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Abstract—Tracking periodic signals and rejecting periodic 

disturbances are common applications of repetitive control 

(RC). However, traditional RC methods struggle to compensate 

for aperiodic disturbances and adapt to system uncertainties, 

limiting their real-world effectiveness. Existing hybrid 

approaches often require extensive parameter tuning or suffer 

from high computational costs, creating a research gap in 

achieving both adaptability and efficiency. This paper proposes 

an improved control strategy called extreme learning machine 

repetitive proportional derivative control (ELMRPDC), which 

integrates repetitive proportional derivative control (RPDC) 

with an extreme learning machine (ELM). RPDC ensures 

accurate tracking of periodic signals, while ELM estimates and 

compensates for disturbances, enhancing overall performance. 

Unlike conventional neural network-based controllers, ELM 

enables rapid adaptation with minimal computational 

overhead, making it more suitable for real-time applications on 

resource-constrained systems. The proposed method is analyzed 

for stability using the Lyapunov approach, ensuring 

convergence of tracking errors. Extensive simulations are 

conducted on both rotational and linear dynamic systems under 

various disturbance conditions, including periodic, time-

varying, multi-periodic, and aperiodic disturbances, such as 

vibration-induced disruptions in machinery. The study also 

evaluates the impact of hidden layer neuron variations in ELM 

on disturbance rejection. The best performance is observed for 

multi-period sinusoidal disturbances, achieving an RMSE of 

1.8630 degrees at 1500 neurons, reducing error by 67.47% 

compared to conventional RPDC. These results highlight 

ELMRPDC’s advantages in computational efficiency, real-time 

feasibility, and robustness against complex disturbances. The 

approach holds significant promise for precise reference 

tracking and disturbance rejection across diverse industrial 

applications. 

Keywords—Plug-in Repetitive Control; Extreme Learning 

Machine; Rotational Systems; Periodic Signal Tracking, Multi-

Periodic Disturbance Compensation; Aperiodic Disturbance 

Compensation. 

I. INTRODUCTION  

Tracking references and rejecting disturbances in the 

form of repeating signals are common challenges in many 

control engineering applications. One well-known control 

approach used to address these issues is repetitive control 

(RC), which was first introduced by Inoue et al. [1]. This 

strategy is based on the internal model principle (IMP) [2] 

and is designed to track periodic signals and/or reject periodic 

disturbances. RC has been effectively applied in diverse 

systems for its precise tracking and disturbance rejection, 

including lower extremity exoskeleton [3], flexible robotic 

joints [4], piezo-actuated nanopositioning stages [5], piezo-

actuated nanoscanners [6], rotational system [7]-[12] 

bearingless induction motor [13], dynamical galvanometer 

[14], magnetically suspended rotor system [15], inverters 

[16]-[20], permanent magnet synchronous motor (PMSM) 

[21]-[23], electric vehicle charger [24], line-of-sight 

stabilization [25], electric spring [26], power converters [27], 

pulsewidth modulation converters [28], minimum and non-

minimum phase stabilized plant [29]. Conversely, RC is 

unable to compensate for non-periodic or aperiodic 

disturbances, as indicated in  [30]-[32]. In addition to being 

unable to handle aperiodic disturbances, the efficacy of RC is 

significantly reduced when disturbance period is uncertain or 

variable, and then the model is subject to nonlinearities and 

uncertainties [33], [34]. In such cases, the performance of RC 

deteriorates, resulting in reduced tracking accuracy and 

system instability. To overcome this challenge, advanced 

methods are needed to improve the robustness of RC in 

handling aperiodic disturbances and disturbances with 

uncertain or time-varying frequencies. 

Furthermore, in the majority of rotational systems, the 

primary issues are nonlinearities such deadzone, backlash, 

and friction [35]. Ignoring the backlash nonlinearity can 

affect system performance, introduce unwanted errors, and 

potentially cause instability or unsatisfactory system 

performance [36]. In addition to backlash, friction can also 

result in system instability in addition to a notable decline in 

tracking performance [37]. Nonlinear friction and backlash 

have the potential to impair the tracking performance of the 

control systems and result in energy loss. 

According to [38]-[40], several adaptive control strategies 

have been developed to reduce the uncertainty of nonlinear 

systems. In [38], presented a novel model-free extended state 

observer (ESO)-based RC technique aimed at enhancing the 
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rejection of periodic and aperiodic disturbances in control 

systems. However, the real-time implementation of the ESO 

may require significant computational resources, especially 

for systems with high dynamics. In order to compensate for 

the systems nonlinearities, a linear robust control is designed 

using the describing function [39], which is ineffective for 

time-varying friction and backlash. 

Neural networks (NN), known for their ability to learn 

and adapt to complex patterns, can effectively estimate and 

compensate for different types of disturbances. In [41]-[47], 

numerous works proposed the integration of control 

strategies with NN. In [41], proposed an adaptive NN control 

method that effectively addresses output dead zones in strict-

feedback nonlinear systems, ensuring bounded signals and 

improved stability despite non-smooth nonlinearities. 

However, the complexity arises from the need to design state 

observers and implement backstepping techniques, which can 

lead to longer training durations. In [42], investigated the 

robust adaptive neuro-fuzzy inference system, which 

demonstrates efficacy and efficiency in controlling heavy-

duty vehicles speed. Nonetheless, there are drawbacks, such 

as higher complexity and the need for more data to train 

efficiently. The ELM was initially introduced by Huang et al. 

[33] in 2006. It consists of a single hidden layer feedforward 

network (SLFN) and is used in both regression and 

classification tasks. ELM has gained widespread popularity 

in various applications due to its simplicity and effectiveness 

in addressing diverse problems. Standalone ELM has been 

successfully applied across multiple fields, including power 

forecasting in photovoltaic systems [48], distributed 

parameter systems [49], software development effort 

estimation [50], network intrusion detection [51], 

multivariant pneumonia classification [52], automated credit 

scoring [53], transformer fault diagnosis [54], grading 

diabetic retinopathy [55], non-uniform-intensity light 

handling [56], electricity consumption series clustering [57], 

thermostatic bimetal analysis [58], and underground mining 

[59]. This broad range of applications highlights ELM's 

adaptability and effectiveness in solving diverse real-world 

problems [60].  

The ELM algorithm is an excellent choice for estimating 

and compensating for uncertainty, offering advanced 

drift/shift compensation techniques that enhance both 

classification accuracy and efficiency. ELM has proven its 

potential for real-time applications in control systems, 

offering fast computation and adaptability. It has been 

successfully applied in various real-time control scenarios, 

such as steer-by-wire vehicle control [61], hypersonic vehicle 

control [62], power transmission line deicing robot [63], DC 

servo motor control [35], sensor drift compensation [64], 

PMSM [65], bicycle robot [66], electronic throttle [67], 

variable polarity plasma arc welding [68], inverted pendulum 

[69], and robot manipulator [70]. The fast nonsingular 

terminal sliding mode control (SMC)-based strategy for 

steer-by-wire vehicles uses ELM to estimate the equivalent 

control in the lower controller, ensuring accurate tracking of 

the desired front wheel steering angle from the upper 

controller [61]. For hypersonic vehicles, adaptive laws and 

learning rates enhance the SMC scheme and ELM-based 

neural network disturbance observer, enabling precise 

estimation of unknown disturbances [62]. ELM is also used 

to compensate for aperiodic disturbances, parameter 

uncertainties, friction, and backlash in brushless DC servo 

motors on periodic signals [24]. ELM emerges as a distinct 

type of NN that offers a simpler architecture and faster 

learning capability, making it well-suited for real-time 

control applications [35]. 

In this study, we aim to integrate ELM with RC to address 

the limitations of RC, particularly in rejecting non-periodic 

disturbances. RC is typically limited to rejecting periodic 

disturbances with fixed, known frequencies. To overcome 

this, we propose an extreme learning machine repetitive 

proportional derivative control (ELMRPDC) system for 

reference tracking and the elimination of various types of 

disturbances, including periodic, time-varying, multi-

periodic, and aperiodic signals. RC is employed for accurate 

reference signal tracking, while ELM is used to estimate and 

compensate for the different types of disturbances. ELM is 

chosen for its simplicity, as it utilizes a single hidden layer 

feedforward network, eliminating the need for iterative 

tuning. Unlike traditional neural networks, ELM offers faster 

computation by randomly assigning input weights and biases, 

making it highly efficient for real-time applications. The 

contributions of this work are listed as follows: 

• A hybrid control strategy called ELMRPDC is proposed, 

combining the strengths of RPDC and ELM to enhance 

simultaneous reference tracking and disturbance rejection 

in rotational systems.  

• The key limitations of RC in handling disturbance 

rejection of time-varying, multi-periods, and aperiodic 

signals are addressed by incorporating ELM.  

• A stability analysis of the closed-loop system using the 

proposed ELMRPDC is conducted with Lyapunov 

approach, ensuring system stability and error 

convergence.  

• The effectiveness of ELMRPDC is demonstrated in 

several simulation studies, highlighting its superior 

performance in tracking periodic references and its 

robustness against various disturbances, compared to 

standalone RPDC. 

The structure of this paper is organized as follows: 

Section 2 outlines the Methodology, which includes plant 

modeling, the design of plug-in RC, the design of ELM, and 

the development of the proposed ELMRPDC control 

strategy, stability analysis, and robustness analysis. Section 3 

provides the simulation results, comparison studies, and the 

discussion, while Section 4 concludes the study. 

II. METHOD 

A. Plant Modelling  

The dynamic behavior of the servomotor system can be 

described by the following differential equation (1) [71]. 

(
𝑑

𝑑𝑡
𝜔𝑙(𝑡)) 𝐽𝑒𝑞 + 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝐴𝑚𝑉𝑚(𝑡) (1) 
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where 𝜔𝑙(𝑡) is load shaft rate, and 𝐽𝑒𝑞  is the equivalent 

moment of inertia, 𝐵𝑒𝑞  is the equivalent viscous damping, 𝐴𝑚 

is the actuator gain parameter, and 𝑉𝑚(𝑡) is the input voltage. 

Taking the Laplace transform of (1) and assuming the motor 

speed 𝜔𝑙(0)  is initially zero, it yields 

𝑠𝜔𝑙(𝑠)𝐽𝑒𝑞 + 𝐵𝑒𝑞𝜔𝑙(𝑠) = 𝐴𝑚𝑉𝑚(𝑠) (2) 

Then, the transfer function of the servo system is given by  

𝜔𝑙(𝑠)

𝑉𝑚(𝑠)
=

𝐴𝑚

𝑠𝐽𝑒𝑞 + 𝐵𝑒𝑞

 (3) 

which can be rewritten to  

𝜔𝑙(𝑠)

𝑉𝑚(𝑠)
=

𝐴𝑚
𝐵𝑒𝑞

⁄

𝑠𝐽𝑒𝑞
𝐵𝑒𝑞

⁄ + 1
 (4) 

Using 𝐴𝑚, 𝐵𝑒𝑞, 𝐽𝑒𝑞  parameters to express the steady-state 

gain 𝐾 and time constant 𝜏, we have 

𝐾 =
𝐴𝑚

𝐵𝑒𝑞
 and 𝜏 =

𝐽𝑒𝑞

𝐵𝑒𝑞
 (5) 

Defining the plant output 𝑋(𝑠) =
1

𝑠
𝜔𝑙(𝑠), and 𝑈(𝑠) =

𝑉𝑚(𝑠), then (4) can be derived to 

𝑋(𝑠)

𝑈(𝑠)
=

1

𝑠

𝐾

𝑠𝜏 + 1
 (6) 

Here, 𝑋(𝑠) is an angular position as an output, 𝑈(𝑠) is an 

open loop voltage as a control input. Then, performing the 

Laplace inverse on (6), we get 

�̈�(𝑡) = −
1

𝜏
�̇�(𝑡) +

𝐾

𝜏
𝑢(𝑡) (7) 

where 𝑥(𝑡) is a position output, �̇�(𝑡) is a velocity output, �̈�(𝑡) 

is an acceleration output, 𝑢(𝑡) is a control input. We consider 

that the system (7) is subject to an input disturbance 𝑑𝑖(𝑡), 

then (7) can be represented by  

�̈�(𝑡) = −
1

𝜏
�̇�(𝑡) +

𝐾

𝜏
[𝑢(𝑡) + 𝑑𝑖(𝑡)] (8) 

Suppose that 𝑎0 = −
1

𝜏
, 𝑏0 =

𝐾

𝜏
, then (8) can be rewritten to  

�̈�(𝑡) = 𝑎0�̇�(𝑡) + 𝑏0[𝑢(𝑡) + 𝑑𝑖(𝑡)] 
(9) 

�̈�(𝑡) = [𝑎0�̇�(𝑡) + 𝑏0𝑢(𝑡)] + 𝑏0𝑑𝑖(𝑡) 
 

Thus, the realization of open-loop model (9) is illustrated in 

Fig. 1. 

 

Fig. 1. Open loop plant model with an input disturbance 

B. Design of Plug-in RC (RPDC) 

Plug-in RC refers to the integration of RC with the 

conventional PD feedback controller, later referred to as 

RPDC, as shown in Fig. 2. This control strategy is designed 

to enhance tracking and disturbance rejection for periodic 

signals and has been applied in programmable AC power 

sources [72], medical X-ray systems [73], three-phase boost 

power factor correction rectifiers [74], grid-connected 

inverters [75], strictly proper plants [76], and two-level grid-

connected inverters [77], and grid-tied converter [78]. The 

RC in RPDC consists of an internal model and a learning 

function. The internal model acts as a generator of periodic 

signals for reference tracking or disturbance rejection, while 

the learning function stabilizes the closed-loop system, 

typically designed as the inverse of the closed-loop plant 

model. The internal model of RC is modeled as:  

𝑋𝑅(𝑠)

𝐸(𝑠)
=

𝛼(𝑠)𝑒−𝑠𝑇𝑅

1 − 𝛼(𝑠)𝑒−𝑠𝑇𝑅
 (10) 

where 𝑇𝑅 is the period of reference signal, and 𝑒−𝑠𝑇𝑅 is a 

continuous-time delay with the length of 𝑇𝑅, 𝛼(𝑠) is a low-

pass filter. The low-pass filter 𝛼(𝑠) is formulated by, 

𝛼(𝑠) =
𝜔𝑐

𝑠 + 𝜔𝑐

{
|𝛼(𝑠)| ≈ 1, 𝜔 ≤ 𝜔𝑐

|𝛼(𝑠)| < 1, 𝜔 > 𝜔𝑐
 (11) 

where 𝜔𝑐 denotes a cut-off frequency. Subtituting (11) to 

(10), and rearranging, we have  

𝑋𝑅(𝑠) −
𝜔𝑐

𝑠 + 𝜔𝑐

𝑋𝑅(𝑠)𝑒−𝑠𝑇𝑅 =
𝜔𝑐

𝑠 + 𝜔𝑐

𝐸(𝑠)𝑒−𝑠𝑇𝑅 (12) 

Multiplying both sides of (12) by 𝑠 + 𝜔𝑐, we obtain  

𝑠𝑋𝑅(𝑠) + 𝜔𝑐𝑋𝑅(𝑠) − 𝜔𝑐𝑋𝑅(𝑠)𝑒−𝑠𝑇𝑅

= 𝜔𝑐𝐸(𝑠)𝑒−𝑠𝑇𝑅  
(13) 

The state-space of the internal model is obtained by 

performing the inverse Laplace transform on (13), resulting 

in 

�̇�𝑅(𝑡) = −𝜔𝑐𝑥𝑅(𝑡) + 𝜔𝑐𝑥𝑅(𝑡 − 𝑇𝑅) 

+𝜔𝑐𝑒(𝑡 − 𝑇𝑅) 
(14) 

𝑇𝑅 in (14) is considered part of the predefined 

assumptions and serves as a fundamental parameter in the 

design of RC. Assuming the control output of RC is not 

saturated, the system analysis focuses on the linear response. 

To assess the accuracy of the system's reference tracking, the 

tracking error is defined as (15). 
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𝑒(𝑡) = 𝑟(𝑡) − 𝑥(𝑡) (15) 

where 𝑟(𝑡) is the reference signal. 

 

Fig. 2. Block diagram of plug-in RC referred as RPDC  

The following assumptions are used in the design of the 

RPDC controllers. 

Assumption 1: The plant parameters 𝐾 and 𝜏 in (8) are 

assumed to be known, whereas the input disturbance 𝑑𝑖(𝑡) is 

considered unknown. 

Assumption 2: The reference period 𝑇𝑅 is assumed to be 

known and serves as the basis for the design of the RC. 

Additionally, the bandwidth of the low-pass filter is set to 

exceed the reference frequency to ensure effective 

attenuation of high-frequency noise while preserving the 

desired signal components. 

C. Design of Standalone ELM  

ELM is a fast and efficient learning algorithm designed 

for single-layer feedforward networks (SLFNs), where the 

hidden layer parameters are randomly assigned and the output 

weights are analytically determined. A standalone ELM has 

been applied across a wide range of applications. Building 

upon this foundation, ELM can also be integrated into control 

systems, where a SLFN is employed as the core structure for 

this approach. For 𝑁 arbitrary distinct samples (𝑥𝑖 , 𝜏𝑖), where 

𝒙𝑖 = [𝑥𝑖1 𝑥𝑖2  ⋯ 𝑥𝑖𝑛]𝑇 ∈ 𝑅𝑛 and 𝝉𝑖 = [𝜏𝑖2 𝜏𝑖2  ⋯ 𝜏𝑖𝑚]𝑇 ∈
𝑅𝑚, a standard SLFN incorporating 𝑁 hidden-layer neurons 

is formulated as follows 

∑ 𝜷𝑖𝐽(𝒙𝒋, 𝛾𝑖 , 𝛼𝑖) = 𝒓𝑗 , 𝑗 = 1, ⋯ , 𝑁

𝑁

𝑖=1

 (16) 

where 𝐽(𝒙𝒋, 𝛾𝑖 , 𝛼𝑖) is the activation function. The input bias 

at 𝑖 −th hidden node is denoted as 𝛼𝑖, and the input weight 

vector is expressed as 𝜸𝑖 = [𝛾𝑖1 𝛾𝑖2  ⋯ 𝛾𝑖𝑛]𝑇. The output 

weight vector connecting the 𝑖 −th hidden node and the 

output node is described as 𝜷𝑖 = [𝛽𝑖1 𝛽𝑖2  ⋯ 𝛽𝑖𝑚]𝑇. 

The conventional SLFN, consisting of 𝑁 hidden nodes as 

illustrated in Fig. 3 has the capability to approximate 𝑁 given 

samples with a minimal error, denoted as 𝜀. This implies that 

∑ ‖𝒓𝑗 − 𝝉𝑗‖𝑁
𝑗=1 < 𝜀 if there exist parameters 𝛾𝑖 , 𝛼𝑖 , 𝜷𝑖 such 

that the following conditions are satisfied 

𝑯(𝒙, 𝜸, 𝜶)𝜷 ≈ 𝑻 (17) 

where the output matrix of the hidden layer is given by (18). 

𝑯(𝒙, 𝜸, 𝜶) 
= [

𝐽(𝑥1, 𝛾1, 𝛼1) ⋯ 𝐽(𝑥1, 𝛾𝑁 , 𝛼𝑁)
⋮ ⋯ ⋮

𝐽(𝑥𝑁 , 𝛾1, 𝛼1) ⋯ 𝐽(𝑥𝑁 , 𝛾𝑁 , 𝛼�̃�)
]

∈ 𝑹𝑵×𝑁 

(18) 

𝒙 = [𝑥1 𝑥2  ⋯ 𝑥𝑁], 𝜸 = [𝛾1 𝛾2  ⋯ 𝛾𝑁]  

𝜶 = [𝛼1 𝛼2  ⋯ 𝛼𝑁]  

𝜷 = [𝛽1
𝑇  𝛽2

𝑇  ⋯ 𝛽𝑁
𝑇]

𝑇
𝜖𝑹𝑁×𝑚, and  

𝑻 = [𝜏1
𝑇  𝜏2

𝑇  ⋯ 𝜏N
𝑇]𝑇𝜖𝑹𝑁×𝑚  

 

Fig. 3. The structure of the SLFN consisting of �̃� hidden-layer nodes [79] 

D. Proposed Method: Design of ELMRPDC 

To proceed with the design of the proposed ELMRPDC, 

the error dynamics is established as the foundation for 

developing the control strategy. The block diagram of the 

ELMRPDC system is shown in Fig. 4. Based on the tracking 

error (10), the tracking error dynamics is derived as follows:  

�̈�(𝑡) = �̈�(𝑡) − �̈�(𝑡) (19) 

Substituting (9) into (19), resulting in: 

�̈�(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡) − 𝑏0𝑑𝑖(𝑡) (20) 

As shown in Fig. 4, 𝑒𝑅(𝑡) is defined as 𝑒𝑅(𝑡) = 𝑒(𝑡) + 𝑥𝑅(𝑡). 

Therefore, �̈�𝑅(𝑡) can be formulated as 

�̈�𝑅(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡) − 𝑏0𝑑𝑖(𝑡)
+ �̈�𝑅(𝑡) 

(21) 

Consider the lump disturbance 𝑑𝐿(𝑡) as 𝑑𝐿(𝑡) = 𝑏0𝑑𝑖(𝑡) −

�̈�𝑅(𝑡), thus (21) becomes 

�̈�𝑅(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡) − 𝑑𝐿(𝑡) (22) 

The sigmoid function is selected as the activation function 

for the neural network to estimate the disturbance 𝑑𝐿(𝑡), as 

defined (23). 
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𝐽(𝑥, 𝛾, 𝛼) =
1

1 + 𝑒−(𝛾∙𝑥+𝛼)
 (23) 

where input weight 𝛾 and bias 𝛼 are initially chosen at 

random. Sigmoidal activation functions are widely utilized in 

ELM due to its smooth differentiability, universal 

approximation capabilities, and ability to capture complex 

nonlinear interactions [80]. Sigmoidal functions are also 

useful for adaptive control in control systems because they 

offer steady learning dynamics and avoid sudden changes in 

network output. Furthermore, it helps guarantee bounded 

activation values, avoiding excessive weight updates that can 

cause the system to become unstable. 

 Let the actual disturbance be expressed as 𝑑𝐿(𝑡) = 𝐻𝛽∗, 

where 𝛽∗ is the ideal network output weight matrix and 𝐻 is 

the hidden layer output matrix. To design an RC with the 

inclusion of PD control, the control surface is introduced as 

follows: 

𝜎𝑅(𝑡) = (𝑠 + 𝐾𝑝)𝑒𝑅(𝑡) = �̇�𝑅(𝑡) + 𝐾𝑝𝑒𝑅(𝑡) (24) 

where 𝐾𝑝 is the proportional gain. In this case, derivative gain 

is set to 1.  

Remark 1: The proportional gain 𝐾𝑝 in (24) is chosen as 

a positive value to ensure that the controller zero is located in 

the left half-plane (LHP), resulting in a stable 𝜎𝑅. This is 

crucial for maintaining system stability, as a zero in the LHP 

ensures that responses in the time domain is bounded given 

the bounded input. 

Then, taking the first derivative of (24), we get 

�̇�𝑅(𝑡) = �̈�𝑅(𝑡) + 𝐾𝑝�̇�𝑅(𝑡) (25) 

Substituting (22) into (25), resulting in 

�̇�𝑅(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡) − 𝑑𝐿(𝑡)
+ 𝐾𝑝�̇�𝑅(𝑡) 

(26) 

Then, (26) can also be expressed as 

�̇�𝑅(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡) − �̂�𝐿(𝑡)

+ [�̂�𝐿(𝑡) − 𝑑𝐿(𝑡)] + 𝐾𝑝�̇�𝑅(𝑡) 
(27) 

Finally, the proposed control law 𝑢(𝑡) is defined as 𝑢(𝑡) =
𝑢1(𝑡) + 𝑢2(𝑡), where 𝑢1(𝑡) and 𝑢2(𝑡) are given by 

𝑢1(𝑡) =
1

𝑏0

[𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡) − �̈�(𝑡) + 𝐾𝑝�̇�𝑅(𝑡)

+ 𝐾𝜎𝜎𝑅(𝑡)] 
(28) 

𝑢2(𝑡) =
1

𝑏0

[−�̂�𝐿(𝑡)] (29) 

where 𝐾𝜎  represents a control surface gain, and �̂�𝐿(𝑡) is the 

estimated disturbance 𝑑𝐿(𝑡). The estimated disturbance 

�̂�𝐿(𝑡) is defined as �̂�𝐿(𝑡) = 𝐻�̂�, where �̂� is the estimate of 

the output weight matrix. The output weight matrix 

estimation �̂� is updated with the adaptive law �̇̂�𝑇 as (30) 

�̂��̇� = −𝜂𝜎𝑅(𝑡)𝐻 (30) 

where 𝜂 is the learning rate.  

 

Fig. 4. Block diagram of ELMRPDC  

Remark 2: The selection of gains and variables in the 

control law 𝑢(𝑡), including the learning rate 𝜂, the number of 

hidden layer neurons, the proportional gain 𝐾𝑝, the control 

surface gain 𝐾𝜎 , generally follows a rule-of-thumb approach 

based on common practical ranges. These parameters are 

typically chosen through empirical tuning or prior studies to 

balance stability, convergence speed, and overall control 

performance. Proper selection ensures effective adaptation 

and robustness of the system while preventing issues such as 

overfitting, instability, or slow response. 

E. Stability Analysis 

 The stability analysis in this study is conducted using 

Lyapunov approach. The Lyapunov candicate function is 

firstly chosen based on the control surface 𝜎𝑅(𝑡) and the 

estimation error 𝛽, which represent the system errors. The 

Lyapunov function is defined as 

𝑉 =
1

2
𝜎𝑅

2(𝑡) +
1

𝜂
𝛽𝑇𝛽 (31) 

The first derivative of (31) is 

�̇� = 𝜎𝑅(𝑡)�̇�𝑅(𝑡) +
1

𝜂
�̇�𝑇𝛽 (32) 

It follows that we need to obtain the dynamics of �̇�𝑅(𝑡) by 

substituting the control law 𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡) into (27). 

Then, we get  

�̇�𝑅(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0[𝑢1(𝑡) + 𝑢2(𝑡)]

− �̂�𝐿(𝑡) + [�̂�𝐿(𝑡) − 𝑑𝐿(𝑡)]

+ 𝐾𝑝�̇�𝑅(𝑡) 

(33) 

�̇�𝑅(𝑡) = �̈�(𝑡) − 𝑎0�̇�(𝑡) − 𝑏0𝑢1(𝑡) − 𝑏0𝑢2(𝑡)

− �̂�𝐿(𝑡) + [�̂�𝐿(𝑡) − 𝑑𝐿(𝑡)]

+ 𝐾𝑝�̇�𝑅(𝑡) 

 

Substituting (28) and (29) into (33), resulting in (34). 
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�̇�𝑅 = �̈�(𝑡) − 𝑎0�̇�(𝑡)

− 𝑏0 [
1

𝑏0

(𝑎0�̇�(𝑡) − 𝑏0𝑢(𝑡)

− �̈�(𝑡) + 𝐾𝑝�̇�𝑅(𝑡) + 𝐾𝜎𝜎𝑅(𝑡))

+
1

𝑏0

(−�̂�𝐿(𝑡))] − �̂�𝐿(𝑡)

+ [�̂�𝐿(𝑡) − 𝑑𝐿(𝑡)] + 𝐾𝑝�̇�𝑅(𝑡) 

(34) 

�̇�𝑅 = �̈�(𝑡) − 𝑎0�̇�(𝑡) + 𝑎0�̇�(𝑡) − �̈�(𝑡) − 𝐾𝑝�̇�𝑅(𝑡)

− 𝐾𝜎𝜎𝑅(𝑡) + �̂�𝐿(𝑡) − �̂�𝐿(𝑡)

+ �̂�𝐿(𝑡) − 𝑑𝐿(𝑡) + 𝐾𝑝�̇�𝑅(𝑡) 

 

Simplifying (34), we have 

�̇�𝑅 = −𝐾𝜎𝜎𝑅(𝑡) + �̂�𝐿(𝑡) − 𝑑𝐿(𝑡) (35) 

Consider that 

𝑑𝐿(𝑡) − �̂�𝐿(𝑡) = 𝐻𝛽∗ − 𝐻�̂� = 𝐻[𝛽∗ − �̂�] = 𝐻𝛽 (36) 

Based on (36), (35) can be expressed as 

�̇�𝑅 = −𝐾𝜎𝜎𝑅(𝑡) − 𝐻𝛽 (37) 

With the adaptive law (30), �̇�𝑇 in (32) can be derived as 

follows: 

�̇�𝑇 = �̇�∗𝑇 − �̂��̇� = 0 − �̂��̇� = 𝜂𝜎𝑅(𝑡)𝐻 
(38) 

Substituting (37) and (38) into (32), then 

�̇� = 𝜎𝑅(𝑡)[−𝐾𝜎𝜎𝑅(𝑡) − 𝐻𝛽] +
1

𝜂
[𝜂𝜎𝑅(𝑡)𝐻]𝛽 

(39) 

 = −𝐾𝜎𝜎𝑅
2(𝑡) − 𝜎𝑅(𝑡)𝐻𝛽 +

1

𝜂
[𝜂𝜎𝑅(𝑡)𝐻]𝛽 

 

 = −𝐾𝜎𝜎𝑅
2(𝑡) − 𝜎𝑅(𝑡)𝐻𝛽 + 𝜎𝑅(𝑡)𝐻𝛽  

 = −𝐾𝜎𝜎𝑅
2(𝑡)  

Remark 3: From (39), it can be seen that the derivative 

of the Lyapunov function �̇�, is negative definite, satisfying 

the stability condition �̇� < 0, provided that 𝐾𝜎  is chosen as a 

positive gain. With 𝐾𝜎  selected as a positive gain, the system 

is guaranteed to be stable, and the convergences of the control 

surface 𝜎𝑅(𝑡) and the estimation error 𝛽(𝑡) are ensured. This 

also implies the guaranteed convergences of the RC error 

𝑒𝑅(𝑡) and the tracking error 𝑒(𝑡).  

F. Robustness Analysis 

 In practical implementations, system parameters such as 

𝐾 and 𝜏 may vary due to modeling inaccuracies, component 

aging, or environmental factors. These variations affect the 

system dynamics by introducing uncertainties in the 

coefficients 𝑎0 and 𝑏0, leading to deviations Δ𝑎0 and Δ𝑏0. 

Consequently, the lumped disturbance 𝑑𝐿(𝑡) differs from the 

nominal case, impacting system model. The perturbed system 

can be expressed as: 

�̈�(𝑡) = (𝑎0 + Δ𝑎0)�̇�(𝑡) + (𝑏0 + Δ𝑏0)[𝑢(𝑡)
+ 𝑑𝑖(𝑡)] 

(40) 

�̈�(𝑡) = 𝑎0�̇�(𝑡) + 𝑏0𝑢(𝑡) + (𝑏0 + Δ𝑏0)𝑑𝑖(𝑡)
+ Δ𝑎0�̇�(𝑡) + Δ𝑏0𝑢(𝑡) 

 

where the lumped disturbance estimate �̂�𝐿(𝑡) is given by: 

�̂�𝐿(𝑡) = 𝑏0𝑑𝑖(𝑡) + Δ𝑏0𝑑𝑖(𝑡) + Δ𝑎0�̇�(𝑡)
+ Δ𝑏0𝑢(𝑡) 

(41) 

To compensate for these uncertainties, the adaptive law in 

(30) adjusts �̂� to estimate the lumped disturbance �̂�𝐿(𝑡) (41) 

instead of the input disturbance 𝑏0𝑑𝑖(𝑡) only as in the 

nominal case. Therefore, this new disturbance estimation and 

compensation will ensure robustness against system model 

variations and input disturbances. This adaptive mechanism 

enhances the system’s ability to maintain tracking accuracy 

despite parameter changes and unmodeled disturbances.  

This additional robustness analysis reinforces the 

effectiveness of the ELMRPDC framework, demonstrating 

its capability to handle real-world uncertainties beyond the 

modeled disturbances, thereby improving its reliability in 

dynamic environments. To ensure a comprehensive 

evaluation of the proposed ELMRPDC method, we first 

analyze its robustness against various disturbances and its 

ability to maintain stability. Building on these insights, the 

next step is to outline the methodology used in this study. 

In this study, we focus on evaluating the performance of 

the proposed ELMRPDC method in terms of tracking 

accuracy, robustness against different types of disturbances, 

and overall system stability. The methodology involves 

integrating ELM and RPDC to form ELMRPDC, followed by 

stability verification using the Lyapunov theorem. The 

control strategy is then applied to a servomotor model, 

subjected to various disturbances, including sinusoidal, time-

varying sinusoidal, multi-period sinusoidal, and aperiodic 

disturbances. The systems performance is assessed using 

RMSE and MAE metrics, followed by further analysis. A 

summary of the research methodology is illustrated in the 

flowchart shown in Fig. 5. 

III. RESULTS AND DISCUSSION 

In this simulation, the continuous-time model of the 

Quanser SRV02 servo [81], as described in (9) is used and 

expressed as follows: 

�̈� = 𝑎0�̇�(𝑡) + 𝑏0𝑢(𝑡) + 𝑏0𝑑𝑖(𝑡), (42) 

where 𝑎0 = −37.3134, and 𝑏0 = 64.9253. The 

reference signal 𝑟(𝑡) used in this simulation is depicted in 

Fig. 6, and modeled as (43). 

𝑟(𝑡) = sin(𝜋𝑡) (43) 
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Fig. 5. Flowchart of research methodology  

 

Fig. 6. Reference signal 𝑟(𝑡) 

In addition to reference tracking, the plant is subjected to 

four types of disturbances: sinusoidal, time-varying, multi-

periodic, and aperiodic. The disturbance models are listed in 

Table I and illustrated in Fig. 7 to Fig. 10. These disturbances 

are introduced to assess the robustness of both ELMRPDC 

and RPDC under challenging conditions. 

 

Fig. 7. Sinusoidal disturbance 𝑑1(𝑡) 

 

Fig. 8. Time-varying sinusoidal disturbance 𝑑2(𝑡) 

 

Fig. 9. Multi-periods sinusoidal disturbance 𝑑3(𝑡) 

 

Fig. 10. Aperiodic disturbance 𝑑4(𝑡) 

TABLE I.  DISTURBANCE MODELS 

Dist. Type Value 

𝑑1(𝑡) Sinusoidal 𝑑1(𝑡) = 0.2sin(𝜋𝑡) 

𝑑2(𝑡) 
Time-varying 

sinusoidal 

𝑑2(𝑡)

= {
0.2 sin(𝜋𝑡) , 0 ≤ 𝑡 ≤ 20

0.2 sin(1.5𝜋𝑡) , 20 ≤ 𝑡 ≤ 40
 

𝑑3(𝑡) 
Multi-periods 

sinusoidal 

𝑑3(𝑡)
= 0.2sin(0.5𝜋𝑡) + 0.2sin (1.5𝜋𝑡) 

𝑑4(𝑡) Aperiodic See Fig. 10 

 

In this simulation, the RC is formulated as follows. 

𝑋𝑅(𝑠)

𝐸(𝑠)
=

𝜔𝑐

𝑠 + 𝜔𝑐
𝑒−𝑠𝑇𝑅

1 −
𝜔𝑐

𝑠 + 𝜔𝑐
𝑒−𝑠𝑇𝑅 ,

 (44) 

where the delay length 𝑇𝑅 = 2 𝑠 and 𝜔𝑐 =  2𝜋𝑓𝑐 with 

frequency cut-off 𝑓𝑐 = 5 𝐻𝑧. Here, the delay length 𝑇𝑅 is 

determined based on the reference model (43). The 

proportional gain 𝐾𝑝 and the control surface gain 𝐾𝜎  are set 

to 2.4 and 1.2, respectively. For the ELM, a learning rate 𝜂 of 

0.5 is selected based on a rule-of-thumb approach, as 
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discussed in the remark, and further validated through trial 

and error to achieve a balance between convergence speed 

and stability. The initial input weight 𝛾 and input bias 𝛼 are 

randomly initialized within the intervals [-1,1] and [0,1], 

respectively. The input weights in ELM are randomly 

selected within [-1,1] to ensure diverse feature mapping, 

while input biases are chosen from [0,1] to maintain stability 

in activation. This randomization supports ELM’s universal 

approximation property, allowing it to efficiently learn 

without iterative tuning. Additionally, it improves 

generalization and computational efficiency by eliminating 

the need for gradient-based optimization [80]. The number of 

neurons in the hidden layer was varied from 100 to 2000, with 

an increment of 100 neurons for each variation. 

MATLAB/Simulink is used to simulate the performance 

of ELMRPDC and RPDC for simultaneous tracking and 

disturbance rejection. For analysis, metrics such as root-

mean-square error (RMSE) and maximum absolute error 

(MAE) are used, as defined below. 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑠
∑(𝑒2(𝑡))

𝑁𝑠

𝑖=1

 (45) 

𝑀𝐴𝐸 =
1

𝑁𝑠
∑|𝑒(𝑡)|

𝑁𝑠

𝑖=1

 (46) 

where 𝑁𝑠 represents the number of samples collected over 

the timeframe of 0–40 seconds. 

A. Tracking Performance with Sinusoidal Disturbance 

𝑑1(𝑡) 

The present study demonstrates that the ELMRPDC 

method significantly improves tracking performance in 

systems subjected to sinusoidal disturbances 𝑑1(𝑡) compared 

to the conventional RPDC approach. For the case of a 

sinusoidal disturbance, ELMRPDC achieves its optimal 

performance with a hidden layer size of 800 neurons, 

resulting in an RMSE of 1.6681 degrees and an MAE of 

10.4101 degrees based on Table II. This represents a 

substantial improvement over RPDC, which yields an RMSE 

of 2.9636 degrees and an MAE of 19.1064 degrees. The 

absolute error |𝑒(𝑡)| comparison, as shown in Fig. 11, further 

confirms that ELMRPDC consistently maintains lower error 

levels throughout the simulation, particularly after the 

transient phase. 

The superior performance of ELMRPDC can be 

attributed to the adaptive capabilities of the ELM, which 

effectively estimates and compensates for sinusoidal 

disturbances. The improvement in tracking accuracy, as 

evidenced by the reduction in RMSE and MAE by 43.7137% 

and 45.5146%, respectively, underscores the importance of 

integrating ELM into repetitive control frameworks. This 

finding suggests that ELMRPDC is particularly well-suited 

for applications requiring precise tracking in the presence of 

periodic disturbances. Additionally, the study highlights the 

critical role of selecting an appropriate hidden layer size, as 

smaller networks (e.g., 100 neurons) may underperform 

compared to RPDC, while larger networks (e.g., 800 

neurons) achieve optimal results. 

TABLE II.  THE TRACKING PERFORMANCE OF ELMRPDC WITH 

SINUSOIDAL DISTURBANCE 

#Hidden-layer Neurons RMSE (deg) MAE (deg) 

100 7.5783 30.1757 

200 3.9726 20.6254 

300 2.6541 15.5178 

400 2.0866 12.6000 

500 1.8286 11.2356 

600 1.7197 10.6050 

700 1.6738 10.4732 

800 1.6681 10.4101 

900 1.6738 10.4388 

1000 1.6853 10.5993 

1100 1.6968 10.6853 

1200 1.7140 10.8114 

1300 1.7312 10.8343 

1400 1.7484 10.9719 

1500 1.7598 11.0751 

1600 1.7770 11.1898 

1700 1.7885 11.3847 

1800 1.8000 11.3216 

1900 1.8114 11.4477 

2000 1.8229 11.4878 

 

 

Fig. 11. Absolute errors |𝑒(𝑡)| for RPDC and ELMRPDC (with 800 hidden-

layer neurons) under sinusoidal disturbance  

B. Tracking Performance with Time-Varying Sinusoidal 

Disturbance 𝑑2(𝑡)  

The study evaluates the performance of ELMRPDC in 

handling a time-varying disturbance 𝑑2(𝑡), involves a sudden 

change in the disturbance frequency from 0.5 Hz to 0.75 Hz 

at 𝑡 = 20 𝑠, posing a challenging disturbance rejection 

scenario. This scenario presents a more challenging control 

problem compared to a fixed-frequency disturbance. Based 

on Table III, the results show that ELMRPDC achieves its 

optimal performance with 900 hidden-layer neurons, yielding 

an RMSE of 1.7369 degrees and an MAE of 10.4388 degrees. 

In contrast, the conventional RPDC method produces 

significantly higher errors, with an RMSE of 3.2044 degrees 

and an MAE of 19.1064 degrees. This shows that ELMRPDC 

can adjust to abrupt modifications in the frequency of 

disturbances while keeping error levels low during the 

simulation. As illustrated in Fig. 12, the absolute error |𝑒(𝑡)| 
comparison provides additional support. 

The superior performance of ELMRPDC in this case can 

be attributed to the adaptive nature of the ELM, which 

dynamically adjusts to changes in disturbance frequency. The 

reduction in RMSE and MAE by 45.7960% and 45.3645%, 
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respectively, compared to RPDC, underscores the 

effectiveness of ELMRPDC in handling time-varying 

disturbances. This improvement is particularly evident after 

the frequency transition at 𝑡 = 20 𝑠, where ELMRPDC 

quickly stabilizes the system, while RPDC experiences 

significant error spikes. These findings suggest that 

ELMRPDC is highly effective for applications where 

disturbances exhibit frequency variations, such as in 

industrial automation or robotics. 

TABLE III.  THE TRACKING PERFORMANCE OF ELMRPDC WITH TIME-

VARYING SINUSOIDAL DISTURBANCE 

#Hidden-layer Neurons RMSE (deg) MAE (deg) 

100 7.4980 30.1757 

200 4.0815 20.6254 

300 2.8146 15.5006 

400 2.2471 12.5942 

500 1.9719 11.2299 

600 1.8401 10.6050 

700 1.7770 10.4732 

800 1.7484 10.4101 

900 1.7369 10.4388 

1000 1.7426 10.5993 

1100 1.7484 10.6853 

1200 1.7598 10.8114 

1300 1.8802 10.2439 

1400 1.8687 10.4445 

1500 1.7885 11.0751 

1600 1.8000 11.1898 

1700 1.8114 11.2815 

1800 1.8171 11.3216 

1900 1.8280 11.4477 

2000 1.8401 11.4878 

 

 

Fig. 12. Absolute errors |𝑒(𝑡)| for RPDC and ELMRPDC (with 900 hidden-

layer neurons) under time-varying sinusoidal disturbance  

C. Tracking Performance with Multi-Periods Sinusoidal 

Disturbance 𝑑3(𝑡) 

 This study investigates the performance of ELMRPDC in 

handling a multi-periodic disturbance 𝑑3(𝑡), which consists 

of two frequency components: 0.25 Hz and 0.75 Hz. This 

scenario presents a highly challenging control problem due to 

the simultaneous presence of multiple disturbance 

frequencies. The results reveal that ELMRPDC achieves its 

optimal performance with 1500 hidden-layer neurons, 

yielding an RMSE of 1.8630 degrees and an MAE of 10.6050 

degrees based on Table IV. In contrast, the conventional 

RPDC method produces significantly higher errors, with an 

RMSE of 5.7267 degrees and an MAE of 20.7287 degrees. 

This demonstrates that ELMRPDC is capable of effectively 

compensating for multi-periodic disturbances, maintaining 

superior tracking accuracy throughout the simulation. 

The superior performance of ELMRPDC in this case can 

be attributed to the ELM's ability to simultaneously estimate 

and compensate for multiple disturbance frequencies. The 

reduction in RMSE and MAE by 67.4674% and 57.9093%, 

respectively, compared to RPDC, highlights the effectiveness 

of ELMRPDC in handling multi-periodic disturbances. This 

improvement is particularly evident in the absolute error plot 

in Fig. 13, where ELMRPDC maintains consistently lower 

error levels compared to RPDC, even in the presence of 

complex disturbance dynamics. These findings suggest that 

ELMRPDC is highly effective for applications where 

disturbances consist of multiple frequency components, such 

as in precision manufacturing or advanced robotics. 

TABLE IV.  THE TRACKING PERFORMANCE OF ELMRPDC WITH MULTI-

PERIODS SINUSOIDAL DISTURBANCE 

#Hidden-layer Neurons RMSE (deg) MAE (deg) 

100 10.9031 30.9439 

200 6.5464 17.2490 

300 4.4713 13.0356 

400 3.4280 10.0433 

500 2.8203 8.9484 

600 2.4707 8.7248 

700 2.2471 8.9484 

800 2.1038 9.1719 

900 2.0178 9.4012 

1000 1.9547 9.7280 

1100 1.9203 9.9343 

1200 1.8917 10.1522 

1300 1.8802 10.2496 

1400 1.8687 10.4445 

1500 1.8630 10.6050 

1600 1.8630 10.7598 

1700 1.8630 10.8917 

1800 1.8630 10.9547 

1900 1.8630 11.1095 

2000 1.8687 11.1668 

 

 

Fig. 13. Absolute errors |𝑒(𝑡)| for RPDC and ELMRPDC (with 1500 

hidden-layer neurons) under multi-periods sinusoidal disturbance  

D. Tracking Performance with Aperiodic Disturbance 

𝑑4(𝑡) 

This study examines the performance of ELMRPDC in 

handling an aperiodic disturbance 𝑑4(𝑡), which lacks a 

repetitive pattern and appears only during the time interval 

𝑡 = 20 − 30 𝑠. This scenario presents a unique challenge for 

control systems, as aperiodic disturbances are inherently 

unpredictable. Based on Table V, the results show that 

ELMRPDC achieves its optimal performance with 700 
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hidden-layer neurons, yielding an RMSE of 1.5133 degrees 

and an MAE of 9.4127 degrees. In contrast, the conventional 

RPDC method produces higher errors, with an RMSE of 

3.0439 degrees and an MAE of 18.4529 degrees. This 

demonstrates that ELMRPDC is capable of effectively 

compensating for aperiodic disturbances, provided the 

hidden-layer size is appropriately configured. 

The superior performance of ELMRPDC in this case can 

be attributed to the ELM's ability to adaptively estimate and 

compensate for non-repetitive disturbances. The reduction in 

RMSE and MAE by 50.2824% and 49.2078%, respectively, 

compared to RPDC, underscores the effectiveness of 

ELMRPDC in handling aperiodic disturbances. This 

improvement is particularly evident during the disturbance 

interval 𝑡 = 20 − 30 𝑠, where ELMRPDC maintains lower 

error levels compared to RPDC, as shown in Fig. 14. These 

findings suggest that ELMRPDC is highly effective for 

applications where disturbances are irregular or 

unpredictable, such as in aerospace systems or advanced 

robotics. 

TABLE V.  THE TRACKING PERFORMANCE OF ELMRPDC WITH 

APERIODIC DISTURBANCE  

#Hidden-layer Neurons RMSE (deg) MAE (deg) 

100 7.2859 29.5280 

200 3.6802 18.2579 

300 2.3732 13.7751 

400 1.8286 10.9949 

500 1.6050 9.8082 

600 1.5248 9.3726 

700 1.5133 9.4127 

800 1.5248 9.4987 

900 1.5477 9.6420 

1000 1.5764 9.9000 

1100 1.5993 10.0605 

1200 1.6280 10.2439 

1300 1.6509 10.3184 

1400 1.6738 10.5019 

1500 1.6968 10.6452 

1600 1.7140 10.7885 

1700 1.7312 10.9089 

1800 1.7484 10.9777 

1900 1.7656 11.1210 

2000 1.7770 11.1840 

 

 

Fig. 14. Absolute errors |𝑒(𝑡)| for RPDC and ELMRPDC (with 700 hidden-

layer neurons) under aperiodic disturbance 

Finally, the comparative performance of RPDC and 

optimal ELMRPDC in terms of RMSE and MAE is presented 

in Table VI, providing a clear evaluation of their tracking 

accuracy and disturbance compensation capabilities.  

TABLE VI.  COMPARISON OF RMSE AND MAE FOR RPDC AND OPTIMAL 

ELMRPDC UNDER VARIOUS DISTURBANCES 

Dist. 

ELMRPDC RPDC 

RMSE (deg) MAE (deg) 
RMSE 

(deg) 

MAE 

(deg) 

𝑑1 
1.6681 (at 

800-neuron) 
10.4101 (at 
800-neuron) 

2.9636 19.1064 

𝑑2 
1.7369 (at 

900-neuron) 

10.4388 (at 

900-neuron) 
3.2044 19.1064 

𝑑3 
1.8630 (at 

1500-neuron) 
10.6050 (at 

1500-neuron) 
5.7267 20.7287 

𝑑4 
1.5133 (at 

700-neuron) 

9.4127 (at 700-

neuron) 
3.0439 18.4529 

 

Table VI demonstrates that ELMRPDC consistently 

outperforms RPDC in both RMSE and MAE across all four 

disturbance types, provided the hidden-layer neuron size is 

appropriately tuned. This highlights the benefit of integrating 

ELM into the RPDC architecture to enhance tracking 

performance under challenging disturbance conditions. 

ELMRPDC demonstrates superior disturbance rejection by 

utilizing ELM's capability to adapt to the dynamic 

disturbances. It demonstrates greater resilience and flexibility 

than standalone RPDC, particularly in managing uncertain or 

varying disturbance. The findings of this study demonstrate 

that integrating ELM into RPDC significantly enhances 

tracking accuracy and disturbance rejection capabilities 

compared to conventional RPDC. This study also provides 

new insights into the impact of the number of hidden-layer 

neurons on ELMRPDC performance across various 

disturbance scenarios, including sinusoidal, time-varying, 

multi-periodic, and aperiodic disturbances. 

The results confirm that increasing the number of neurons 

improves system performance, though the optimal number 

varies depending on the complexity of the disturbance. For 

fixed-frequency disturbances, a moderately sized hidden 

layer (800 neurons) is sufficient, whereas more complex 

disturbances, such as multi-periodic ones, require larger 

networks (up to 1500 neurons). In the case of aperiodic 

disturbances, which lack repetitive patterns, a more moderate 

hidden-layer size (700 neurons) still provides significant 

improvements. While performance improves with an increase 

in hidden layer size, ELMRPDC follows a distinct pattern, 

indicating the existence of an optimal range beyond which 

further addition of neurons yields only marginal 

improvements. 

Extensive simulations were conducted to determine the 

optimal number of hidden layer neurons in ELM, as this 

parameter significantly influences system performance. The 

results revealed that, across all tested scenarios, the optimal 

range of hidden layer neurons remained relatively consistent. 

This finding suggests that a general guideline for selecting the 

number of neurons can be established, reducing the need for 

exhaustive tuning in future implementations. The findings of 

this study have significant practical implications, particularly 

in real-world applications where computational efficiency 

and adaptability are crucial. With advancements in processor 

capabilities, the implementation of ELMRPDC in real-time 

control systems is feasible, as ELM requires relatively low 

computational resources compared to multi-hidden layer 

neural networks and deep learning models.  
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The computational cost associated with increasing the 

number of hidden-layer neurons in ELM is acknowledged as 

a trade-off in achieving optimal performance. However, ELM 

has been shown to be significantly faster compared to 

traditional learning algorithms. As demonstrated in [80], 

ELM runs approximately 300 times faster than the BP 

algorithm and 15 times faster than SVM, even for relatively 

complex tasks. Moreover, while theoretically, ELM can 

approximate any continuous function with sufficient hidden-

layer neurons [82], the selection of the optimal number of 

neurons remains a crucial aspect to balance accuracy and 

efficiency. Arbitrarily increasing hidden neurons may lead to 

underfitting or overfitting, and thus, strategies such as 

incremental constructive methods have been suggested to 

optimize the hidden-layer structure dynamically [83]. In this 

study, the number of hidden neurons was determined through 

trial and error, which is a common practice in ELM-based 

implementations [84]. Although a larger number of neurons 

may increase matrix computational complexity [85], modern 

processors can handle such computations efficiently, and the 

lightweight nature of ELM compared to multi-hidden-layer 

neural networks ensures that real-time feasibility remains 

viable.  

To further highlight the effectiveness of ELMRPDC, it is 

possible to compare it with conventional control strategies, 

such as proportional-derivative repetitive control (PD-RC) in 

[86], which has been widely used for disturbance rejection. 

Despite its advantages, this method faces several challenges 

that limit its real-world applicability. PD-RC relies on precise 

system models to compensate for disturbances effectively. 

However, friction characteristics in real-world systems are 

often unknown and time-varying, making model-based 

controllers highly susceptible to significant modeling errors. 

In contrast, ELMRPDC leverages data-driven learning 

through ELM, which does not require an accurate model, 

making it more adaptable to system uncertainties. 

ELMRPDC mitigates issues related to nonlinear frictional 

effects by learning and compensating for them, reducing limit 

cycles and improving steady-state performance. 

Because of this, the ELMRPDC approach is a good option 

for real-time, high-speed applications that require quick 

adaptability and rejection of disturbances. Future research 

could explore adaptive methods to optimize hidden-layer 

neuron selection dynamically, reducing the computational 

burden while maintaining robust performance. Additionally, 

the approach can be extended to multivariable systems and 

applied in areas like industrial automation, robotics, and 

vibration compensation in machinery, where precise tracking 

and disturbance rejection are crucial. 

IV. CONCLUSION 

This study introduces ELMRPDC, a hybrid control 

strategy that integrates RPDC with ELM to enhance reference 

tracking and disturbance rejection. By leveraging ELM, the 

proposed method effectively overcomes a key limitation of 

RC—its inability to compensate for time-varying periodic, 

multi-periodic, and aperiodic disturbances. The inclusion of 

ELM enables real-time adaptation and compensation, 

significantly improving system robustness against various 

types of disturbances. Simulation results demonstrated the 

superior performance of ELMRPDC compared to standalone 

RPDC, particularly in its ability to track periodic reference 

signals and reject disturbances. Additionally, the study 

highlighted the critical influence of the number of hidden 

layer neurons in ELM, where variations in neuron count 

significantly impacted system performance. This underscores 

the importance of optimizing this parameter to achieve the 

best control outcomes. Despite its advantages, the proposed 

method presents certain challenges. Determining the optimal 

number of hidden layer neurons requires extensive 

simulations, which can be considered a drawback. However, 

with modern processors, the computational burden is not a 

significant issue. ELM, being a lightweight machine learning 

algorithm, is computationally more efficient than multi-

hidden-layer neural networks and deep learning approaches, 

making real-time implementation feasible. Future research 

should focus on extending this approach to multivariable 

systems and conducting experimental validation on real-

world scenarios. One promising application is in machinery 

requiring vibration compensation, where precise disturbance 

rejection and adaptability are crucial for maintaining stability 

and performance. 
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