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Abstract—This paper investigates the modeling, control, and
redundancy resolution of an 8-legged Stewart platform, empha-
sizing the use of null-space control to achieve precise trajectory
tracking while adhering to actuator constraints. The proposed
control framework combines a Proportional-Integral-Derivative
(PID) controller with null-space projection to exploit the plat-
form’s inherent redundancy for secondary objectives, such as
singularity avoidance, energy optimization, and enhanced fault tol-
erance. A clamping strategy ensures that actuator lengths remain
within operational limits, thereby preventing mechanical failures.
Simulation results demonstrate significant error reduction in both
position and orientation, even under strict actuator constraints.
Specifically, the system achieved exponential convergence to the
desired pose within 3 s, with a maximum position error of less
than 1× 10−3 m and orientation error below 5× 10−4 rad. Actu-
ator efficiency was also enhanced, as the algorithm dynamically
redistributed efforts among actuators to avoid overloading any
single leg. While energy consumption was not explicitly optimized
in this study, the framework provides a foundation for future
work in minimizing energy usage through advanced secondary
objectives. Stability is analyzed rigorously using Lyapunov’s direct
method. Compared to traditional six-legged platforms, the 8-
legged design offers superior flexibility and adaptability, mak-
ing it particularly suitable for applications in flight simulators,
robotic surgery, and industrial automation where precision and
reliability are critical. However, the proposed approach has certain
limitations. For instance, the current implementation assumes
ideal actuator dynamics and does not account for uncertainties
such as friction, backlash, or external disturbances. Additionally,
the clamping strategy may introduce computational overhead,
potentially impacting real-time performance in highly dynamic
scenarios. Future research could address these limitations by
incorporating adaptive or robust control techniques and opti-
mizing computational efficiency. This work advances the design
and control of redundant parallel manipulators, offering practical
insights into dealing with physical limitations and providing a
foundation for future innovations in high-performance motion
control systems.
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I. INTRODUCTION

Parallel robotics, particularly the Stewart platform [1]–[20],
has become a critical area in modern engineering due to its pre-
cision and stability. These platforms find applications in flight
simulators, robotic surgery, and industrial automation [21]–[27].
However, controlling such systems poses challenges due to
complex kinematic relationships and physical constraints, such
as actuator length and velocity limits.

Redundancy, achieved by incorporating additional actuators
(e.g., an eight-legged Stewart platform), enhances fault tol-
erance, flexibility, and singularity avoidance [28]–[32]. Nev-
ertheless, redundancy complicates control design, as the sys-
tem becomes over-actuated, resulting in an infinite number of
solutions for achieving a desired pose. Most current studies
focus on standard six-legged platforms, highlighting the need
for research into effectively utilizing redundancy while ensuring
robust operation.

Despite the potential benefits of redundancy, existing ap-
proaches for redundancy resolution in over-actuated systems
face several limitations. For instance, many methods fail to
adequately handle actuator constraints, leading to mechanical
failures or suboptimal performance. Additionally, computa-
tional efficiency remains a challenge, particularly in real-time
applications where rapid decision-making is essential. Exist-
ing techniques, such as optimization-based methods and task-
priority frameworks, often prioritize theoretical elegance over
practical applicability, making them less suitable for real-world
scenarios. While these methods provide valuable insights, they
frequently overlook the trade-offs introduced by redundancy,
such as increased complexity in control algorithms and higher
energy consumption. These trade-offs are crucial considerations
in practical implementations, as they directly impact the feasi-
bility and cost-effectiveness of deploying redundant systems.
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This study addresses these gaps by presenting a comprehen-
sive investigation of an 8-legged Stewart platform. Specifically,
we focus on developing a null-space control framework that
integrates PID control with redundancy resolution, enabling
precise trajectory tracking while respecting actuator constraints.
Unlike alternative methodologies, our approach emphasizes
simplicity and practicality, ensuring compatibility with real-
time applications. By leveraging null-space projection, the
proposed framework dynamically redistributes actuator efforts
to avoid singularities, optimize energy usage, and enhance fault
tolerance. Furthermore, we incorporate a clamping strategy to
enforce strict adherence to actuator length constraints, thereby
maintaining operational safety under varying conditions.

While this work primarily relies on simulations to validate
the proposed approach, we acknowledge the limitations of
not including experimental validation on a physical prototype.
Simulations provide a controlled environment to evaluate the
algorithm’s performance, but they may not fully capture the
uncertainties and nonlinearities present in real-world systems.
Future work could address this limitation by extending the
framework to include experimental validation, thereby enhanc-
ing the robustness and generalizability of the findings. However,
the current study serves as a foundational step, demonstrat-
ing the effectiveness of the proposed framework in handling
actuator constraints and leveraging redundancy in an 8-legged
Stewart platform.

This work addresses these gaps by presenting a comprehen-
sive study of an 8-legged Stewart platform. A key contribution
is the development of a null-space control framework that inte-
grates PID control with redundancy resolution, enabling precise
trajectory tracking while respecting actuator constraints. Simu-
lation results validate this approach, demonstrating substantial
error reduction and robust operation. This study bridges the
gap between theoretical modeling and practical implementation,
advancing the field of redundant parallel manipulators.

II. RESEARCH METHODOLOGY

The research methodology outlines the systematic approach
adopted to achieve the objectives of this study. The process
is visually represented in Fig. 1, which provides a clear and
structured overview of the key steps involved in modeling,
control design, simulation, and analysis. The first step in the
methodology involves deriving the kinematic relationships that
govern the motion of the 8-legged Stewart platform.
The control design integrates two key components:

1) PID Control: A Proportional-Integral-Derivative (PID)
controller is implemented to ensure robust trajectory track-
ing and stability.

2) Null-Space Control: Redundancy resolution is achieved
by projecting secondary objectives, such as singularity
avoidance and energy optimization, onto the null space

of the Jacobian matrix. This ensures that primary tasks
remain unaffected while secondary objectives are fulfilled.

Start

Kinematic Modeling

Control Design (PID + Null-Space)

Clamping Strategy for Actuator Constraints

Simulation and Validation

Performance Analysis

Satisfactory Results?

End

Yes

No

Fig. 1. Flowchart illustrating the research methodology. The diagram highlights the
sequence of operations from kinematic modeling to performance analysis, with a
feedback loop for iterative improvement

To enforce strict adherence to actuator constraints, a clamp-
ing strategy is introduced. This strategy dynamically adjusts
actuator efforts to prevent mechanical failures caused by ex-
ceeding operational limits. While effective, the clamping strat-
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egy introduces potential computational overhead, particularly in
highly dynamic scenarios.

The proposed control framework is validated through simula-
tions conducted in a controlled environment. Key performance
metrics, such as position and orientation errors, convergence
time, and actuator efficiency, are analyzed to evaluate the sys-
tem’s behavior under varying conditions. The simulation results
demonstrate the effectiveness of the approach in achieving
precise trajectory tracking while respecting actuator constraints.

The final step involves analyzing the simulation results to
assess the system’s performance.

This structured methodology ensures a comprehensive and
systematic approach to addressing the challenges of redundancy
resolution and actuator constraint management in the 8-legged
Stewart platform.

III. SYSTEM MODELING

The motion of the Stewart platform is governed by kinematic
relationships describing the geometric and positional interac-
tions between its fixed base and the moving platform via six
actuated legs (Fig. 2). This section presents the kinematic
modeling, including inverse and forward kinematics [33]–[51],
velocity kinematics [52]–[60], and singularity analysis [61]–
[70].

Fig. 2. Schematic diagram of the Stewart platform kinematics.

A. Inverse Kinematics

Inverse kinematics determines the lengths of the actuator
legs (li) based on the position and orientation of the moving
platform. Let Ai denote the anchor points on the fixed base, and
Bi denote the corresponding points on the moving platform.
The position vectors of Ai in the global frame are:

Ai =

xAi

yAi

zAi

 , i = 0, . . . , 7. (1)

The position vectors of Bi are expressed as:

Bi = R · bi + p, (2)

where bi =

xbi

ybi
zbi

 is the local coordinate of Bi, R is the

rotation matrix, and p is the translation vector.
The actuator length li is calculated as:

li = ∥Bi −Ai∥ (3)

=
√

(xBi
− xAi

)2 + (yBi
− yAi

)2 + (zBi
− zAi

)2. (4)

B. Forward Kinematics

Forward kinematics determines the position p and orientation
R of the moving platform given the actuator lengths li. From
Equation (2), the constraint is:

∥R · bi + p−Ai∥ = li. (5)

This results in six nonlinear equations, which are typically
solved using numerical methods such as Newton-Raphson
or optimization techniques. The solution minimizes the error
function:

E(p,R) =

7∑
i=0

(∥R · bi + p−Ai∥ − li)
2
. (6)

C. Velocity Kinematics

1) Forward Velocity Kinematics: Forward velocity kinemat-
ics relates the actuator velocities l̇ to the platform’s linear ṗ
and angular ω velocities. The time derivative of Bi can be
expressed as:

Ḃi = ṗ+ ω × (R · bi). (7)

The velocity of the i-th actuator is given by:

l̇i = uT
i Ḃi, (8)

where ui =
Bi −Ai

∥Bi −Ai∥
. In matrix form, this can be expressed

as:

l̇ = J

[
ṗ
ω

]
, (9)
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where the Jacobian J is defined as:

J =

u
T
1 uT

1 × (R · b1)
...

...
uT
6 uT

6 × (R · b6)

 . (10)

2) Inverse Velocity Kinematics: Given the actuator velocities
l̇, we can derive the platform velocities:[

ṗ
ω

]
= J† l̇, (11)

where J† is the pseudoinverse of the Jacobian.
While the inverse and forward kinematics equations provide

a clear mathematical framework for modeling the Stewart
platform, several assumptions and limitations must be ac-
knowledged. First, the reliance on numerical methods, such as
Newton-Raphson, introduces sensitivity to initial conditions and
potential convergence issues, particularly near singular configu-
rations. In practice, these challenges can lead to computational
inefficiencies or inaccurate solutions when dealing with noisy
sensor data or imprecise actuator lengths. Furthermore, real-
world uncertainties, such as manufacturing tolerances, friction,
and external disturbances, can propagate through the kinematic
equations, reducing their accuracy in dynamic environments.
Future work could explore robust numerical solvers or machine
learning-based approaches to mitigate these issues.

D. Singularity Analysis

Singularities occur when det(J) ≈ 0, leading to loss of
degrees of freedom or instability. They can arise from:

• Geometric alignment of actuators,
• Symmetric actuator lengths,
• Specific orientations of the platform.
To mitigate the effects of singularities, techniques such as

damped least squares and the Moore-Penrose pseudoinverse can
be used. For damped least squares, the actuator velocities are
computed as follows:

l̇ = J
(
JTJ+ λ2I

)−1
JT

[
ṗ
ω

]
. (12)

The pseudoinverse is given by:

J† = JT
(
JJT

)−1
. (13)

The singularity analysis presented in this study provides a
theoretical foundation for understanding the conditions under
which the Stewart platform may lose degrees of freedom or sta-
bility. However, it is important to consider the practical impli-
cations of singularities in over-actuated systems. For instance,
singular configurations can severely impact task execution by
introducing abrupt changes in actuator velocities or causing
mechanical failures. To mitigate these effects, techniques such

as damped least squares are employed. While effective in sta-
bilizing the system near singularities, these methods introduce
trade-offs, including reduced precision in trajectory tracking
and increased computational overhead due to the additional
matrix operations required. Balancing these trade-offs remains
a critical challenge in practical implementations.

IV. CONTROL SYSTEM DESIGN

A Proportional-Integral-Derivative (PID) controller is de-
veloped to achieve precise control of the Stewart platform’s
position and orientation [71]–[91].

A. PID Control Algorithm

The control objective is to minimize the position error ep =
pd − p and orientation error eR = vec(RT

d R − I). The PID
control law is expressed as:

l̇(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(14)

where Kp, Ki, and Kd are positive definite diagonal gain
matrices.

B. Stability Analysis

The stability of the closed-loop system is analyzed using
Lyapunov’s direct method. We define a Lyapunov function:

V (e) =
1

2
eTPe+

1

2

(∫ t

0

e(τ)dτ

)T

Q

(∫ t

0

e(τ)dτ

)
, (15)

where P and Q are positive definite matrices. The stability
conditions require the following:

• PKp > 0,
• PKi = Q,
• PKd > 0.

V. NULL-SPACE CONTROL FOR REDUNDANCY
RESOLUTION

Redundancy arises when the number of actuators exceeds the
degrees of freedom. Null-space control exploits this redundancy
to achieve secondary objectives, including energy minimization
and obstacle avoidance.

A. Mathematical Formulation

The Jacobian J relates actuator velocities l̇ to end-effector
velocities: [

ṗ

θ̇

]
= Jl̇. (16)

The null space N (J) is defined as:

N (J) = {x |Jx = 0}. (17)
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B. Control Law Implementation

The primary actuator velocities l̇p can be determined as
follows:

l̇p = J+

[
Kpep
KReR

]
. (18)

Secondary motions are projected into the null space:

l̇n = Nu, (19)

where N is the null-space projection matrix derived from the
SVD.

The final actuator velocities result from combining both
components:

l̇ = l̇p + l̇n. (20)

C. Actuator Length Constraints

To ensure actuator lengths remain within operational limits,
a clamping strategy is applied. The proposed strategy calculates
the new actuator lengths based on the actuator velocities:

lnew = lcurrent + l̇ ·∆t, (21)

which is constrained as follows:

li =


lmin, if lnew[i] < lmin,

lmax, if lnew[i] > lmax,

lnew[i], otherwise.
(22)

This method ensures that actuator lengths do not exceed their
defined limits, maintaining the system’s operational integrity.

The proposed control model assumes ideal actuator dynam-
ics, neglecting factors such as friction, backlash, and external
disturbances. While this simplification facilitates theoretical
analysis, it may limit the model’s applicability in real-world
scenarios where such uncertainties are prevalent. Additionally,
the clamping strategy used to enforce actuator constraints
introduces computational overhead, particularly in dynamic
environments requiring rapid decision-making. Future research
could explore adaptive or robust control techniques to account
for real-world uncertainties while optimizing computational
efficiency.

VI. SIMULATION RESULTS AND DISCUSSION

This section presents the simulation results to validate the
proposed control framework for an 8-legged Stewart platform.
The simulations were conducted under two distinct scenarios:
(1) without null-space control to evaluate the baseline perfor-
mance of the PID controller, and (2) with null-space control
to demonstrate the effectiveness of redundancy resolution and
actuator constraint handling. The setup and results are detailed
below.

A. Simulation Setup

The simulation was designed to assess the robustness and ef-
fectiveness of the proposed control framework. Key parameters
and configurations are summarized in Table I.

TABLE I. SIMULATION PARAMETERS AND CONFIGURATIONS

Parameter Value/Description
Time Parameters
Time step (∆t) 0.01 s
Total simulation time (T ) 3.0 s
Time vector t ∈ [0, T ], incremented by ∆t
Desired Position
Desired position (pd) [0.5,−0.5, 2.5]T (m)
Desired Orientation

Euler angles ([ϕd, θd, ψd]) [
−π
16

,
π

12
,
−π
8

] (rad)

Initial Conditions
Initial position (p0) [0.0, 0.0, 1.0]T (m)
Initial orientation (Euler angles) [ϕ0, θ0, ψ0] = [0.0, 0.0, 0.0] (rad)
Actuator Length Constraints
Minimum length (lmin) 0.5m
Maximum length (lmax) 4.5m

The fixed base platform’s anchor points (Ai) in the global
coordinate frame were defined as:

Ai =



−2.0 −2.0 0.0
0.0 −2.0 0.0
2.0 −2.0 0.0
4.0 0.0 0.0
2.0 2.0 0.0
0.0 2.0 0.0
−2.0 2.0 0.0
−4.0 0.0 0.0


. (23)

The moving platform’s anchor points (bi) in its local coor-
dinate frame were defined as:

bi =



−1.0 −1.0 0.0
0.0 −1.0 0.0
1.0 −1.0 0.0
2.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
−1.0 1.0 0.0
−2.0 0.0 0.0


. (24)

The pseudocode outlined in Algorithm ?? provides a high-
level overview of the implementation for simulating the 8-
legged Stewart platform with null-space control and actuator
constraints.

B. Scenario 1: Without Null-Space Control

In this scenario, the PID controller was implemented without
incorporating null-space control. The objective was to evaluate
the system’s stability and performance under varying PID gains.
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1) Slow Responses: For slow responses, the following PID
gains were selected:

Kp = diag(1.6, 1.6, 1.6),
Ki = diag(0.04, 0.04, 0.04), (25)
Kd = diag(0.08, 0.08, 0.08).

These gains were chosen to satisfy Lyapunov stability re-
quirements while maintaining a conservative response profile.
As shown in Fig 3, the system achieved convergence to the
desired pose but exhibited sluggish behavior due to the rela-
tively low proportional and derivative gains. The position and
orientation errors decreased exponentially, albeit with a slower
response time, reaching steady state at approximately t = 3 s.
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Fig. 3. System responses

Fig 4 illustrates the trajectories of the actuator lengths
required to move the platform to the desired pose. Notably,
three actuators (l7, l6, and l0) exhibited the longest lengths. A
complete visualization of the initial and final poses is provided
in Fig 5, confirming the successful attainment of the desired
configuration.

2) Fast Responses: To achieve faster convergence, higher
PID gains were selected:

Kp = diag(8.0, 8.0, 8.0),
Ki = diag(0.2, 0.2, 0.2), (26)
Kd = diag(0.4, 0.4, 0.4).

As expected, the system demonstrated significantly faster
convergence to the desired pose. However, the increased gains

resulted in higher actuator velocities, particularly during the
initial phase of actuation. For instance, the velocities of l̇5 and
l̇6 reached 12.5m/s and 11.5m/s, respectively. Despite these
high velocities, the final pose of the moving platform matched
the desired configuration, as shown in Fig 8.
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Fig. 4. Actuator leg-lengths
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C. Scenario 2: With Null-Space Control

In this scenario, null-space control was incorporated to
leverage the platform’s redundancy for secondary objectives
such as singularity avoidance and energy optimization. Actuator
constraints were enforced to ensure operational safety. The PID
gains used in Equation (26) were retained for consistency.

1) Affecting Only One Actuator: To prevent mechanical
failures or suboptimal performance, actuator lengths were con-
strained within predefined limits:

lmin = 0.5m, lmax = 3.5m. (27)

These constraints were enforced using a clamping strategy
during the simulation. Observing the results in Fig. 9 and
Fig.10, it is evident that the applied limits primarily affected
one actuator (l7). The system’s position, position error, and
orientation error responses remained consistent with those
observed in the absence of null-space control (Fig. 6 and

Indrazno Siradjuddin, Modeling and Control of an 8-Legged Stewart Platform Using Null-Space Control for Precise Motion
Under Actuator Constraints



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1866

Fig.7). This indicates that the proposed null-space control ef-
fectively identified feasible kinematic solutions under the given
constraints. However, non-smooth actuator velocity trajectories
were observed at t ≤ 1 s, particularly when l7 approached its
limit. This behavior highlights the algorithm’s ability to adapt
velocity trajectories dynamically to respect actuator constraints.
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Fig. 6. System responses
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2) Affecting More Than One Actuator: To further test the
robustness of the null-space redundancy control, more stringent
actuator length constraints were applied:

lmin = 0.5m, lmax = 2.5m. (28)

Under these conditions, multiple actuators were constrained
simultaneously, increasing the complexity of the control prob-
lem. The results, depicted in Figs. 12, 13, and 14, demonstrate
the algorithm’s capability to handle multiple constraints while
achieving the desired pose. The system maintained stability and
successfully converged to the target configuration, validating the
effectiveness of the proposed approach.
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Fig. 9. System responses

The simulation results presented in this section highlight the
effectiveness of the proposed control framework in achieving
precise trajectory tracking for the 8-legged Stewart platform.
Without null-space control, the system demonstrated baseline
performance, with slower responses under conservative PID
gains and faster convergence under higher gains, albeit with
elevated actuator velocities.
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While higher PID gains result in faster convergence, they
introduce several trade-offs that must be considered in practical
applications. For instance, elevated gains can lead to increased
energy consumption due to higher actuator velocities and
forces. Additionally, excessive actuator activity may accelerate
wear and tear, reducing the lifespan of mechanical components.
Furthermore, higher gains amplify sensitivity to noise and ex-
ternal disturbances, which could destabilize the system in real-
world scenarios. These trade-offs highlight the importance of
carefully balancing performance and robustness when selecting
PID parameters.

The observed non-smooth actuator velocity trajectories in
Fig. 12, particularly when enforcing constraints on l7, warrant
further discussion. Such behavior could lead to mechanical
stress or vibrations in physical systems, potentially compro-
mising operational safety. To mitigate these effects, future work
could explore alternative constraint-handling techniques, such
as smooth saturation functions or model predictive control
(MPC), which ensure smoother transitions and reduce stress
on actuators. Additionally, incorporating low-pass filters or
damping terms into the control algorithm could help suppress
oscillations and improve robustness under stringent constraints.
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However, the incorporation of null-space control significantly
enhanced the system’s ability to handle actuator constraints and
leverage redundancy for secondary objectives. By dynamically
adapting actuator trajectories, the algorithm ensured operational
safety while maintaining stability and achieving the desired
pose. These findings underscore the importance of integrating
null-space control into redundant systems, particularly when
physical constraints must be respected.

The results also reveal the robustness of the proposed ap-
proach under varying conditions. Whether constraining a single
actuator or multiple actuators simultaneously, the system con-
sistently converged to the target configuration, demonstrating
its adaptability and reliability. These outcomes validate the
theoretical foundation of the control framework and provide
practical insights into the design and implementation of redun-
dant parallel manipulators.

The next section concludes the paper by summarizing the
key contributions and outlining potential directions for future
research.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented a comprehensive study on the
modeling, control, and redundancy resolution of an 8-legged
Stewart platform, with a focus on integrating null-space control
to achieve precise trajectory tracking while respecting actuator
constraints. The proposed control framework combines a PID
controller with null-space projection, enabling the system to
exploit its inherent redundancy for secondary objectives such
as singularity avoidance and energy optimization. A clamping
strategy was implemented to ensure that actuator lengths remain
within predefined limits, thereby preventing mechanical failures
or suboptimal performance.

Simulation results demonstrated the effectiveness of the pro-
posed approach under varying conditions. Without null-space
control, the system exhibited baseline performance, achiev-
ing slow but stable convergence with conservative PID gains
and faster responses with higher gains, albeit at the cost of
elevated actuator velocities. The incorporation of null-space
control significantly improved the system’s ability to handle
actuator constraints, ensuring smooth and feasible trajectories
even under stringent limits. Specifically, the system achieved
exponential convergence to the desired pose, with trajectory
accuracy measured by a maximum position error of less than
1 × 10−3 m and orientation error below 5 × 10−4 rad in con-
strained scenarios. Actuator efficiency was also enhanced, as the
algorithm dynamically redistributed efforts among actuators to
avoid overloading any single leg. While energy consumption
was not explicitly optimized in this study, the framework
provides a foundation for future work in minimizing energy
usage through advanced secondary objectives.

The performance of the PID controller heavily depends
on the tuning of the gain matrices Kp, Ki, and Kd. While

manual tuning was used in this study, future work could
explore systematic approaches such as Ziegler-Nichols tuning,
genetic algorithms, or machine learning-based optimization to
determine optimal gains. Suboptimal tuning can lead to un-
desirable behaviors, such as sluggish responses, overshooting,
or instability. For instance, excessively high proportional gains
(Kp) may result in oscillatory behavior, while insufficient
integral gains (Ki) can cause steady-state errors. Similarly,
derivative gains (Kd) that are too high may amplify noise in the
system. These trade-offs highlight the importance of carefully
selecting PID parameters based on the specific requirements of
the application.

The stability of the closed-loop system was rigorously ana-
lyzed using Lyapunov’s direct method, providing a theoretical
foundation for the proposed control framework. This work
contributes to advancing the design and control of redundant
parallel manipulators, offering practical solutions for addressing
physical limitations while achieving high-performance motion
control.

The stability analysis using Lyapunov’s direct method as-
sumes ideal conditions, neglecting factors such as external
disturbances, model inaccuracies, and actuator dynamics. While
this simplification facilitates theoretical analysis, it may limit
the applicability of the results in practical scenarios where
such uncertainties are prevalent. For example, external forces
or unmodeled friction could destabilize the system if not prop-
erly accounted for. Future research could extend the stability
analysis to include robustness against these factors, potentially
incorporating adaptive or robust control techniques to enhance
performance under non-ideal conditions.

The robustness analysis presented in this study is limited to
simulated conditions and does not explore edge cases, such as
near-singular configurations or extreme external disturbances.
Near-singular configurations could lead to abrupt changes in
actuator velocities or even mechanical failures if not properly
mitigated. Similarly, extreme external disturbances may com-
promise stability or tracking accuracy, particularly in systems
with high-dimensional state spaces. Future work could extend
the robustness analysis to include these edge cases, potentially
incorporating adaptive or robust control techniques to enhance
performance under challenging conditions.

While the null-space control formulation is theoretically
robust, it is important to critically evaluate its computational
complexity. The derivation of the null-space projection matrix
typically involves singular value decomposition (SVD), which
has a computational cost of O(n3) for an n × n matrix.
This complexity could be prohibitive for real-time applications,
particularly in systems with high-dimensional state spaces or
requiring rapid decision-making. To mitigate this challenge,
future work could explore computationally efficient alternatives,
such as approximate methods or precomputed lookup tables, to
reduce the computational burden while maintaining the benefits
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of null-space control.
Potential real-world applications of the proposed framework

include flight simulators, robotic surgery, and industrial automa-
tion, where precision, reliability, and adaptability are critical.
For instance, in robotic surgery, the ability to handle actuator
constraints and avoid singularities ensures safe and accurate
manipulation, while in industrial automation, the framework
can enhance productivity by enabling robust operation under
varying loads and constraints. Despite these advancements, the
proposed framework has certain limitations. For example, the
current implementation assumes ideal actuator dynamics and
does not account for uncertainties such as friction, backlash, or
external disturbances. Future research could address these limi-
tations by incorporating adaptive or robust control techniques to
improve performance under real-world conditions. Additionally,
extending the framework to optimize energy consumption or
integrate machine learning for real-time decision-making could
further enhance its practical relevance.

The clamping strategy used to enforce actuator constraints
is simplistic and does not account for dynamic effects, such as
oscillations or abrupt changes in actuator velocities, which may
arise from enforcing hard limits. While effective in preventing
mechanical failures, this approach may introduce discontinuities
in the control inputs, leading to suboptimal performance or
instability in highly dynamic scenarios. Future research could
explore more sophisticated constraint-handling techniques, such
as smooth saturation functions or model predictive control
(MPC), to ensure smoother transitions and improved robustness
under stringent constraints.

While the simulation results demonstrate the effectiveness of
the proposed approach, the reliance on simulations alone raises
concerns about the generalizability of the findings. Real-world
factors such as friction, backlash, and sensor inaccuracies are
not accounted for in the current study, potentially limiting the
practical applicability of the results. For instance, unmodeled
friction could lead to steady-state errors, while sensor noise
might degrade the accuracy of feedback signals. Future research
could address these limitations by conducting experimental
validation on a physical prototype, thereby enhancing the
robustness and reliability of the proposed method.

In summary, this study bridges the gap between theoretical
modeling and practical implementation, advancing the field
of redundant parallel manipulators. The proposed null-space
control framework demonstrates robust performance in han-
dling actuator constraints and leveraging redundancy, paving the
way for future innovations in high-performance motion control
systems.
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