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Abstract—This paper introduces a new modified conformable
operator and explores its properties in detail. The motivation
for studying this operator lies in its potential applications in
fractional calculus and differential equations. We analyze the
self-adjoint modified conformable equation by discussing the
existence and uniqueness solution in the two cases, homogeneous
and non-homogeneous, and establish its connection to specific
modified conformable initial value problems. Furthermore, we
investigate the modified conformable Sturm-Liouville problem by
determining its eigenvalues and corresponding eigenfunctions. Key
theoretical results related to orthogonality and linear dependence
are presented. To validate the theoretical findings, we provide
numerical methods and illustrative examples, demonstrating the
applicability of our approach. These results contribute to a deeper
understanding of modified conformable operators and their role
in mathematical physics and engineering.
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I. INTRODUCTION

The concept of fractional derivatives dates back to the early
development of calculus. In 1695, L’Hôpital inquired about the
meaning of a derivative of order n = 1

2 , leading to centuries
of research on fractional calculus [1]–[3]. Over time, various
definitions have emerged, including the Riemann-Liouville,
Caputo, Atangana-Baleanu, and Caputo-Fabrizio derivatives
[4]–[6]. These formulations offer powerful tools for modeling

complex systems with memory and hereditary properties. How-
ever, most classical fractional derivatives do not fully satisfy
fundamental properties such as the product rule and chain rule,
posing challenges in their application [7]–[11].

To address these limitations, a new local derivative known as
the conformable fractional derivative was introduced [12]. This
derivative is well-structured and preserves several fundamental
properties of classical calculus.

Definition 1. [12]. The conformable fractional derivative of a
function of order is defined as:

Tα(f)(x) = lim
ϵ→0

f(x+ ϵx1−α)− f(x)

ϵ
, 0 < α ≤ 1, x > 0.

This definition provides a simpler and more intuitive ap-
proach to fractional differentiation, making it a promising tool
for various applications in applied mathematics and engineer-
ing.

Since its introduction, the conformable fractional derivative
has gained significant attention, with researchers extending and
generalizing its properties [13]–[17]. Khalil et al. [18]. provided
a geometric interpretation of the conformable derivative, further
strengthening its theoretical foundation. Its applications span
numerous fields, including physics, engineering, and mathemat-
ical biology [19]–[24].
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One important area where fractional derivatives play a cru-
cial role is Sturm Liouville problems. These problems fre-
quently arise in applied mathematics, particularly in solving
separable linear partial differential equations. Sturm Liouville
problems are essential in spectral theory, quantum mechanics,
and vibration analysis [25]–[29]. Given the importance of
these problems, extending them to fractional calculus using
the modified conformable operator provides new insights and
potential applications.

In this paper, we focus on a newly defined modified con-
formable operator and its applications in fractional differential
equations. The main objectives of this study include a theo-
retical investigation where we explore both homogeneous and
nonhomogeneous self-adjoint modified conformable differential
equations of the form:

Lu(x) = 0, and Lu(x) = f(x),

where the self-adjoint modified conformable operator is defined
as

Lu(x) = Dα [p(x) (Dαu(x)− κ1(α, x)u(x))] + q(x)u(x),

with Dα representing the modified conformable derivative, and
p(x) and q(x) being continuous functions. Moreover, the study
extends to the modified conformable Sturm-Liouville problem
of the form:

Dα [p(x) (Dαu(x)− κ1(α, x)u(x))]+(λr(x) + q(x))u(x) = 0,

where λ and u(x) denote the eigenvalues and eigenfunctions,
respectively. Finally, we conclude our work by illustrating the
numerical methods and simulations, where we develop and
implement numerical techniques to approximate solutions and
analyze their behavior through simulations.

II. PRELIMINARIES

In this section, we examine a newly modified conformable
derivative Dα of order α, where 0 < α ≤ 1. Notably, D0

corresponds to the identity operator, while D1 reduces to the
classical differential operator. It is worth noting that the contents
of this section are adapted from [30].

Definition 2. Let 0 < α ≤ 1, the operator Dα is said to
be a modified conformable differential operator if and only if
D0 is the identity operator and D1 is the classical differential
operator. More formally, for a differentiable function f(x), the
modified conformable operator satisfies:

D0f(x) = f(x), and D1f(x) =
d

dx
f(x) = f ′(x), x ∈ R.

(1)

Definition 3. Let 0 < α ≤ 1, and consider two continuous
functions k0, k1 : [0, 1] × R → [0,∞) satisfying the following
conditions for all x ∈ R:

lim
α→0+

k1(α, x) = 1, lim
α→0+

k0(α, x) = 0,

lim
α→1−

k1(α, x) = 0, lim
α→1−

k0(α, x) = 1,

k1(α, x) ̸= 0, α ∈ [0, 1), k0(α, x) ̸= 0, α ∈ (0, 1].

(2)

Given these conditions, the differential operator Dα is defined
as:

Dαf(x) = k1(α, x)f(x) + k0(α, x)f
′(x), (3)

where f(x) is a differentiable function and f ′(x) = d
dxf(x).

This operator is considered modified conformable under these
assumptions.

The previous definition provides a generalized form of the
given operator, allowing it to take on various forms. We refer
to these variations as classes of the modified conformable
derivative.

Example 1. The following are some classes of the modified
conformable differential operator:

1) If we take k1(α, x) = (1 − α)xα and k0(α, x) = αx1−α

for any x ∈ (0,∞), the operator is expressed as follows:

Dαf(x) = (1− α)xαf(x) + αx1−αf ′(x),

which is modified conformable. This is because one can
easily prove that the functions k1(α, x) and k0(α, x)
satisfy (2), and the obtained operator verifies (1).

2) If we take k1(α, x) = cos
(
απ
2

)
xα and k0(α, x) =

sin
(
απ
2

)
x1−α for any x ∈ (0,∞), then a similar class

of the mentioned operator takes the following form:

Dαf(x) = cos
(απ

2

)
xαf(x) + sin

(απ
2

)
x1−αf ′(x).

Note that, unfortunately, DαDβ ̸= DβDα in general.

Definition 4. Let 0 < α ≤ 1, and consider the functions k0
and k1 defined on [0, 1] × R with values in [0,∞). Assume
these functions are continuous and satisfy equation (2). Given
a function f(x, s) defined on R2 such that its derivative with
respect to x, d

dxf(x, s), exists for each fixed s ∈ R, the partial
modified conformable differential operator Dα

x is defined as

Dα
xf(x, s) = k1(α, x)f(x, s) + k0(α, x)

∂

∂x
f(x, s). (4)

This operator represents a generalized form of differentiation
incorporating the functions k0 and k1, which depend on α and
x.

Definition 5. Let 0 < α ≤ 1, s, x ∈ R with s ≤ x, and let the
function m : [s, x] → R be continuous. Let k0, k1 : [0, 1]×R →
[0,∞) be continuous and satisfy (2) with m/k0 and k1/k0
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Riemann integrable on [s, x]. Then the modified conformable
exponential function with respect to Dα is defined as

em(x, s) = e
∫ x
s

m(λ)−k1(α,λ)

k0(α,λ)
dλ
, e0(x, s) = e

∫ s
x

k1(α,λ)

k0(α,λ)
dλ
. (5)

Now, based on (3) and (5), we conclude the following
properties:

Lemma 1. Let the modified conformable differential operator
Dα be given as in (3), where 0 < α ≤ 1. Let the function
m : [s, x] → R be continuous, and the functions k0, k1 : [0, 1]×
R → [0,∞) be continuous and satisfy (2) with m

k0
and k1

k0

Riemann integrable on [s, x]. Assume the functions f and g
are differentiable as needed. Then:

1) Dα[af + bg] = aDα[f ] + bDα[g], for all a, b ∈ R.
2) Dαc = ck1(α, x), for all constants c ∈ R, x ∈ R.
3) Dα[fg] = fDα[g] + gDα[f ]− fgk1(α, x), x ∈ R.
4) Dα

[
f
g

]
= gDα[f ]−fDα[g]

g2 + f
g k1(α, x), x ∈ R and g ̸=

0.
5) For α ∈ (0, 1] and fixed s ∈ R, the exponential function

satisfies
Dα

x [em(x, s)] = m(x)em(x, s). (6)

6) For α ∈ (0, 1] and for the exponential function e0 given
in (5), we have

Dα

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
= f(x). (7)

Proof. See [30].

Definition 6. Let 0 < α ≤ 1 and x0 ∈ R. In light of (5) and
Lemma 2.6 (v) and (vi), define the antiderivative via∫

Dαf(x)dαx = f(x) + ce0(x, x0), c ∈ R.

In the same way, define the integral of f over the closed interval
[a, b] as follows:∫ b

a

f(s)e0(x, s)dαs =

∫ b

a

f(s)e0(x, s)

k0(α, s)
ds, dαs =

ds

k0(α, s)
.

(8)
Therefore, we can write:

e0(x, s) = e
∫ s
x

k1(α,λ)

k0(α,λ)
dλ

= e
∫ s
x
k1(α,λ)dαλ.

The modified conformable integral has the following basic
results.

Lemma 2. Let the conformable differential operator Dα be
given as in (3) and the integral be given as (8) with 0 < α ≤ 1.
Let the functions k0, k1 : [0, 1] × R → [0,∞) be continuous
and satisfy (2), and let f and g be differentiable as needed.
Then:

1) The derivative of the definite integral of f is given by

Dα

[∫ x

a

f(s)e0(x, s)dαs

]
= f(x).

2) The definite integral of the derivative of f is given by∫ x

a

Dα [f(s)e0(x, s)] dαs = f(s)e0(x, s)

∣∣∣∣x
s=a

= f(x)− f(a)e0(x, a).

3) An integration by parts formula is given as follows:∫ b

a

f(x)Dα[g(x)]e0(b, x)dαx = f(x)g(x)e0(b, x)

∣∣∣∣b
x=a

−
∫ b

a

g(x) (Dα[f(x)]− k1(α, x)f(x)) e0(b, x)dαx.

4) A version of the Leibniz rule for the differentiation of an
integral is given by

Dα

[∫ x

a

f(x, s)e0(x, s)dαs

]
= f(x, x)

+

∫ x

a

(Dα
x [f(x, s)]− k1(α, x)f(x, s)) e0(x, s)dαs.

If e0(x, s) is absent, then by (4) we have

Dα

[∫ x

a

f(x, s)dαs

]
=

∫ x

a

Dα
xf(x, s)dαs+ f(x, x).

Proof. See [30].

One of the most important and essential theorems in our
study is the Modified Conformable Constant Coefficients The-
orem, which is presented below.

Theorem 1. [31].Let the functions k0, k1 : [0, 1]×R → [0,∞)
be continuous and satisfy (2), and let Dα be as given in (3).
Let a, b, c ∈ R be constants and α ∈ (0, 1]. Then the constant
coefficients homogeneous modified conformable differential
equation

aDαDαu(x)+bDαu(x)+cu(x) = 0, x ∈ [x0,∞), x0 > 0,
(9)

has the associated characteristic equation

aλ2 + bλ+ c = 0, (10)

and the general solution to (11) is given by one of the following
cases:

• Case 1: If λ1 and λ2 are real distinct roots of (10), then

u(x) = c1eλ1
(x, x0) + c2eλ2

(x, x0),

• Case 2: If λ is a repeated root of (10), then

u(x) = c1eλ(x, x0) + c2eλ(x, x0)

∫ x

x0

1dαs,

• Case 3: If λ = ζ ± iβ is a complex root of (10), then

u(x) = c1eζ(x, x0) cos

(∫ x

x0

βdαs

)
+ c2eζ(x, x0) sin

(∫ x

x0

βdαs

)
,
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where, in all cases, c1 and c2 are constants determined by the
initial conditions.

Proof. We refer the reader to [31].

III. MAIN RESULTS AND NUMERICAL METHODS

This section presents the theoretical results and numerical
methods for the modified conformable operator, focusing on
the fractional self-adjoint equation and the associated Sturm-
Liouville problem.

A. Fractional Self Adjoint Equation

We explore the fractional self-adjoint equation, highlighting
its fundamental properties, solution behavior, and related ana-
lytical results.

1) Theoretical Investigation: This part investigates the frac-
tional self-adjoint equation by deriving the characteristic equa-
tion and analyzing the solutions under different conditions.

Definition 7. The modified conformable homogeneous self-
adjoint equation is given by

Lu(x) = Dα [p(x) (Dαu(x)− κ1(α, x)u(x))]+q(x)u(x) = 0,
(11)

where α ∈ [0, 1], Dα is defined as in (3), and p(x), q(x) are
continuous on [x0,∞) with p(x) ̸= 0 for all x ∈ [x0,∞).

Theorem 2. A function u(x) : [x0,∞) → R is a solution
of (11) if Dαu(x) and Dα [p(x) (Dαu(x)− κ1(α, x)u(x))]
are continuous on [x0,∞) and satisfy Lu(x) = 0 for all
x ∈ [x0,∞).

In the following theorem, we establish the existence and
uniqueness of solutions for the modified conformable non-
homogeneous self-adjoint equation:

Lu(x) = f(x). (12)

Theorem 3. (Existence and Uniqueness)
Assume that k0, k1 satisfy (3) and α ∈ [0, 1], with given
constants u0, u1 ∈ R. If Dα is defined as in (3), and if p, q, f are
continuous on [x0,∞) such that p(x) ̸= 0 for all x ∈ [x0,∞),
then the modified conformable initial value problem for the
non-homogeneous self-adjoint equation:

Lu(x) = f(x), u(x0) = u0, Dαu(x0) = u1 (13)

has a unique solution on [x0,∞).

Proof. First, we rewrite Lu(x) = f(x) as an equivalent vector
equation. Let u(x) be a solution of Lu(x) = f(x) and define

y(x) = p(x) (Dαu(x)− k1(α, x)u(x)) . (14)

This gives

Dαu(x) = k1(α, x)u(x) +
y(x)

p(x)
. (15)

Since u(x) is a solution of Lu(x) = f(x) as defined in (11),
we obtain:

Dαy(x) = −q(x)u(x) + f(x). (16)

Define the vector
z(x) =

[
u(x)
y(x)

]
, (17)

which transforms the equation into the modified conformable
vector form:

Dαz(x) = A(x)z(x) + b(x), (18)

where

A(x) =

[
k1(α, x)

1
p(x)

−q(x) 0

]
, b(x) =

[
0

f(x)

]
. (19)

Using (3), we have

k1(α, x)z(x) + k0(α, x)z
′(x) = A(x)z(x) + b(x) (20)

which leads to

k0(α, x)z
′(x) = −k1(α, x)z(x) +A(x)z(x) + b(x). (21)

Hence, we obtain

z′(x) =

[
0 1

k0(α,x)p(x)
−q(x)
k0(α,x)

−k1(α,x)
k0(α,x)

]
z(x) +

[
0

f(x)
k0(α,x)

]
. (22)

Since all functions involved are continuous, the existence and
uniqueness follow from the classical (α = 1) case.

The obtained solutions have some important properties, one
of which is dependence, as shown below.

Corollary 1. (Dependence of Solutions)
Let u1(x), u2(x) be two solutions of (11). Then

W (u1, u2)(x) = 0 ∀x ∈ [x0,∞)

⇐⇒ u1(x), u2(x) are linearly dependent on [x0,∞) or

W (u1, u2)(x) ̸= 0 ∀x ∈ [x0,∞)

⇐⇒ u1(x), u2(x) are linearly independent on [x0,∞).

Proof. By Abel’s Formula:

W (u1, u2)(x) =
ce0(x, x0)

p(x)
, ∀x ∈ [x0,∞).

If u1(x) and u2(x) are linearly dependent, then clearly:

W (u1, u2)(x) = 0, ∀x ∈ [x0,∞).

Conversely, if

W (u1, u2)(x) = 0, ∀x ∈ [x0,∞),

then we have
u1(x)D

α[u2(x)]− u2(x)D
α[u1(x)]

= u1(x) (k0(α, x)u
′
2(x) + k1(α, x)u2(x))

− u2(x) (k0(α, x)u
′
1(x) + k1(α, x)u1(x)) = 0.
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Simplifying, we obtain:

k0(α, x) (u1(x)u
′
2(x)− u2(x)u

′
1(x)) = 0,

which implies that u1(x) and u2(x) are linearly dependent.

2) Numerical Method: To illustrate the obtained results on
the fractional self-adjoint equation defined in (11), we assume
that k0(α, x), k1(α, x) : [0, 1]×R → [0,∞) are continuous and
satisfy (2), such that k1(α, x) is differentiable on [0,∞).
Let α ∈ [0, 1]. If we take

p(x) = e0(x, 0), q(x) = e0(x, 0) +Dαk1(α, x)e0(x, 0),

for x ∈ [0,∞), then by substituting p and q into (11), we obtain
the following modified conformable initial value problem:

D2αu(x) + u(x) = 0, u(0) = 2, Dαu(0) = 5. (23)

Now, since p and q are continuous with p ̸= 0 on [0,∞),
Theorem 3.3 ensures that the modified conformable initial value
problem (23) has a unique solution. Applying Theorem 2.9
(Modified Conformable Constant Coefficients Theorem) shows
that the associated characteristic equation takes the form:

λ2 + 1 = 0,

which has two complex roots: λ = ±i. Consequently, the
unique solution to the given modified conformable initial value
problem is given by:

u(x) = c1e0(x, 0) cos

(∫ x

0

1dαs

)
+c2e0(x, 0) sin

(∫ x

0

1dαs

)
where c1 and c2 are constants to be determined based on the
initial conditions. Using the initial conditions and the properties
in Lemma 2.6 (iii) and Lemma 2.8 (iv), we find:

u(0) =

(
c1e0(x, 0) cos

(∫ x

0

1dαs

)
+ c2e0(x, 0) sin

(∫ x

0

1dαs

))∣∣∣∣
x=0

= c1e0(0, 0) cos

(∫ 0

0

1dαs

)
+ c2e0(0, 0) sin

(∫ 0

0

1dαs

)
= c1e0(0, 0) cos(0) + c2e0(0, 0) sin(0)

= c1e
∫ 0
0

m(λ)−k1(α,λ)

k0(α,λ)
dλ

= c1 = 2.

Also, we can have

Dαu(0) = Dα

[
c1e0(x, 0) cos

(∫ x

0

1dαs

)
+ c2e0(x, 0) sin

(∫ x

0

1dαs

)]∣∣∣∣
x=0

= c1D
α

[
e0(x, 0) cos

(∫ x

0

1dαs

)] ∣∣∣∣
x=0

+ c2D
α

[
e0(x, 0) sin

(∫ x

0

1dαs

)] ∣∣∣∣
x=0

or

Dαu(0) = c1

[
e0(x, 0)D

α

(
cos

(∫ x

0

1dαs

))
+ cos

(∫ x

0

1dαs

)
Dα (e0(x, 0))

]∣∣∣∣
x=0

− c1

[
e0(x, 0) cos

(∫ x

0

1dαs

)
k1(α, x)

] ∣∣∣∣
x=0

+ c2

[
e0(x, 0)D

α

(
sin

(∫ x

0

1dαs

))
+ sin

(∫ x

0

1dαs

)
Dα (e0(x, 0))

]∣∣∣∣
x=0

− c2

[
e0(x, 0) sin

(∫ x

0

1dαs

)
k1(α, x)

] ∣∣∣∣
x=0

= c1 [k1(α, 0) + 1− k1(α, 0)] + c2 [1 + 0− 0]

= c1 + c2 = 5.

Hence, we have
c2 = 3.

Consequently, we conclude that the solution of the newly
modified conformable self-adjoint equation, subject to its initial
conditions, is given by:

u(x) = 2e1(x, 2) cos

(∫ x

2

1dαs

)
+3e1(x, 2) sin

(∫ x

2

1dαs

)
.

3) Simulation: To clarify the solution of the fractional initial
value problem (23), analyze its behavior, and examine the effect
of the fractional order α, we will use the Mathematica program
to approximate and visualize the solution. First, the obtained
solution u(x) is presented in its general form as follows:

u(x) = 2e1(x, 2) cos

(∫ x

2

1dαs

)
+3e1(x, 2) sin

(∫ x

2

1dαs

)
.

Since

em(x, s) = e
∫ x
s

m(λ)−k1(α,λ)

k0(α,λ)
dλ
, and dαs =

ds

k0(α, s)
.

If we take k1(α, x) = (1 − α)xα and k0(α, x) = αx1−α, we
will obtain the following class of the modified conformable
differential operator:

Dαf(x) = (1− α)xαf(x) + αx1−αf
′
(x).

Consequently,

e1(x, 2) = e
∫ x
2

1−(1−α)λα

αλ(1−α)
dλ
, and dαs =

1

αλ(1−α)
dλ.

Hence, the solution becomes:

u(x) = 2e
∫ x
2

1−(1−α)λα

αλ(1−α)
dλ

cos

(∫ x

2

1

αλ(1−α)
dλ

)
+ 3e

∫ x
2

1−(1−α)λα

αλ(1−α)
dλ

sin

(∫ x

2

1

αλ(1−α)
dλ

)
.
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Using the Mathematica program, we plot the obtained solu-
tion for different values of the fractional order α, resulting in
the following content.

Discussion:
After a careful comparative study between the presented figures,
we conclude the following points:

• The first graph (Fig. 1) represents the solution obtained
using the usual derivative, which demonstrates greater
stability compared to the fractional derivative.

• The fractional order α significantly influences the solu-
tion’s behavior, as shown in Fig. 2, Fig. 3, and Fig. 4.

• As α increases, the solution becomes more stable.
• Conversely, smaller values of α introduce more chaotic

behavior in the solution.
• These findings highlight the role of fractional derivatives

in modeling dynamic systems with varying degrees of
stability.

2 4 6 8 10

500

1000

Fig. 1. The solution u(x) with α = 1

2 4 6 8 10

-2

2

4

Fig. 2. The solution u(x) with α = 1
2

B. Fractional Sturm-Liouville Equation

1) Conceptual Analysis: This section introduces the frac-
tional Sturm-Liouville equation, which generalizes the classical
problem using the modified conformable derivative.

2 4 6 8 10

-3

-2

-1

1

2

3

Fig. 3. The solution u(x) with α = 1
4

2 4 6 8 10
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-1

1

2
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Fig. 4. The solution u(x) with α = 1
50

Definition 8. The modified conformable Sturm-Liouville equa-
tion is given by

Dα [p(x) (Dαu(x)− κ1(α, x)u(x))]+(λr(x)+q(x))u(x) = 0,
(24)

where p(x), q(x), and r(x) are real continuous functions on
[x0,∞), and

p(x) ̸= 0, x ∈ [x0,∞) ,

with r(x) ≥ 0 being non-trivially zero on [x0,∞).
Equation (24) can be expressed in the form

Lu(x) = −λr(x)u(x),

where L is defined as

Lu(x) = Dα [p(x) (Dαu(x)− κ1(α, x)u(x))] + q(x)u(x).
(25)

Definition 9. Let a1, a2, b1, b2 be real constants satisfying

a21 + a22 > 0,

b21 + b22 > 0.

Then, the modified conformable Sturm-Liouville problem is
given by

Lu(x) = −λr(x)u(x),

a1u(a) + a2D
αu(a) = 0,

b1u(b) + b2D
αu(b) = 0,

(26)
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where a1, a2, b1, b2 ∈ R.

Definition 10. (Eigenvalue)
The number λ is called an eigenvalue for the modified con-
formable Sturm-Liouville problem (26) if the problem (26),
with such λ, has a nontrivial solution u(x), which is referred
to as the eigenfunction corresponding to the eigenvalue λ.

Theorem 4. Let λ be an eigenvalue of the modified con-
formable Sturm-Liouville problem (26). Then λ ∈ R, i.e., all
eigenvalues of (26) are real.

Proof. Let λ be an eigenvalue of (26) and φ(x) be the corre-
sponding eigenfunction. Then,

Lφ(x) = −λr(x)φ(x). (27)

Taking the conjugate of both sides and multiplying by
e0(x, b)φ(x), we obtain

Lφ(x)e0(x, b)φ(x) = −λ̄r(x)φ(x)e0(x, b)φ(x). (28)

From (28), we deduce

Lφ(x)e0(x, b)φ(x) = −λ̄r(x)e0(x, b)|φ(x)|2. (29)

By integrating both sides of (29) over the interval [a, b], we get∫ b

a

Lφ(x)e0(x, b)φ(x)dαx =

∫ b

a

−λ̄r(x)e0(x, b)|φ(x)|2dαx.

Similarly, multiplying both sides of (27) by e0(b, x)φ(x) and
integrating gives∫ b

a

Lφ(x)e0(x, b)φ(x)dαx =

∫ b

a

−λr(x)e0(x, b)|φ(x)|2dαx.

Since L is self-adjoint, we have∫ b

a

Lφ(x)e0(x, b)φ(x)dαx =

∫ b

a

Lφ(x)e0(x, b)φ(x)dαx.

Substituting (29) into the above equation, we obtain∫ b

a

−λr(x)|φ(x)|2e0(x, b)dαx

=

∫ b

a

−λ̄r(x)e0(x, b)|φ(x)|2dαx,

which implies
λ = λ̄.

Hence, all eigenvalues are real, which completes the proof.

Theorem 5. (Dependence of Eigenfunctions)
All the eigenvalues of (26) are simple. Equivalently, if λ is
an eigenvalue of (26) and φ1(x), φ2(x) are the corresponding
eigenfunctions of λ, then φ1(x) and φ2(x) are linearly depen-
dent.

Proof. Applying the boundary conditions of (26), we have

a1φ1(a) + a2D
αφ1(a) = 0,

a1φ2(a) + a2D
αφ2(a) = 0.

Next, we calculate the value of the modified conformable
Wronskian of φ1(x) and φ2(x) at x = a:

W (φ1, φ2) (a) = φ1(a)D
αφ2(a)− φ2(a)D

αφ1(a),

= φ1(a)

(
−a1φ2(a)

a2

)
− φ2(a)

(
−a1φ1(a)

a2

)
,

= 0.

By Corollary 3.4, we conclude that φ1(x) and φ2(x) are
linearly dependent. Hence, all eigenvalues of (26) are simple.

Theorem 6. (Orthogonality of Eigenfunctions)
Eigenfunctions corresponding to distinct eigenvalues are or-
thogonal.

Proof. Let λ1 and λ2 be two distinct eigenvalues of (26) with
corresponding eigenfunctions φ1(x) and φ2(x), respectively.
Then, by (26), we have

Lφ1(x) + λ1r(x)φ1(x) = 0, (30)

Lφ2(x) + λ2r(x)φ2(x) = 0. (31)

Multiplying both sides of (30) by e0(x, b)φ2(x) and both sides
of (31) by e0(x, b)φ1(x), we get

Lφ1(x)e0(x, b)φ2(x) + λ1r(x)φ1(x)e0(x, b)φ2(x) = 0, (32)

Lφ2(x)e0(x, b)φ1(x) + λ2r(x)φ2(x)e0(x, b)φ1(x) = 0. (33)

Now, subtracting (32) from (33) and integrating both sides over
[a, b], we obtain∫ b

a

(Lφ2(x)e0(x, b)φ1(x)− Lφ1(x)e0(x, b)φ2(x)) dαx

−
∫ b

a

(λ1 − λ2) r(x)φ1(x)e0(x, b)φ2(x)dαx = 0.

Since L is self-adjoint, we have

−
∫ b

a

(λ1 − λ2) r(x)φ1(x)e0(x, b)φ2(x)dαx = 0.

As λ1 ̸= λ2, this implies∫ b

a

r(x)φ1(x)e0(x, b)φ2(x)dαx = 0.

This establishes the orthogonality of φ1(x) and φ2(x).
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2) Numerical Approaches: To apply the results obtained
for the fractional Sturm-Liouville problem, we introduce two
problems discussed in the subsequent content.

Problem 1. Let κ0(α, x), κ1(α, x) : [0, 1] × R → [0,∞) be
continuous and satisfy (2), where κ1(α, x) is a real constant.
We aim to determine the eigenvalues and the corresponding
eigenfunctions for the following modified conformable Sturm-
Liouville problem:

D2αu(x)−4lDαu(x)+λu(x) = 0, u(0) = u(2l) = 0, (34)

where l is a positive constant. First, we will derive the charac-
teristic equation for the above problem:

m2 − 4lm+ λ = 0,

which has the following roots:

m = 2l ±
√

4l2 − λ.

The Modified Conformable Constant Coefficients Theorem
(Theorem 2.9) discusses the following cases:
Case 1: If 4l2 − λ > 0, then we have real distinct roots given
by:

m = 2l ±
√

4l2 − λ,

and by the constant coefficients modified conformable equation
theorem, the solution is given by:

u(x) = c1e2l+
√
4l2−λ(x, 0) + c2e2l−

√
4l2−λ(x, 0),

where c1 and c2 are constants. Using the boundary conditions,
we obtain:

u(0) =
(
c1e2l+

√
4l2−λ(x, 0) + c2e2l−

√
4l2−λ(x, 0)

) ∣∣∣∣
x=0

= c1e2l+
√
4l2−λ(0, 0) + c2e2l−

√
4l2−λ(0, 0)

= c1 + c2 = 0.

This implies that c2 = −c1, and thus:

u(2l) =
(
c1e2l+

√
4l2−λ(x, 0) + c2e2l−

√
4l2−λ(x, 0)

) ∣∣∣∣
x=2l

=
(
c1e2l+

√
4l2−λ(x, 0)− c1e2l−

√
4l2−λ(x, 0)

) ∣∣∣∣
x=2l

= c1
(
e2l+

√
4l2−λ(2l, 0)− e2l−

√
4l2−λ(2l, 0)

)
= 0.

Since: (
e2l+

√
4l2−λ(2l, 0)− e2l−

√
4l2−λ(2l, 0)

)
̸= 0,

we conclude that c1 = c2 = 0, implying that λ in this case is
not an eigenvalue of the problem.
Case 2: If 4l2−λ = 0, then we have real repeated roots m = 2l,
so by the constant coefficients modified conformable equation
theorem, the solution is given by:

u(x) = c1e2l(x, 0) + c2e2l(x, 0)

∫ x

0

1dαs.

Now, using the boundary conditions, we get:

u(0) =

(
c1e2l(x, 0) + c2e2l(x, 0)

∫ x

0

1dαs

) ∣∣∣∣
x=0

= c1e2l(0, 0) + c2e2l(0, 0)

∫ 0

0

1dαs

= c1 = 0.

Similarly,

u(2l) =

(
c1e2l(x, 0) + c2e2l(x, 0)

∫ x

0

1dαs

) ∣∣∣∣
x=2l

= c2e2l(2l, 0)

∫ 2l

0

1dαs

= 0.

It is obvious that:

e2l(2l, 0)

∫ 2l

0

1dαs ̸= 0.

Therefore, we conclude that c1 = c2 = 0, implying that λ in
this case is not an eigenvalue of the problem.
Case 3: If 4l2 − λ < 0, then we have complex roots
m = 2l ± i

√
λ− 4l2, so by the constant coefficients modified

conformable equation theorem, the solution is given by:

u(x) = c1e2l(x, 0) cos

(∫ x

0

√
λ− 4l2dαs

)
+ c2e2l(x, 0) sin

(∫ x

0

√
λ− 4l2dαs

)
.

Now, using the boundary condition:

u(0) =

(
c1e2l(x, 0) cos

(∫ x

0

√
λ− 4l2dαs

)
+ c2e2l(x, 0) sin

(∫ x

0

√
λ− 4l2dαs

))∣∣∣∣
x=0

=

(
c1e2l(0, 0) cos

(∫ 0

0

√
λ− 4l2dαs

)
+ c2e2l(0, 0) sin

(∫ 0

0

√
λ− 4l2dαs

))
= c1 = 0.

Similarly,

u(2l) =

(
c1e2l(x, 0) cos

(∫ x

0

√
λ− 4l2dαs

)
+ c2e2l(x, 0) sin

(∫ x

0

√
λ− 4l2dαs

))∣∣∣∣
x=2l

= c2e2l(2l, 0) sin

(∫ 2l

0

√
λ− 4l2dαs

)
= 0.

Then, we get

c2 sin

(∫ 2l

0

√
λ− 4l2dαs

)
= 0.
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Assume that c2 ̸= 0, we get:

sin

(∫ 2l

0

√
λ− 4l2dαs

)
= 0.

Therefore, we have∫ 2l

0

√
λ− 4l2dαs = nπ, n ∈ N.

Finally, we conclude that:

λn = 4l2 +

(
nπ∫ 2l

0
1dαs

)2

, n ∈ N.

The eigenfunctions corresponding to the eigenvalues λn are
given by:

un(x) = e2l(x, 0) sin

(
nπ
∫ x

0
1dαs∫ 2l

0
1dαs

)
, n ∈ N.

Simulation:
To better understand the solution of Problem 1, analyze its
behavior, and assess the impact of the fractional order α,
we will employ the Mathematica program to approximate the
obtained eigenvalues and their corresponding eigenfunctions.
To develop and implement the numerical techniques to approxi-
mate solutions and illustrate their behavior through simulations,
we need to consider some classes of the modified conformable
differential operator. For this purpose, we will choose the two
obtained classes in Example 2.3.
Class 1: If we take k1(α, x) = (1 − α)xα and k0(α, x) =
αx1−α, we will obtain the following class of the modified
conformable differential operator:

Dαf(x) = (1− α)xαf(x) + αx1−αf
′
(x). (35)

Consequently,

e2l(x, 0) = e
∫ x
0

2l−(1−α)λα

αλ(1−α)
dλ
, and dαs =

1

αλ(1−α)
dλ. (36)

As a result, the solution is expressed as:

λn = 4l2 +

(
nπ∫ 2l

0
1

αλ(1−α) dλ

)2

, n ∈ N. (37)

un(x) = e
∫ x
0

2l−(1−α)λα

αλ(1−α)
dλ×sin

(
nπ
∫ x

0
1

αλ(1−α) dλ∫ 2l

0
1

αλ(1−α) dλ

)
, n ∈ N.

(38)
For a fixed l = 1, and different values of the fractional

order α and the integer n, we obtain the subsequent results for
the eigenvalues (λn) and their corresponding eigenfunctions
(un(x)). Here, RA(λn) denotes the root approximant and
NV (λn) represents the numerical value with 10 digits, as
shown in Table I.

For a clearer visualization of the eigenfunctions (un(x)), a
graphical representation can be provided by fixing the fractional
order α and varying the integer n, as illustrated in Fig. 5–7.
Class 2: If we take k1(α, x) = cos

(
απ
2

)
xα and k0(α, x) =

sin
(
απ
2

)
x1−α for any x ∈ (0,∞), then a similar class of the

mentioned operator takes the following form:
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Fig. 5. un(x) with α = 1 and n = 1
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Fig. 6. un(x) with α = 1 and n = 50.
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Fig. 7. un(x) with α = 1 and n = 100.

Dαf(x) = cos
(απ

2

)
xαf(x) + sin

(απ
2

)
x1−αf

′
(x). (39)

Consequently, the modified conformable exponential function
becomes:

e2l(x, 0) = e

∫ x
0

2l−cos(απ
2 )λα

sin(απ
2 )λ1−α

dλ

and dαs =
1

sin
(
απ
2

)
λ1−α

dλ.

(40)
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TABLE I. EIGENVALUES (λn) AND THEIR CORRESPONDING EIGENFUNCTIONS (un(x)) FOR DIFFERENT VAL-
UES OF α AND n WITH ROOT APPROXIMANT (RA(λn)) AND NUMERICAL VALUE (NV (λn)) TO 10 DIGITS

α n RA(λn) NV (λn) un(x)
1 1 6.47 6.467401100 e2x sin

(
πx
2

)
1 50 1117223

181
6172.502751 e2x sin (25πx)

1 100 2221021
90

24678.01100 e2x sin (50πx)
1
2

1 4.31 4.308425138 e(8
√
x−x) sin

(
π
√
x√
2

)
1
2

50 1
22

(
8633 +

√
70869165

)
775.0628438 e(8

√
x−x) sin

(
25

√
2π

√
x
)

1
2

100 1
8

(
12345 + 63

√
38497

)
3088.251375 e(8

√
x−x) sin

(
50

√
2π

√
x
)

1
20

1 69497
17374

4.000057554 e

(
800x

1
20 −190x

1
10

)
sin

(
πx

1
20

2
1
20

)
1
20

50 4.14 4.143885414 e

(
800x

1
20 −190x

1
10

)
sin

(
25× 2

19
20 πx

1
20

)
1
20

100 4.58 4.575541657 e

(
800x

1
20 −190x

1
10

)
sin

(
50× 2

19
20 πx

1
20

)

As a result, the eigenvalues λn are expressed as:

λn = 4l2 +

 nπ∫ 2l

0
1

sin(απ
2 )λ1−α

dλ

2

, n ∈ N. (41)

The corresponding eigenfunctions un(x) are given by:

un(x) = e

∫ x
0

2l−cos(απ
2 )λα

sin(απ
2 )λ1−α

dλ

× sin

nπ
∫ x

0
1

sin(απ
2 )λ1−α

dλ∫ 2l

0
1

sin(απ
2 )λ1−α

dλ

 ,

(42)
for n ∈ N.

For a fixed l = 1, varying the fractional order α and the
integer n yields the following results for the eigenvalues (λn)
and their corresponding eigenfunctions (un(x)). In Table II,
RA(λn) denotes the root approximant and NV (λn) represents
the numerical value with 10 digits.
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-600000

-500000

-400000

-300000

-200000

-100000

Fig. 8. un(x) with α = 1
2 and n = 1

To better visualize the eigenfunctions un(x), a graphical
representation can be shown by keeping the fractional order
α fixed while varying the integer n, as demonstrated in Figs.
14–22.
Comparative Analysis:
After an in-depth analysis of the problem using the Mathemat-
ica program, along with a careful comparison of the eigen-
values, their corresponding eigenfunctions, and the obtained

graphs employing various classes of modified conformable
differential operators, we arrive at the following conclusions:

-5 5

-1×106

-500000

500000

1×106

Fig. 9. un(x) with α = 1
2 and n = 50

-5 5

-1×106

-500000

500000

1×106

Fig. 10. un(x) with α = 1
2 and n = 100.

• Both classes used (Class 1: Dαf(x) = (1 −
α)xαf(x) + αx1−α(α, x)f

′
(x) and Class 2: Dαf(x) =

cos
(
απ
2

)
xαf(x) + sin

(
απ
2

)
x1−αf

′
(x)) of the modified

conformable differential operator yield identical results
for the eigenvalues and eigenfunctions as the standard
derivative when α = 1, as shown in Tables I and II and
Figs. 14–16 and Figs. 17–19.

• For fractional values of α, varying the classes of the
given operator produces different results for λn and un(x),
which can be observed in Tables I and II and Figs. 14–22.
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TABLE II. EIGENVALUES AND CORRESPONDING EIGENFUNCTIONS FOR VARYING α AND n

α n RA(λn) NV (λn) un(x)
1 1 6.47 6.467401100 e2x sin

(
πx
2

)
1 50 1117223

181
6172.502751 e2x sin (25πx)

1 100 2221021
90

24678.01100 e2x sin (50πx)
1
2

1 4.62 4.616850275 e(4
√
2
√

x−x) sin
(

π
√
x√
2

)
1
2

50 1
22

(
16995 +

√
289672405

)
1546.125688 e(4

√
2
√
x−x) sin

(
25

√
2π

√
x
)

1
2

100 1117223
181

6172.502751 e(4
√

2
√
x−x) sin

(
50

√
2π

√
x
)

1
20

1 28225
7056

4.000141717 e

(
−10x

1
20

(
−4+x

1
20 cos( π

40 )
)

csc( π
40 )

)
sin

(
πx

1
20

2
1
20

)
1
20

50 4.35 4.354293643 e

(
−10x

1
20

(
−4+x

1
20 cos( π

40 )
)

csc( π
40 )

)
sin

(
25× 2

19
20 πx

1
20

)
1
20

100 1
16

(
1141 +

√
1417241

)
145.7174572 e

(
−10x

1
20

(
−4+x

1
20 cos( π

40 )
)

csc( π
40 )

)
sin

(
50× 2

19
20 πx

1
20

)
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Fig. 11. un(x) with α = 1
20 and n = 1
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Fig. 12. un(x) with α = 1
20 and n = 50
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Fig. 13. un(x) with α = 1
20 and n = 100

• For the classical case α = 1 and the fractional case, the
coefficient n affects the values of the eigenvalues λn, as
shown in the tabulated values in Tables I and II. Larger
values of n yield larger eigenvalues λn, as seen in Fig. 15,
Fig. 16, Fig. 18, and Fig. 19.

• The fractional order α affects the values of the eigenvalues
λn, as highlighted by comparing the numerical values in
Tables I and II, and the behavior of the eigenfunctions
un(x) illustrated in Figs. 14–22.

• For the classical case α = 1, as n increases, the eigen-
functions un(x) become more oscillatory, as evident from
Fig. 15 and Fig. 16.

• For the fractional case, as α decreases, the eigenfunctions
un(x) exhibit slower oscillations and become more stable,
as demonstrated in Figs. 20–22.

Problem 2. Let κ0(α, x), κ1(α, x) : [0, 1] × R → [0,∞)
be continuous and satisfy (2) such that κ1(α, x) is a real
constant. Our objective is to determine the eigenvalues and
the corresponding eigenfunctions for the following modified
conformable Sturm-Liouville problem:

DαDαu(x)− λu(x) = 0, 0 < x < L, u(0) = u(L) = 0.
(43)

First, we will write the characteristic equation for the above
problem:

r2 − λ = 0,

which has the roots:
r = ±

√
λ.

Case 1: If λ > 0, then we have real distinct roots given by r =
±
√
λ, and by the Modified Conformable Constant Coefficients

Theorem, the solution is given by:

u(x) = c1e+
√
λ(x, 0) + c2e−

√
λ(x, 0),
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Fig. 14. un(x) with α = 1 and n = 1
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Fig. 15. un(x) with α = 1 and n = 50
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Fig. 16. un(x) with α = 1 and n = 100.
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Fig. 17. un(x) with α = 1
2 and n = 1.

where c1 and c2 are constants. Using the boundary conditions,
we obtain:

u(0) =
(
c1e+

√
λ(x, 0) + c2e−

√
λ(x, 0)

) ∣∣∣∣
x=0

= c1e+
√
λ(0, 0) + c2e−

√
λ(0, 0)

= c1 + c2 = 0.

Thus, we have c2 = −c1. Now, applying the second boundary
condition:

u(L) =
(
c1e+

√
λ(x, 0) + c2e−

√
λ(x, 0)

) ∣∣∣∣
x=L

=
(
c1e+

√
λ(L, 0)− c1e−

√
λ(L, 0)

)
= c1

(
e+

√
λ(L, 0)− e−

√
λ(L, 0)

)
= 0.

Since it is evident that

e+
√
λ(L, 0)− e−

√
λ(L, 0) ̸= 0,

we conclude that c1 = c2 = 0. Therefore, λ in this case is not
an eigenvalue of the problem.
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Fig. 18. un(x) with α = 1
2 and n = 50.
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Fig. 19. un(x) with α = 1
2 and n = 100.

Case 2: If λ = 0, then we have real repeated roots r = 0. By
the Modified Conformable Constant Coefficients Theorem, the
solution is given by:

u(x) = c1e0(x, 0) + c2e0(x, 0)

∫ x

0

1dαs,

where c1 and c2 are constants. Applying the boundary condi-
tions:

u(0) =

(
c1e0(x, 0) + c2e0(x, 0)

∫ x

0

1dαs

) ∣∣∣∣
x=0

= c1e0(0, 0) + c2e0(0, 0)

∫ 0

0

1dαs

= c1 = 0.
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For the second boundary condition:

u(L) =

(
c1e0(x, 0) + c2e0(x, 0)

∫ x

0

1dαs

) ∣∣∣∣
x=L

= c2e0(L, 0)

∫ L

0

1dαs = 0.

It is evident that

e0(L, 0)

∫ L

0

1dαs ̸= 0.

Therefore, we conclude that c1 = c2 = 0, and hence, λ in this
case is not an eigenvalue of the problem.
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Fig. 20. un(x) with α = 1
20 and n = 1.
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Fig. 21. un(x) with α = 1
20 and n = 50.
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Fig. 22. un(x) with α = 1
20 and n = 100.

Case 3: If λ < 0, then we have complex roots r = ±i
√

|λ|.
According to the Modified Conformable Constant Coefficients
Theorem, the solution is given by:

u(x) = c1e0(x, 0) cos

(∫ x

0

√
|λ|dαs

)
+ c2e0(x, 0) sin

(∫ x

0

√
|λ|dαs

)
,

where c1 and c2 are constants. Applying the boundary condi-
tions:

u(0) =

(
c1e0(x, 0) cos

(∫ x

0

√
|λ|dαs

)
+ c2e0(x, 0) sin

(∫ x

0

√
|λ|dαs

))∣∣∣∣
x=0

=

(
c1e0(0, 0) cos

(∫ 0

0

√
|λ|dαs

)
+ c2e0(0, 0) sin

(∫ 0

0

√
|λ|dαs

))
= c1 = 0.

For the second boundary condition:

u(L) =

(
c1e0(x, 0) cos

(∫ x

0

√
|λ|dαs

)
+ c2e0(x, 0) sin

(∫ x

0

√
|λ|dαs

))∣∣∣∣
x=L

= c2e0(L, 0) sin

(∫ L

0

√
|λ|dαs

)
= 0.

From this, we get:

c2 sin

(∫ L

0

√
|λ|dαs

)
= 0.

Assuming that c2 ̸= 0, we obtain:

sin

(∫ L

0

√
|λ|dαs

)
= 0.

This implies: ∫ L

0

√
|λ|dαs = nπ, n ∈ N.

Therefore, we conclude that the eigenvalues are:

λn =

(
nπ∫ L

0
1dαs

)2

, n ∈ N.

The corresponding eigenfunctions associated with the eigenval-
ues λn are given by:

un(x) = e0(x, 0) sin

(
nπ
∫ x

0
1dαs∫ L

0
1dαs

)
, n ∈ N.
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The analytic solution of Problem 2 shows that the eigenfunc-
tions and eigenvalues can assume different values depending on
the fractional order α.

IV. CONCLUSION AND FUTURE WORK

In this study, we investigated the modified conformable self-
adjoint equation and fractional Sturm-Liouville problems. The
key conclusions are summarized as follows:

• The modified conformable Sturm-Liouville equation is a
second-order linear homogeneous differential equation of
the form:

Dα [p(x) (Dαu(x)− κ1(α, x)u(x))]+(q(x)+λr(x))u(x) = 0.

• The corresponding modified conformable Sturm-Liouville
operator is defined as:

L = Dα [p(x) (Dα − κ1(α, x))] + q(x).

• The operator L is self-adjoint if:∫ b

a

f(Lg)dαx =

∫ b

a

g(Lf)dαx.

• The Sturm-Liouville equation is considered regular if:

p(x) > 0 and q(x) > 0 ∀x ∈ [a, b].

• A periodic modified conformable Sturm-Liouville system
satisfies the boundary conditions:

u(a) = u(b) and Dαu(a) = Dαu(b).

• The system is singular if:

p(x) > 0 on (a, b), r(x) ≥ 0 on [a, b], and p(a) = p(b) = 0.

Future research will focus on a detailed investigation of
the classifications mentioned above, along with the following
directions:

• Exploring the applicability of the Rayleigh quotient for
estimating eigenvalues.

• Analyzing eigenfunction expansions and the Fredholm al-
ternative theorem using the modified conformable operator.

• Extending the developed framework to higher-order frac-
tional differential equations.

The modified conformable operator provides a robust frame-
work for fractional calculus, offering improved computational
efficiency and mathematical consistency. Potential applications
include:

• Physics: Modeling anomalous diffusion and viscoelastic
materials.

• Engineering: Applications in signal processing, control
systems, and materials science.

• Mathematical Biology: Describing memory-dependent
biological processes.

• Spectral Theory: Analyzing eigenvalue problems in quan-
tum mechanics and wave propagation.
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