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Abstract—Mobile robots play a crucial role in Industry 

4.0, particularly in dynamic and unstructured 

environments where moving obstacles present significant 

challenges. This study applies the YOLOv5 object 

detection algorithm to enhance robotic perception and 

obstacle avoidance. The primary objective is to improve 

the accuracy and speed of object detection in real-time 

scenarios, ensuring safer and more efficient navigation 

for robots. The research contribution lies in developing a 

lightweight YOLOv5 model optimised for robotic 

applications, capable of detecting objects with high 

accuracy. The model was trained on a diverse dataset of 

10,700 images, including static and dynamic objects such 

as chairs, fans, fire extinguishers, and humans, captured 

under various conditions and orientations. The dataset 

was divided into training (70%), validation (15%), and 

testing (15%) subsets. The proposed model achieved a 

mean average precision (mAP) of 0.73 at a confidence 

threshold of 0.374, demonstrating superior performance 

compared to the YOLOv4 model in terms of accuracy and 

processing speed. Notably, the model excelled in detecting 

static objects such as chairs, achieving a perfect 

recognition rate of 1.00, while encountering challenges 

with moving objects such as humans due to motion blur 

and rapid changes in body posture. These findings 

highlight the model’s potential for real-time applications 

in industrial and unstructured environments. In 

conclusion, this study demonstrates that the enhanced 

YOLOv5 model significantly improves object detection 

and collision avoidance capabilities in robotic systems. 

Keywords—Convolution Neural Network; YOLOv5 

Detector; Object Detection; Mobile Robot; Collision 

Avoidance; Unstructured Environments; Real-Time 

Performance. 

I. INTRODUCTION 

Robotics technology has made significant advancements 

in recent years, enabling robots to dynamically perceive and 

interact with their environments [1][2]. This progress has led 

to increased efficiency in industrial processes and improved 

safety. Robots have become essential in various industrial 

applications [3], boosting productivity [4], reducing errors, 

enhancing process accuracy, and protecting workers from 

hazards [5][6]. However, one of the primary challenge’s 

robots face is avoiding collisions in complex work 

environments, which can negatively affect both equipment 

safety and productivity [7][8][9]. To address this, object 

detection techniques via computer vision have emerged as a 

crucial solution, allowing robots to recognize and accurately 

locate objects.  Among these techniques, the YOLO (You 

Only Look Once) algorithm has gained prominence due to its 

speed and efficiency in real-time image processing. While 

earlier versions of YOLO, such as YOLOv2 and YOLOv3, 

have improved robot performance, YOLOv5 has emerged as 

the most effective algorithm in industrial settings due to its 

enhanced accuracy and efficiency, particularly in complex 

environments. YOLOv5's faster performance and high image 

processing speeds make it ideal for live, real-time 

applications [10][11][12]. However, despite its advantages, 

YOLOv5 faces certain limitations when applied in real-world 

industrial environments, these include challenges in detecting 

small objects or objects in highly cluttered environments, 

especially under varying lighting conditions [13]. 

Additionally, YOLOv5's accuracy can decrease when used 

with resource-constrained hardware, leading to potential 

delays in processing time. 

The focus of this research is to improve robot collision 

avoidance by applying YOLOv5 to computer vision systems. 

The study aims to explore how YOLOv5 can enhance robots' 

ability to detect objects and avoid collisions in industrial 

environments, while also analyzing potential limitations 

under various conditions. 

Previous studies have demonstrated the effectiveness of 

YOLO in different robotic applications. In [14] YOLO for 

object detection was used in four-wheeled robots in Gazebo, 

which were connected to LIDAR and Kinect cameras. These 

robots cooperated to avoid revisiting paths and used YOLO 

to detect surrounding objects. Similarly, in [15] YOLO with 

the Kinect sensor was employed to identify obstacles for 

mobile robots, showing reliable obstacle detection. In [16] 

developed a system for detecting olive fruits in real time 

using YOLOv5, which showed high accuracy and speed for 
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agricultural robots. Additionally, in [17] proposed an 

optimized YOLOv5 model to address the challenges of long 

computational times and low detection rates in resource-

constrained robots. The optimization improved speed and 

accuracy without compromising performance.  In [18] 

proposed an improved YOLOv5 for industrial grasping 

robots, achieving remarkable performance improvements in 

accuracy, recall, mAP, and F1 score while also reducing 

model size. In [19] introduced YOLOv5_Tel, a modified 

version of YOLOv5 for teleoperated robots, which improved 

object localization accuracy and efficiency. The model 

utilized advanced techniques like BiFPN, CA modules, and 

SIOU loss functions, leading to better performance, including 

faster convergence and reduced model size.   In [20] The 

YOLOv5 series models were applied to a warehouse 

environment, and the models were trained and optimized on 

a warehouse object dataset. This achieved accurate 

warehouse object detection. The mAP@50 of the YOLOv5 

series models reached over 99%. Among them, the 

mAP@50-90 of the YOLOv5l and YOLOv5x models 

reached approximately 92%. Experimental results show that 

YOLOv5m achieved satisfactory warehouse object detection 

and has certain practical value in the field of warehouse 

object detection. 

This research aims to optimize robotic movement by 

enabling advanced obstacle avoidance capabilities, ensuring 

more efficient and seamless navigation in dynamic 

environments. 

II. METHODOLOGY OF YOLOV5 

The detection of objects involves the generation of 

features from input images. Subsequently, boxes are drawn 

around objects and their categories are predicted by entering 

these features through a prediction system. YOLO v5 is 

designed based on the procedures. As a computer vision 

model for object detection that is built upon the YOLO series 

[21], YOLO v5 includes several architectural improvements 

for simultaneously enhancing speed and accuracy [22][23]. 

A. Architecture 

Input images used in YOLO v5 exhibit varying sizes, with 

typical resolutions of 640×640 pixels or 416×416 pixels. 

Before they are fed into the network, input images are resized 

and normalised [24][25]. 

The backbone of YOLO v5 is designed for efficiently 

extracting features [26]. It is composed of two parts. The 

focus layer, which divides an input image into several parts 

and then gathers them back together, facilitates the capture of 

fine details by focusing on various areas of the image. The 

other part, CSPDarknet53, includes partial connections 

across stages. It divides and then merges feature maps, 

improving gradient flow and reducing computational cost 

[27][28]. The architecture of YOLO v5 has multiple stages; 

each stage comprises several convolutional layers and 

residual connections [29]. 

The neck refers to a series of layers that is responsible for 

pooling the backbone layers. The spatial pyramid pooling 

(SPP) layer helps in improving the object detection ability of 

the model at different scales [30]. Pooling operations are 

applied to multiple scales and then the aggregated features are 

concatenated to capture the context at different levels. The 

purpose of the path aggregation network (PANet) is to 

enhance information flow [31]. Augmentation of the path 

from the bottom up is performed to enhance the hierarchy of 

features with accurate localisation signals in the lower layers, 

shortening the information path between the lower layers and 

the higher features. Adaptive feature pooling is also 

implemented, linking the feature network and all the feature 

levels, such that useful information spreads directly at each 

feature level [32]. 

Lastly, the head of YOLO v5 is tasked to predict 

boundary boxes, class probabilities and object scores. Fine-

tuned anchor boxes are used for the dataset, optimising the 

model to make accurate predictions [33]. The model’s 

architecture is illustrated in Fig. 1. 

 
Fig. 1. Architecture diagram of YOLOv5 object detection model 

1) CNNs 

CNN refers to a special type of feedforward neural 

network inspired by the biological processes occurring in the 

brain of living organisms, particularly the optic lobe [34]. It 

is used as a solution to many computer vision problems in 

artificial intelligence, including image and video processing. 

CNN comprises a group of connected neurons [35]. These 

neurons are organised within a group of layers, as shown in 

Fig. 2 [36].  

 
Fig. 2. Convolutional Neural Network (CNN) architecture for digit 

recognition 

The input layer is responsible for receiving input 

(typically images) and then prepares it for processing. The 

convolutional layer is composed of filters that pass over an 

image to extract a set of features from the image. The filter 

must pass across the entire image (i.e. part after part) because 

different features will be extracted from each part of the 

image by different filters. The output of the convolutional 

layer is a feature map [37]. The features of such map are 

obtained by multiplying the filter by the image. Another 

important building block of CNNs is the pooling layer, which 

is a 2D filter. This layer performs an important function in 
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CNNs, because it decreases the spatial size of feature maps 

[38]. The pooling layer has several types, including 

maximum, minimum and average pooling. One of the 

popular techniques used in CNNs is maximum pooling, 

which typically uses a 2×2 filter with a stride of two. Hence, 

an output for a maximum pooling layer provides important 

features for a previous feature map [39][40]. The layer that is 

normally placed at the end of the network is the fully 

connected layer, which consists of neurons and exhibits an 

activation function for making a classification decision [41]. 

Lastly, the last layer in the network is the output layer, which 

is responsible for providing the consequence. 

2) Anchor boxes 

Anchor Boxes are a set of predefined bounding boxes 

with specific height and weight. These boxes are used in deep 

learning to define potential object regions within an image 

[42][43]. They rely on a set of pre-defined boxes to predict 

the locations and dimensions of objects within the image. The 

image is divided into a grid with cells of varying resolutions 

to accommodate different object sizes, and several initial 

boxes are predicted for each cell to match the shape and size 

of the object that may appear in that cell [44][45]. In 

YOLOv5, three Anchor Boxes are used for each grid cell, 

meaning that for each cell, three pre-defined boxes are 

predicted to match the shape and size of the object that might 

appear in that cell. The image is divided into a grid with 

varying resolutions to match different object sizes. Anchor 

Boxes are assigned according to the changing grid sizes: 

small grid cells (52×52) are dedicated to small objects, 

medium grid cells (26x26) are for medium objects, and large 

grid cells (13×13) are used for large objects. Each grid cell 

contains 3 different Anchor Boxes. After training, each 

Anchor Box has a probability value representing the presence 

of an object in that cell. These cells contribute to accurately 

predicting the locations and sizes of objects [46][47][48]. 

Each Anchor Box consists of 85 channels which include 

the following information: 

• x and y: The coordinates of the object's center relative to 

the bounding box. 

• w and h: The width and height of the object. 

• c: The probability of the object being inside the Anchor 

Box, indicating the likelihood that this box contains an 

object. 

During training, the neural network learns to reduce the 

gap between the actual dimensions of objects and the 

predicted dimensions from the Anchor Boxes. After training, 

the model is capable of more accurately assigning Anchor 

Boxes for detecting different types and shapes of objects in 

images [49][50][51]. 

3) Evaluation metrics 

Evaluation metrics are used to calculate the accuracy and 

efficiency of the object detection models [52], for the simple 

reason that they define how such a model can accurately 

pinpoint objects within an image [53]. Moreover, those 

evaluations offer information on how the corresponding 

model regulates furthermore false positive and false negative 

results [54][55]. Some of the most significant evaluation 

criteria are existing. Intersection over union shown in Fig. 3.  

 
Fig. 3. Illustration of Intersection over Union (IOU) in object detection 

From the above, we see that IoU calculates the degree of 

match that is between the predicted bounding box and the 

actual bounding box. It has the onus of measuring the extent 

of accuracy in relation to object localisation [56][57]. 

Underneath the precision–recalled curve is metreage by AP, 

which provides a single summary of the accuracy and recall 

of any model. AP is further defined by mean AP (mAP), 

which is mean of AP across all the classes as it provides an 

overall scenario of how a model performs across all classes. 

Precision measures how many out of all predicted positive 

instances are actually true and thus assesses the potential of a 

model to classify negative instances as being negative. The 

true positive fraction is the complement of fall-out which 

shows the recall rate, which is the measure of the ability of a 

model to find all instances of a certain class [58][59]. Finally, 

the F1 score is obtained by averaging precision and recall into 

a harmonic mean that also takes into account both false 

positives and false negatives [60]. Combined, these metrics 

allow improving the overall understanding of object detection 

while enhancing the performance of the corresponding 

models 

B. Data preparation  and training the YOLOv5 model  

The study was conducted using a safety laboratory setup 

as the defined manufacturing environment, with static and 

dynamic obstacles placed for the robot. These objects 

included a fire extinguisher, reflection of warning signs, a 

fan, a chair, and a human. The dataset for object detection in 

this study consists of images for various objects: 2000 images 

of chairs, 1900 images of fans, fire extinguishers, and cones, 

and 1500 images each of warning signs and humans. Depth 

images were captured using an HD camera mounted on a 

mobile robot, equipped with two DC motors (205RPM), 

SLAM Lidar, a professional robot expansion board, 

Raspberry Pi 4B, and a 7-inch screen. Images were taken at 

different locations and orientations within the manufacturing 

workspace (Fig. 4a). 

To prepare the dataset, a labeling technique was 

employed to mark the images for training (Fig. 4b). The 

dataset consists of RGB images formatted as a 3D matrix, 

where each value corresponds to the pixel intensity. The 

images were pre-processed and normalized to ensure efficient 

model training. This normalization process adjusts pixel 

values to a range between 0 and 1 by dividing the original 

values by 255, which helps stabilize the model and reduce 

noise. The images were resized to a standard size of 640×640 

to maintain uniformity. 
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The dataset was split into three subsets: training (70%), 

validation (15%), and testing (15%). The distribution of 

images in the subsets is shown in Table I. 

TABLE I.  THE PERCENTAGE OF TRAINING, VALIDATION, AND TESTING 

IMAGES 

Object 
Total 
image 

Training 
70% 

Validation 
15% 

Testing 
15% 

Chair 2000 1400 300 300 

fan 1900 1330 285 285 

fire 

extinguisher 
1900 1330 285 285 

cone 1900 1330 285 285 

warning 1500 1050 225 225 

human 1500 1050 225 225 

 

Step 1: Loading and Splitting the Dataset 

The first step is to load and divide the dataset into training, 

validation, and testing categories. The training set is used for 

model training, the validation set for hyperparameter tuning, 

and the test set to assess the model's performance on unseen 

data. 

Step 2: Validating the Input Data 

Before training, the dataset is validated to ensure the 

quality of images, bounding boxes, and labels. This step 

checks for invalid image formats, corrupted files, and verifies 

that bounding box values are positive and within the image 

boundaries. 

Step 3: Determining Anchor Boxes 

YOLOv5 uses anchor boxes—predefined bounding boxes 

with specific dimensions—to predict potential object 

locations within an image. The number and size of anchor 

boxes are calculated during training using the K-means 

clustering algorithm, though customization is possible. These 

anchor boxes correspond to different object sizes, and they 

play a crucial role in detecting the presence and positioning 

of objects in images. 

Step 4: Applying Augmentations to the Training Data 

 To enhance model performance, augmentations are 

applied to the training data only. These augmentations 

include random adjustments in color, random horizontal 

flipping, and random scaling (up to 10%). These 

transformations help increase the model's ability to generalize 

across different object variations. The validation and test sets 

remain unchanged. Additionally, various training options, as 

outlined in Table II, are used to define the training process 

and optimize model performance. 

TABLE II.  TRAINING OPTIONS 

Parameter Value 

Algorithm Adam 

GradientDecayFactor 0.9 

SquaredGradientDecayFactor 0.999 

InitialLearnRate 0.001 

MiniBatchSize 4 

MaxEpochs 70 

Shuffle “every epoch” 

VerboseFrequency 20 

ValidationFrequency 1000 

CheckpointPath “checkpoint.path” 

Step 5: Normalizing the Input Images 

To further prepare the dataset, all input images undergo 

normalization. This process scales pixel values to a range of 

0 to 1, ensuring that inputs are within an appropriate range for 

model training. For an image of size W×H×3, the 

normalization formula is: 

𝑋𝑛𝑜𝑟𝑚 =
𝑥

255
 (1) 

where X is the original pixel value matrix and X_norm is the 

normalized matrix. This normalization helps improve 

training by reducing potential noise and ensuring stable 

learning. 

 

 
Fig. 4. Data Preparation, a) Data Collection, b) Data Labelling 
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Step 6: Training the Model 

The model training in YOLOv5 utilizes full, un-mined, or 

cropped images to improve performance through multi-scale 

training. This technique allows the model to identify objects 

of various sizes by scaling images during the process. Several 

augmentation methods, such as size changes, angle 

adjustments, horizontal flipping, and color modifications, are 

employed to reduce overfitting. Additionally, batch 

normalization is used to normalize and enhance the speed of 

the training process. 

YOLOv5 is trained on images sized 416×416×3 (or 

640×640 in some cases), which are divided into a grid with 

three main output paths representing different object sizes: 

1. 52×52×255: Small grid cells for small objects. 

2. 26×26×255: Medium grid cells for medium objects. 

3. 13×13×255: Large grid cells for large objects. 

Each grid cell is responsible for predicting three Anchor 

Boxes, corresponding to different object sizes. Each cell has 

85 channels, including 4 values for the object's x, y (center 

coordinates), w, h (width and height), 1 value for C (the 

object's presence probability), and 80 classification values for 

the 80 detectable objects. The model predicts Anchor Boxes 

based on the presence of an object in the cell. If C = 1, it 

indicates that the box contains an object, and the values for x, 

y, w, h, and classification are provided. If C = 0, the box does 

not contain an object, and its values are ignored during 

training. 

The training process uses backpropagation to minimize 

the loss function, which measures the discrepancy between 

the predicted and actual locations and classifications of 

objects. Anchor Boxes with an Intersection over Union (IoU) 

greater than 0.3 are selected for positive training signals. If 

no Anchor Box meets this IoU threshold, the one with the 

highest IoU is chosen. Positive Anchor Boxes are assigned a 

confidence value of 1, and the relevant values for x, y, w, h, 

and classification are encoded using 1-hot encoding. This 

procedure enables YOLOv5 to learn the relationships 

between object classes and their features (such as texture, 

color, and shape), and to optimize its weights accordingly. By 

the end of training, YOLOv5 efficiently identifies and 

classifies objects in new images. 

All the training and testing tasks described in this study 

were performed using Python 3.12 (64 bit). Firstly, the model 

receives images that are labelled with object classes and 

bounded boxes, as shown in Fig. 5. Secondly, YOLO v5 

learns the relationships between object classes and features 

(e.g. texture, colour and shape) by using these images. 

Thirdly, the model optimises its weights by using 

backpropagation to minimise the loss function. This 

procedure measures the difference between the locations and 

classes of predicted and actual objects. Fourthly, features that 

are relevant to object recognition are extracted from the 

images. Finally, the extracted features are mapped onto the 

labelled features in the dataset, allowing objects to be 

identified quickly and accurately in the new images. 

 
Fig. 5. Object detection results using YOLOv5 algorithm 

III. THE POTENTIAL DRAWBACKS OR CHALLENGES OF 

YOLOV5 

Although YOLOv5 has demonstrated good performance 

in the tested safety lab environment, its application in 

dynamic environments may present some challenges. The 

most prominent of these challenges include the algorithm's 

ability to adapt to rapidly moving objects and changes in 

lighting. Moving objects can interfere with detection 

processes, leading to decreased accuracy, and the algorithm 

may struggle to identify objects that move quickly or in 

environments with fluctuating lighting. Additionally, 

continuous real-time tracking of objects is essential for 

collision avoidance in dynamic environments, which presents 

a further challenge for YOLOv5. The algorithm may require 

integration with other systems to improve tracking accuracy. 

Moreover, interference between objects or unclear data can 

negatively impact performance, highlighting the need for 

further improvements and integration with other algorithms, 

such as moving object tracking, to enhance collision 

IV. RESULTS AND DISCUSSION 

To evaluate the overall effectiveness of the model, 

monitoring the metrics of the training dynamics of the YOLO 

v5 model and its performance on validation data is essential. 

A series of graphs organised in a grid format is displayed in 

Fig. 6. Each graph depicts various aspects of a model’s 

training and evaluation. 

The loss associated with predicting the bounding box 

coordinates during training is tracked by the train/box loss 

curve. When loss is decreasing, the model is improving in 

placing boxes around objects. Object loss, which measures 

how well the model differentiates between objects and 

background, is represented by the train/obj loss curve. Low 

loss values are preferred. Classification loss, which gauges 

how accurately the model categorises detected objects, is 
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displayed by the train/cls loss graph. Here, decreasing values 

of this metric also indicate improvement. The proportion of 

true positive predictions amongst all positive predictions 

made is evaluated by the metric/precision graph. A high 

precision indicates that the model is accurate in object 

prediction. The model’s effectiveness in identifying all 

relevant cases (true positives) is measured by metrics/recall, 

which is calculated by dividing the number of true positive 

predictions by the total number of actual positives (true 

positives plus false negatives). A high recall indicates that the 

model is proficient in capturing as many relevant instances as 

possible. 

 
Fig. 6. Training and validation metrics for object detection model 

Box loss on validation data is reflected by the 

val/box_loss graph, which helps assess the generalisation of 

the model to new, unseen data. The model’s performance on 

the validation dataset is measured by val/obj_loss, which 

evaluates loss related to model accuracy in predicting the 

presence of objects in images. Low values are preferred. The 

val/cls_loss graph is like train/cls_loss. However, it is applied 

to the validation dataset and indicates model performance in 

correctly classifying objects on validation data. 

Metrics/mAP_0.5 represents mAP at a confidence threshold 

of 0.5. It provides an overall summary of precision across 

different confidence levels. Meanwhile, 

metrics/mAP_0.5:0.95 denotes mAP calculated over 

confidence thresholds ranging from 0.5 to 0.95. It provides a 

detailed view of model performance across different 

detection confidence levels. 

In summary, 

• Low Loss Values: Gradual decreases in all validation loss 

metrics (box, objectness, classification) signify that the 

model is improving in terms of localization, detection, 

and classification on unseen data. 

• High mAP Values: High scores in metrics/mAP_0.5 and 

metrics/mAP_0.5:0.95 suggest strong detection 

capabilities and generalization, with the latter providing a 

more nuanced view of the model's robustness. 

• Discrepancies Between Training and Validation Metrics: 

Significant differences between training and validation 

losses or mAP values may indicate overfitting, requiring 

strategies such as data augmentation, regularization, or 

architecture adjustments. 

The F1-confidence curve, which is a common tool for 

assessing the performance of object detection models, such 

as YOLO v5, is depicted in Fig. 7. On the graph, each 

coloured line represents the F1 score for a specific class (e.g. 

chair, warning cone, fire extinguisher, fan, people and 

warning sign), providing insights into the performance of the 

model across various object categories and confidence levels.  

 
Fig. 7. F1-Confidence curve per class for object detection 

In the F1 score metric, precision and recall are combined 

into a single score, reflecting the accuracy of the model. A 

high F1 score indicates better performance. Confidence 

measures the certainty of a model regarding its predictions. 

with scores ranging from (0 to 1). High values indicate high 

certainty. The overall curve, shown by the blue line, denotes 

the average F1 score across all classes. Specific scores are 

displayed at various confidence thresholds. 

The results indicate that the YOLOv5 model experiences 

a significant decline in person recognition performance, with 

a low F1-score of 0.19 compared to other categories. This 

weakness can be attributed to the fact that a person is a 

dynamic object, as body positions and viewing angles change 

rapidly when in motion, leading to considerable variation in 

image characteristics. Additionally, continuous movement 

results in motion blur in the captured images, making it 

difficult to extract clear and specific features of individuals.  

Moreover, the training data primarily consist of people in 

static positions, which hampers the model's generalisation 

when applied to dynamic scenes. The performance of the 

YOLOv5 model also varied across other categories (fire 

extinguisher, cone, warning, and fan). The recognition 
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process depends on the characteristics of the training data. 

These categories include objects of different sizes and 

colours, increasing the complexity of the recognition process. 

This suggests that the model requires additional training data 

encompassing various shapes and sizes to enhance its 

recognition accuracy.  The model exhibited very high 

performance in recognising the category "chair," as both the 

training and testing data contained the same type of chairs. 

Consequently, the model did not encounter issues related to 

visual variation between samples, resulting in accurate and 

stable recognition. 

A confusion matrix, which summarises the prediction 

results for a classification problem, is depicted in Fig. 8. This 

matrix illustrates how many instances of each class are 

correctly identified (true positives) and where the model 

made errors (false positives and negatives). Values along the 

diagonal (from top left to bottom right) signify the accuracy 

of the model for each class. High values reflect good 

performance. Meanwhile, misclassifications are represented 

by off-diagonal values. 

 
Fig. 8. Confusion matrix for object detection model performance 

A perfect recognition rate of 1.00 is achieved by the chair 

class. That is, all instances of ‘chair’ are classified correctly. 

The fan, fire extinguisher and cone classes also exhibit good 

performance, with several misclassifications, particularly 

those being confused with ‘background’. The person class 

presents a low performance rate of 0.19, indicating that the 

model has incorrectly classified ‘person’ as ‘background’ 

81% of the time. Lastly, the warning sign class demonstrates 

reasonable performance, with some confusion occurring 

primarily with ‘background’. In general, the confusion matrix 

offers a visual summary of the detection performance of the 

model. Areas where the model performs well are highlighted, 

and aspects that may require improvement are identified. The 

analysis of the results can help guide refinements to the 

model’s architecture, adjustments to the training data or 

tuning of the hyperparameters in the future. 

Key strategies for improving model performance in 

classification tasks are shown in the mind map in Fig. 9. It 

emphasizes enhancing training data by increasing samples for 

underperforming classes and applying data augmentation 

techniques. Feature extraction can be refined using additional 

data sources like depth or infrared, while loss functions 

should incorporate class-specific weighting to address errors 

in minority classes. Optimizing model architecture through 

advanced techniques such as attention mechanisms and 

multi-scale feature extraction is also suggested. Regular 

evaluation, including monitoring confusion matrix trends and 

iterative refinement, along with addressing background 

confusion by balancing datasets, are critical steps for 

achieving robust and accurate results. 

The model is learning effectively as indicated by the 

decrease in training loss (box, objects and classification) over 

time. Being higher than validation loss is beneficial for 

training loss, because a significantly higher validation loss 

compared with training loss can indicate overfitting. When 

precision and mAP values are consistently high, the model is 

suggested to be reliably detecting and classifying objects. As 

confidence increases for most classes, the F1 score tends to 

decline. The chair class maintains high F1 scores across a 

wide range of confidence thresholds. This result indicates 

better balance between precision and recall for this category. 

By contrast, the person class exhibits a relatively low F1 

score across most thresholds. This finding suggests that the 

model may have trouble in accurately detecting people. The 

F1 score for the person class gradually decreases as the 

confidence threshold rises, implying that the model may be 

overly strict in its detection criteria for people, resulting in 

more false negatives. Overall, the F1 scores for all the classes 

stabilise at around 0.73 at a confidence threshold of 

approximately 0.374. This result signifies that the threshold 

is a reliable choice when making general predictions. 

This study focuses on enhancing robot mobility by 

incorporating advanced obstacle avoidance mechanisms. 

Since effective obstacle avoidance depends primarily on 

accurately detecting objects in the surrounding environment, 

the performance of YOLOv5 directly influences a robot’s 

ability to navigate safely in industrial and unstructured 

environments. Obstacle avoidance is a critical function in 

robotic systems, particularly for autonomous robots operating 

in dynamic or unpredictable settings. This capability requires 

robots to detect, analyze, and maneuver around obstacles in 

real time, which is essential for applications such as 

autonomous vehicles, drones, industrial robots, and service 

robots. Modern approaches to enhancing obstacle avoidance 

integrate multiple sensors, such as LiDAR, ultrasonic 

sensors, infrared sensors, and cameras, to collect 

environmental data. This data is processed using advanced 

algorithms, including simultaneous localisation and mapping 

(SLAM), path planning, and machine learning-based 

decision-making frameworks. These techniques enhance a 

robot’s situational awareness, enable it to anticipate potential 

collisions, and optimise alternative path planning. 

Accordingly, performance analysis suggests that improving 

YOLOv5's accuracy in detecting objects—especially moving 

objects—can significantly enhance the efficiency of obstacle 

avoidance systems in intelligent robots. 
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Fig. 9. Mind map illustrating the guidance for improving model performance in object detection 

V. CONCLUSION 

This study explores the application of YOLOv5 to 

enhance the efficiency and safety of robots through object 

detection and collision avoidance. The results demonstrated 

high accuracy and speed in recognizing static objects; 

however, the model faced challenges with dynamic objects, 

such as people, due to rapid changes in posture and the effects 

of motion blur.  To improve performance, it is recommended 

to increase the diversity of training data to include various 

poses and movements, as well as enhance image processing 

through techniques like motion blur simulation and lighting 

adjustments. Additionally, integrating YOLOv5 with sensors 

such as LiDAR can further enhance detection accuracy. This 

research represents an important step toward developing 

more efficient systems in dynamic environments, paving the 

way for future improvements in industrial robots, 

autonomous vehicles, and unmanned aerial systems. 

VI. RECOMMENDATIONS 

• Increase diversity in training data: 

Include samples with variations in size, shape, and color 

of static objects collected from different environments 

(indoor, outdoor, natural light, artificial light). 

If the model is designed to detect people, incorporate data 

containing individuals of different sizes and postures, as well 

as various movement patterns, to enhance generalization. 

• Improve image processing during training: 

Applying data augmentation techniques such as motion 

blur to simulate real-world motion effects, with introducing 

lighting and contrast adjustments to improve the model's 

robustness under diverse imaging conditions. 
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