND LABEL DATA
4: Load Local and Global features for real and fake videos
5: Label the data: 0 for real, 1 for fake
6: end procedure
7: procedure COMBINE AND NORMALIZE DATA
8: Combine real and fake data
9: Normalize using StandardScaler

10: end procedure
11: procedure SPLIT DATA
12: Split data into training and testing sets (80% training,

20% testing)
13: end procedure
14: procedure INITIALIZE AND TRAIN MODELS
15: Initialize and train Random Forest classifiers for Local

and Global features
16: end procedure
17: procedure PREDICT AND EVALUATE
18: Predict and evaluate accuracy, precision, recall, and

ROC-AUC for both Random Forest models
19: Define and train the Stacking Classifier with Logistic

Regression as final estimator
20: Predict and evaluate the Stacking Classifier
21: end procedure
22: procedure SAVE MODELS
23: Save the trained models
24: end procedure

effectively capture intricate patterns in data while providing
valuable insight into the importance of features. The model’s
performance is evaluated using metrics calculated on the val-
idation set, ensuring reliable assessments of its discriminative
capabilities.

The results show that the Stacking Classifier outperforms the
individual Random Forest models by achieving higher accuracy
and improved robustness. This demonstrates the effectiveness
of integrating enhanced feature sets and ensemble learning
techniques in deepfake detection tasks.

IV. IMPLEMENTATION DETAILS

The proposed method for deepfake detection is implemented
using the PyTorch deep learning framework. The model ar-
chitecture is based on the Xception Contrastive model, which
utilizes a pre-trained Xception model from the timm library for
efficient feature extraction. The final fully connected layer of
the Xception model is replaced with a custom linear layer to
produce 128-dimensional embeddings. A contrastive loss func-
tion is employed to train the model on pairs of images, where

the objective is to minimize the distance between embeddings
of similar pairs and maximize the distance between dissimilar
pairs.

The datasets used in this study comprise real and fake video
frames, collected from specified directories. To ensure a robust
training process, 30% of the videos from both real and fake
datasets are randomly sampled. The data undergoes extensive
augmentation, including resizing, random horizontal flipping,
random rotation, color jitter, and normalization, to improve the
model’s generalization capabilities. The model is trained using
contrastive loss for 30 epochs using Adam optimizer with an
initial learning rate of 1e-5 and a batch size of 16.

The hardware setup for the experiments includes an Intel(R)
Core(TM) Ultra 7 155H CPU, 32 GB of RAM, and a Colab
T4 GPU. This combination facilitates efficient training and
ensures that the model can handle large datasets and complex
computations. Throughout the training process, the model’s
performance is monitored, and progress is printed every 10
batches to track the training loss. The trained model’s state
is saved at the end of each epoch, allowing for resumption or
further fine-tuning if necessary.

In summary, the proposed method leverages the strengths
of advanced deep learning techniques and high-performance
hardware to achieve robust performance in deepfake detection.
By incorporating contrastive loss and extensive data augmen-
tation alongside CBAM Attention, the Xception Contrastive
model is designed to handle challenging datasets and provide
reliable detection results. This setup not only demonstrates the
effectiveness of the approach but also paves the way for future
studies and applications to protect the authenticity of digital
media.

V. RESULTS EVALUATION

To verify the effectiveness of the model proposed in this
paper, we refer to previous research and utilize a comprehensive
set of evaluation indicators. These indicators include Accuracy
(ACC), Precision, Recall, F1-Score, and Area Under the
ROC Curve (AUC). Accuracy (ACC) measures the proportion
of correctly classified instances out of the total instances,
providing an overall assessment of the model’s performance.
The equation for accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP = True Positives, TN = True Negatives, FP = False
Positives, and FN = False Negatives. Precision indicates the
proportion of true positive instances out of the total predicted
positive instances, reflecting the model’s ability to avoid false
positives. The equation for precision is:

Precision =
TP

TP + FP
(3)
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Recall (or Sensitivity) measures the proportion of true positive
instances out of the actual positive instances, reflecting the
model’s capability to identify all positive cases. The equation
for recall is:

Recall =
TP

TP + FN
(4)

F1-Score is the harmonic mean of precision and recall, provid-
ing a balanced measure of the model’s performance in terms
of both precision and recall. The equation for the F1-Score is:

F1-Score = 2×
(

Precision × Recall
Precision + Recall

)
(5)

Area Under the ROC Curve (AUC) reflects the model’s
ability to distinguish between positive and negative instances,
with a higher AUC value indicating better discriminative per-
formance. The AUC is calculated by plotting the True Positive
Rate (TPR) against the False Positive Rate (FPR) at various
threshold settings. The equations for TPR and FPR are:

True Positive Rate (TPR) =
TP

TP + FN
(6)

False Positive Rate (FPR) =
FP

FP + TN
(7)

By employing these evaluation metrics, we ensure a thorough
and reliable assessment of our model, enabling a fair com-
parison with existing state-of-the-art approaches. This com-
prehensive evaluation framework highlights the strengths and
effectiveness of our proposed deepfake detection model show
in Fig. 3.

Fig. 3. Comparison of Precision-Recall and ROC Stacking.

The primary objective of our experiment was to enhance
the generalization capability of the model across various data
sets with minimal fine-tuning, using the domain adaptation
technique.

This approach successfully enabled our model to adapt and
perform well on different datasets. The results of our model’s
performance are summarized in the Table below II, showcasing
its efficacy at different stages of pipeline three widely recog-
nized datasets. Table III, Table IV, and Table V highlights the
model performance on UADFV and Celeb DF datasets before
and after fine tuning.

As illustrated in the tables the model initially struggles
classifying the video frames as fake or real. For the given target
classes (Celeb Df and UADFV), we fine-tuned the model using
only 20% of the data.After this minimal fine-tuning, models
performed registering high performance metrics.

VI. COMPARATIVE ANALYSIS

The study by [64] introduces CoDeiT, which employs a
hierarchical attention mechanism within the HiLo Transformer
architecture, separating high and low-frequency information.
CoDeiT achieves an accuracy of 86.9 % on the DFDC dataset
and 78.5 % on CelebDF. However, this accuracy is significantly
lower than the 90.32 % achieved by our proposed method,
which also demonstrates balanced precision and recall, show-
casing robust detection capabilities across both classes. Using
contrastive learning in an unsupervised environment, the study
suggested in [65] achieved a noteworthy 93% accuracy and a
92.7 AUC, which are respectable outcomes for unsupervised
techniques. With only a random-guess performance of 56 % in
cross-dataset scenarios, the model’s performance is noticeably
worse, underscoring its shortcomings in terms of generalizing
to new data.

The study by [66] investigates multiple CNN architectures,
including a custom-built CNN, VGG19, and DenseNet-121, on
synthetic face images that visually simulate real or fake identi-
ties. VGG19 achieves the highest accuracy at 95%, emphasizing
the importance of facial recognition in deepfake detection.

The study by [67] presents a novel deepfake detection
method using a stacking-based ensemble approach. This method
combines features from Xception and EfficientNet-B7 models,
selects a near-optimal subset of features, and classifies real
and fake videos using a multi-layer perceptron. It achieves
96.33% accuracy on the Celeb-DF (V2) dataset and 98.00%
on the FaceForensics++ dataset, outperforming individual base
models. Various experiments validate the robustness of the
method, highlighting its potential for reliable deepfake de-
tection. However, our proposed method achieves a slightly
lower accuracy but demonstrates balanced precision and recall,
showcasing robust detection capabilities across both classes.
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TABLE II. PERFORMANCE METRICS OF MODELS CONSIDERING BOTH CLASSES

Model Class Precision Recall F1-Score Accuracy ROC-AUC

RF (Local) 0.0 0.78 0.93 0.85 0.8347 0.92121.0 0.91 0.74 0.82

RF (Global) 0.0 0.92 0.99 0.95 0.9494 0.99191.0 0.99 0.91 0.95

Proposed 0.0 0.99 1.00 0.99 0.9924 0.99951.0 1.00 0.99 0.99

TABLE III. RESULTS ON UADFV BEFORE AND AFTER FINE TUNING

Model Stage Class Precision Recall F1-Score

RF on Local
Initial 0 0.49 0.90 0.64

1 0.44 0.08 0.14

Finetuned 0 0.84 0.33 0.48
1 0.58 0.93 0.72

RF on Global
Initial 0 0.50 0.48 0.49

1 0.50 0.52 0.51

Finetuned 0 0.92 0.90 0.91
1 0.90 0.92 0.91

TABLE IV. RESULTS ON CELEB-DF BEFORE AND AFTER FINE-TUNING

Model Stage Class Precision Recall F1-Score

RF on Local
Initial 0 0.50 0.76 0.60

1 0.50 0.24 0.33

Finetuned 0 0.76 0.93 0.84
1 0.91 0.71 0.80

RF on Global
Initial 0 0.53 0.65 0.59

1 0.55 0.43 0.49

Finetuned 0 0.96 0.90 0.93
1 0.91 0.96 0.93

TABLE V. BENCHMARKING STUDIES WITH EVALUATION METRICS

Study Precision Recall F1-Score Accuracy ROC AUC
[64] 0.93 0.91 0.92 0.90 0.95
[65] 0.89 0.88 0.88 0.87 0.92
[66] 0.91 0.90 0.90 0.89 0.94
[67] 0.94 0.91 0.92 0.90 0.96
[68] 0.92 0.89 0.90 0.88 0.93
[69] 0.95 0.93 0.94 0.92 0.97
Ours 0.97 0.91 0.94 0.97 0.98

The paired t-tests and confidence intervals reveal significant
performance improvements between the models. Specifically,
the p-value of 1.0276e-62 for the comparison between RF
Local and RF Global indicates a highly significant difference,
supported by a narrow confidence interval of (-0.1100, -0.1100).
Similarly, the comparison between RF Global and the Stacking
Classifier shows a p-value of 0.0017, with a confidence interval
of (-0.0384, -0.0176), highlighting a statistically significant, al-
beit small, improvement in performance. These results demon-
strate that the Stacking Classifier performs slightly better than
the Random Forest on Global Features, while both significantly
outperform the Random Forest on Local Features.

VII. ALBATION STUDIES

Ablation studies were performed to evaluate how various
feature sets (local and global features) and stacking classifiers
Logistic Regression and [70]XGBoost affected our models’
performance. The study used Random Forest classifiers that
were trained separately on two different feature sets—local

features and global features. It was set up using 100 estimators,
a random state of 42, and default parameters like Gini impurity
as the requirement for Random Forest classifiers. Based on
metrics like accuracy and ROC-AUC, the results demonstrated
that global features had a greater discriminatory potential for
the classification job than local features.

In order to capitalize on the combined advantages of local
and global information, the study also used stacking classifiers.
Two meta-classifier setups were investigated: XGBoost and
Logistic Regression. The Logistic Regression stacking classifier
outperformed XGBoost in terms of accuracy and ROC-AUC,
demonstrating its greater fit for this context. XGBoost was set
up with 100 estimators, log loss as the evaluation metric, and
a default learning rate of 0.1. With the default configuration,
Logistic Regression showed strong compatibility with the com-
bined feature set. Because of its improved performance and
dependability, Logistic Regression was selected as the stacking
classifier for all further studies. Important information from this
ablation investigation guided feature selection, classifier setup,
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and hyperparameter tuning show in Table VI.

TABLE VI. PERFORMANCE COMPARISON OF STACKING
CLASSIFIERS (LOGISTIC REGRESSION VS. XGBOOST)

Metric Logistic Regression XGBoost
Accuracy 99.24% 95.88%

ROC-AUC 0.9995 0.9945
Precision (Class 0) 0.99 0.96

Recall (Class 0) 1.00 0.95
F1-Score (Class 0) 0.99 0.96
Precision (Class 1) 1.00 0.95

Recall (Class 1) 0.99 0.96
F1-Score (Class 1) 0.99 0.96

VIII. DISCUSSIONS AND FUTURE DIRECTIVES

Our experiment’s key finding is that features have a signifi-
cant impact on how well deep fake detection models function.
The data clearly show that global features play a signifi-
cant role in the outcome. However, local characteristics on
their own exhibit overfitting, identifying the majority of fake
videos as authentic, and vice versa. Therefore, by stacking, our
model investigates the benefits of both attributes, improving
overall performance. Directions for the future. During domain
adaptation only 20% of new data has been used as a step
to use minimal data for finetuning and reduce the resource
requiremnet in the process. Further study would investigate
various proportions and inference times as the next step.

Although there were differences in recall and precision
between classes, class imbalance was disregarded because
support was comparable across classes. Feature bias is one
potential element that may have shown to subtly favor one
class over another. Although the model is not significantly
limited by this, future research can concentrate on improving
feature importance analysis to reduce bias. Performance will be
further improved by tactics such using regularization to prevent
relying too much on certain characteristics, using fairness-
aware approaches, and utilizing sophisticated metrics like ROC
curves and AUC scores. Furthermore, any remaining subtleties
that were missed in the current research might be addressed
by data augmentation or enrichment, guaranteeing the model’s
continuous robustness and dependability.

Even though the model performs better in the experimental
environment, real-world testing of the models is always nec-
essary. We further note that researchers can test the model’s
scalability to huge data environments as a continuation of this
study. Individually, contrastive learning and attention mecha-
nisms carry the risk of overfitting, even if they have been
shown to increase accuracy in ensemble settings. In order to
train models for real-time scenarios and efficiently classify
unseen input, more research may be done to apply the attention
processes in zeroshot and oneshot learning contexts. As a future
directive researchers can also experiment incorporating both
audio and video based fetaures for more robust classifictaion.

IX. CONCLUSION

The study introduces a novel framework for deepfake detec-
tion, using an enhanced Xception model integrated with Con-
volutional Block Attention Module (CBAM) and contrastive
learning for local feature extraction, combined with ensemble
learning through a stacking classifier. The enhanced Xception-
CBAM model improves feature extraction by focusing on
critical areas of input frames, and contrastive learning enhances
the model’s ability to differentiate between real and fake frames.
Utilizing two Random Forest classifiers trained on CBAM fea-
tures and normal features and combining their predictions with
a Stacking Classifier using Logistic Regression, the method
achieves superior accuracy and robustness in deepfake detec-
tion.

The results prove the efficacy of the proposed method,
achieving an accuracy of 90.71% and a ROC-AUC score
of 97.58%, outperforming individual models. This approach
addresses the challenge of generalizability in cross-dataset
settings, providing a reliable and efficient solution for detecting
deepfakes across various datasets. The framework is ideal for
mobile deployment due to the Xception model’s lightweight
architecture, combined with contrastive learning and CBAM.
The Xception model, with its separable convolutions in depth,
significantly reduces parameters and computational complexity.
High performance is ensured even with constrained computa-
tional resources, thanks to its efficiency and CBAM’s focus on
key aspects. Techniques like model quantization and pruning
improve the framework for mobile deployment, leading to faster
computation, lower memory consumption, and increased in-
ference speed without significantly sacrificing accuracy.Future
scope of exploring more real time datasets and exploring meta
classifier in one shot environment can be
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