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Abstract—This paper proposes the EANSMC-MDE method 

for the coupled tank system (CTS) liquid level control, which 

consists of the Improved Difference Evolution (MDE) 

optimizing method optimized parameters for the Adaptive 

Neuro Sliding Mode Controller (ANSMC). The CTS system 

represents a nonlinear object with delay and uncertainties, 

including varying parameters, sensor and output valve noises, 

etc. The suggested controller contains a direct adaptive 

controller directly approximated by a Radial Basis Function 

(RBF) neural network combined with a sliding mode controller 

used to compensate for the approximation errors of the RBF 

network and ensure system stability. The stability Lyapunov 

criterion is used to construct the sliding-mode control system 

and adaptive rule. The proposed algorithm delivers good 

control performance right from the start-up phase thanks to the 

use of pre-optimized parameters, which is an advantage 

compared to conventional adaptive control algorithms. 

Simulations are conducted to demonstrate the effectiveness of 

the proposed optimization method compared to different 

optimization methods using identical beginning conditions and 

objective function values to establish equitable comparisons. 

Furthermore, to demonstrate the superiority of the suggested 

control method, it is contrasted with the optimal SMC and the 

traditional ANSMC method. Additionally, the simulations 

evaluate the response capability of the proposed algorithm 

under the influence of significantly varying sensor noise levels 

across different magnitudes, changes in the reference signal, and 

substantial variations in system parameters. The proposed 

algorithm has the potential to be applied to other uncertain 

nonlinear systems. However, it has not yet been validated on 

systems with fast dynamic responses. 

Keywords—Improved Difference Evolution (MDE) Method; 

Adaptive Neuro Sliding Mode Control (ANSMC); Coupled Tank 

System (CTS); Radial Basis Function Neural Network (RBFNN); 

Nonlinear Control; System Stability; Optimization Algorithm. 

I. INTRODUCTION  

The liquid level of tank systems in production plants 

needs to be precisely controlled as it directly affects the 

quality of the products, especially in industries like 

chemicals, oil and gas, food production, etc. Most tank 

systems are highly nonlinear and have complex uncertainties 

that change during operation, such as interactions between 

tanks, delays between input and output, sensor noise, 

parameter variations during operation, etc. To validate 

control methods for these tank systems, the coupled-tank 

system (CTS) is utilized as a representative model. As a 

result, a variety of control methods, from simple to complex, 

have been used to control this system. First, the paper [1] uses 

a decentralized PID controller to control the CTS system. The 

overshoot is reduced by imposing constraints on the 

maximum closed-loop amplitude ratio of the system, and 

system stability is ensured by applying the Kharitonov-

Hurwitz theorem. Next, the paper [2] uses a decentralized 

PI/PID controller based on frequency domain analysis for a 

two-input, two-output coupled tank system. The control 

algorithm is implemented for the decoupled subsystems by 

employing a decoupler. In contrast, paper [3] uses an AI-

based online self-tuning algorithm to adjust the PID gains to 

address the issue of parameter variation. Fuzzy control and 

SMC algorithms provide faster and more stable responses 

compared to the PID algorithm in controlling the coupled 

tank system [4]. Therefore, hybrid PID-SMC algorithms were 

proposed in [5], [6]. Although the SMC algorithm has better 

capability to handle nonlinear disturbances than the PID 

algorithm, one of its drawbacks is its dependence on the 

control system model [7]. In addition, this method is prone to 

chattering. To overcome these limitations while still 

leveraging the fast and stable response advantages of the 

SMC technique under nonlinear disturbances, the algorithm 

is improved or integrated with other control strategies. 

First, the paper [8] uses a Model-Free Fractional Order 

Intelligent Proportional Integral-Fractional Order Sliding 

Mode Controller to address the issues of overshoot and 

external disturbance in controlling the CTS system. The 

paper [9] proposes a higher-order sliding mode robust control 

method for controlling the quadruple tank system. The 

unmeasurable states are estimated using a sliding mode 

observer. The authors of the paper [10] propose a novel 

convergence algorithm for discrete-time systems applied to 

the CTS system, enabling the system to reach convergence 

within a user-defined settling time. While paper [11] applies 

an optimal prescribed-time stabilization method for nonlinear 

dynamical systems, specifically for the CTS system. The 

stability and convergence of the system satisfy the Hamilton-

Jacobi-Bellman equation and Lyapunov stability theory. The 

studies [12]-[15] employed a Disturbance Observer to 

address the issue of external disturbances in the control of 

CTS and Quadruple-Tank systems. Subsequently, the study 
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[16] utilized a compensator based on the Bernstein 

polynomial to mitigate the adverse effects of saturation 

nonlinearity in process control applications within the CTS 

system control. However, the issue of how to reduce the 

impact of external disturbances still needs to be further 

addressed. Intelligent control solutions have been widely 

applied to handle increasingly nonlinear systems. Next, the 

authors in [17] use a Fuzzy PI controller designed using s- 

and z-type membership functions to address the uncertain 

environment in CTS system control, showing improved 

performance over conventional Fuzzy PI controllers. Paper 

[18] proposed a novel intelligent fuzzy fractional-order 

proportional-integral controller. To further improve control 

performance, numerous studies have coupled neural 

networks or fuzzy logic with advanced control methods like 

SMC or adaptive methods. The control of nonlinear systems 

in practice must cope with nonlinear model uncertainties and 

complex external disturbances that vary during operation. 

Many studies have employed optimal or online adaptive 

algorithms to help the control system respond in real-time to 

these complicated uncertainties. First, Paper [19] solves the 

optimal tracking control problem for the underactuated 

quadrotor system with unknown dynamics via Reinforcement 

Learning. Next, to enhance the stability of the system, the 

paper [20] proposed a reinforcement learning algorithm with 

stability constraints based on the Lyapunov stability theory to 

train neural network controllers for application in the control 

of CTS systems. The studies [21]-[22] proposed robust 

optimal tracking control algorithms via the technique of 

integral reinforcement learning combined with a neural 

network-based observer to address issues related to general 

disturbances and saturating voltages in the control of 

permanent magnet synchronous motors (PMSMs). 

Furthermore, 𝐻∞  optimal tracking control algorithms were 

introduced in [23], [24] to handle input constraints and 

external disturbances. These optimal control algorithms have 

demonstrated high effectiveness in controlling real systems 

with unknown dynamics under external disturbances. 

However, to reach the optimal state of the controller, a certain 

convergence time is required during the initial phase for the 

neural network weights, which may impact control quality in 

systems that demand stable performance from the startup 

phase. Additionally, adaptive control algorithms combined 

with fuzzy logic or neural networks have also shown effective 

control quality in the presence of external noise and 

disturbances. The studies [25]-[27] proposed adaptive fuzzy 

and neural SMC algorithms. First is the adaptive fuzzy SMC 

controller [25], which tackles the issue of external noises and 

actuator failures. Subsequently, the study [26] proposes a 

novel adaptive fuzzy sliding mode control method based on 

a fully tuned recurrent neural network compensator to 

estimate the comprehensive uncertainties of a reluctance-

motor maglev system. In addition, the study [27] utilized a 

fuzzy state observer with an adaptive neural network-based 

compensator to implement a sliding mode control strategy, 

where the compensator is designed using the adaptive neural 

network approach. Neural networks are commonly used to 

approximate internal uncertainties and external disturbances 

in control systems. However, using neural networks for 

approximation inevitably results in approximation errors. 

These errors can lead to system instability or slow 

convergence. Meanwhile, SMC algorithms can ensure fast 

convergence and robust stability. Therefore, neural networks 

are often integrated with SMC algorithms. Paper [28] 

proposed an adaptive neural-network-based SMC method for 

switching distributed delay systems, where the neural 

network functions as an observer-based neural compensator 

to mitigate the effects of unknown system nonlinearities. 

Approaches using terminal SMC techniques have been 

adopted to balance convergence time and chattering 

phenomena [29]-[31]. In addition, a novel second-order 

sliding mode control scheme based on neural networks was 

proposed in [32] to address issues of system uncertainty, 

external disturbances, and input saturation. The second-order 

non-singular fast terminal sliding mode controller resolves 

the singularity problem and chattering, enabling the system 

to converge within a fixed time. Moreover, to effectively 

counter uncertain disturbances, terminal SMC has also been 

combined with Extended State Observer (ESO) techniques 

[33]-[34]. The issue of control input singularities in SMC 

algorithms is addressed in [35]. Furthermore, other 

approaches [36], [37] integrate adaptive techniques to 

enhance the controller’s ability to handle parametric 

uncertainties and external disturbances. Adaptive control 

algorithms are increasingly being applied using various 

methodological approaches. First, paper [38] proposes a 

nonlinear generalized global sliding mode controller to 

maximize power extraction from a Photovoltaic system. 

Next, the study [39] proposed combining SMC and 

fractional-order neural network methods to address the 

synchronization issue of fractional-order neural networks. 

The study [40] used a sliding mode controller and an adaptive 

neural network to control a nonlinear SISO system with 

unknown dynamics. The study [41] employed an SMC 

combined with an adaptive neural controller to approximate 

the nonlinear characteristics and uncertainties online. 

Leveraging the memory capability of recurrent neural 

networks, studies [42]-[45] employed an adaptive neural 

sliding mode controller designed based on a recurrent neural 

network to ensure optimal tracking performance. To utilize 

the powerful estimation capabilities of the RBFNN, many 

studies have employed it to approximate model uncertainties 

and external disturbances. Initially, paper [46] proposed a 

model predictive control method based on an RBF net-type 

coefficient Multi-Input/Multi-Output Auto-Regressive 

model with eXogenous input for system modeling in the 

control of the CTS system. Following this, study [47] 

combined an adaptive neural SMC algorithm with back-

stepping to approximate the nonlinear aerodynamic forces 

and moments of an aircraft. Meanwhile, the adaptive 

backstepping terminal sliding mode control leverages a 

physics-informed neural network [48] to estimate and 

compensate for system uncertainty accurately. Next, the 

paper [49] introduced an RBFNN-based adaptive sliding 

mode controller, in which the RBFNN is used to compensate 

for friction disturbance torque in an electromechanical 

actuator system. Paper [50] proposed a trajectory-tracking 

controller based on fixed-time sliding mode control and an 

RBFNN observer to handle system uncertainties and enable 

faster convergence of tracking errors. Similarly, studies [51]-

[57] proposed integrating RBFNNs with adaptive neuro-

sliding mode controllers to estimate model uncertainties and 
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external perturbations, thereby facilitating faster convergence 

of tracking errors. In these approaches, the RBFNN 

approximates nonlinear model uncertainties and 

disturbances, while the SMC component compensates for the 

RBFNN’s approximation errors, ensuring system 

convergence and stability. These adaptive neural sliding 

mode control strategies demonstrate their effectiveness in 

managing nonlinear model uncertainties and external 

disturbances. However, most of the adaptive algorithm’s 

parameters are typically determined through a trial-and-error 

technique, which results in a significant degree of error in the 

system response during the initial stage. Calculating and 

selecting controller parameters for nonlinear systems through 

trial and error is complex, often time-consuming, and still 

fails to find optimal parameters in many cases. Therefore, 

many studies aim to find controller parameters by utilizing 

meta-heuristic optimizing methods to determine globally 

optimum parameters, even when the objective function is 

non-differentiable. Initially, the Particle Swarm Optimization 

(PSO) algorithm was employed for identification and control 

in studies [58]-[62]. Next, the GA optimization algorithm 

[63]-[65] is also applied to identification and control tasks. 

The improved optimization of the ant colonies method [66] 

and the tree seed optimization method [67] are used to 

optimize the PID controller parameters for improved control 

quality. Most meta-heuristic methods are inspired by natural 

phenomena or the behavior of animals like fish, insects, 

planets, etc. Due to their advantages and disadvantages, some 

methods have succeeded, while others are no longer in use. 

In 2020, RAO introduced an optimization method focused on 

simplicity and efficiency [68] without relying on natural 

phenomena or animal behaviors like the methods mentioned 

above. The quality of optimization methods is often 

influenced by the parameters chosen, and the strength of the 

RAO methods is that they only require common control 

parameters, such as population size and the number of 

iterations, without needing method-specific control 

parameters. Taking advantage of the simplicity yet efficiency 

of this method, the study [69] applied it to solve the grid 

dispatch problem's optimization in power flow. The proposed 

method showed better performance compared to several other 

optimization methods. Subsequently, the RAO-1 

optimization algorithm [70] was applied to address the 

nonlinear and multimodal problem in parameter 

identification of photovoltaic models.  Based on RAO's 

approach of seeking simple yet effective optimization 

methods, the study [71] proposed the Fully Informed Search 

Method (FISA), an improved method of the RAO method. 

This study demonstrated that the proposed method achieved 

better optimization performance than several other 

optimization methods. Differing from the RAO and FISA 

methods presented above, the DE method, despite requiring 

the selection of specific method parameters, remains one of 

the simplest yet effective meta-heuristic methods from its 

introduction by R. Storn and K. Price. Studies [72]-[77] have 

demonstrated the effectiveness of the DE method over other 

methods in optimizing controllers for complex nonlinear 

systems. To enhance the convergence capability of the DE 

algorithm, the MDE algorithm was proposed in [78] by 

balancing the global and local search abilities to find potential 

global optimal solutions. In addition, a hybrid technique 

combining the DE algorithm and the Jaya algorithm [79] was 

employed for optimal identification of the adaptive neural 

sliding mode controller using an RBF network, achieving 

superior control performance compared to other advanced 

control algorithms in precise motion tracking of the 

piezoelectric actuator. The DE algorithm serves as a global 

search scheme, and the Jaya algorithm plays the role of local 

search exploitation to perform offline identification of the 

black-box model of the piezoelectric actuator. In general, 

meta-heuristic optimizing techniques contribute to 

determining the controller's global optimal parameters 

Based on the analysis of the above studies, the general 

trend in control methods is to address model uncertainties and 

exogenous disturbances to ensure robust and accurate 

control. In particular, the adaptive neural SMC method with 

the RBF neural network allows for good approximation of 

nonlinear uncertainties, combined with the fast convergence 

characteristic of the SMC method for nonlinear systems, 

resulting in improved control quality. However, most current 

adaptive algorithms are initialized with randomly chosen 

controller parameters, which carries the risk of system 

instability. To overcome this limitation and leverage the 

global optimization capability of the MDE algorithm, this 

paper proposes an Enhanced Adaptive Neuro Sliding Mode 

Controller (EANSMC) parameter optimization approach for 

liquid-level handling in the CTS system, in which the 

controller parameters are tuned using the MDE technique 

[78]. The stability of the system is ensured by the EANSMC 

controller, which is constructed using the Lyapunov stability 

theorem. Each meta-heuristic optimization algorithm has its 

strategy for updating the next generation. Therefore, the 

performance of each algorithm may vary depending on the 

objective function and the system under consideration. In this 

study, the update mechanism of the MDE algorithm proves 

to be the most suitable for the considered objective function 

applied to the CTS system, compared to other optimization 

algorithms, including PSO [59], GA [63], RAO 3 [68], and 

FISA [71]. Consequently, this paper proposes the use of the 

MDE algorithm for optimizing the parameters of the 

proposed DANSMC controller. However, the limitation is 

that the ANSMC controller parameters are optimally tuned 

offline. Therefore, a model of the system is required for 

parameter optimization. As a result, when applying the 

controller to a real system, the system model must first be 

identified before applying MDE to tune the controller 

parameters. This paper's key contributions include: 

• The ANSMC control system is innovatively built without 

requiring previous specific system knowledge. It consists 

of two components: an adaptive control part directly 

approximated online by the RBF network, with the 

adaptive law eliminating the approximation errors of the 

RBFNN. The SMC controller is an additional component 

that guarantees the system's stable convergence. By using 

Lyapunov's stability theorem in the design process, the 

stability of the system is ensured. 

• The ANSMC controller's parameters are effectively 

optimized for handling the CTS system, a difficult, 

nonlinear, and unpredictable system, using the 

comparison of advanced meta-heuristic techniques. 

Based on the average results of 10 runs under identical 
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initial conditions, including the same initial objective 

function value. Here, the MDE method was found to 

deliver the best performance. 

• Validation of control performance in the presence of 

sensor noise, parametric disturbances, and varying 

reference signals under the physical constraints of the 

CTS system 

This paper is organized into five parts: Section I contains 

the introduction, and Section II covers the CST presentation 

and the controller. Next, Section III introduces the suggested 

method. Section IV shows the simulation results, and Section 

V concludes the paper. 

II. DESCRIPTION OF THE CONTROL SYSTEM 

The two-DOF uncertain nonlinear CTS model relying on 

the Quanser tank model is shown in Fig. 1. This CTS model 

is a component of the quadruple-tank MIMO system shown 

in Fig. 2. 

 

Fig. 1. Coupled tank (CTS) system 

 

Fig. 2. Quadruple-tank system (QTS) 

The CTS system consists of a pump controlled by a 

voltage u, directly regulating the water flow into Tank 1. 

Tank 2 receives water from the outlet of Tank 1. The CTS 

system's mathematical model, presented in [72], is outlined. 

{
 

 𝑥̇1 =
1

𝐴1
(𝐾𝑝𝑢 − 𝑏1𝐶1√2𝑔𝑥1)

𝑥̇2 =
1

𝐴2
(𝑏1𝐶1√2𝑔𝑥1 − 𝑏2𝐶2√2𝑔𝑥2)

 (1) 

In Tank 1 and Tank 2, the water levels are represented by 

𝑥1, 𝑥2 and 𝑢 denotes the controlling voltage for the actuator, 

which is the plant's input. The output of the plant may be 

either  𝑥1 , 𝑥2  or both 𝑥1  and 𝑥2 . The task of the control 

system is to regulate the liquid level in either Tank 1, Tank 2, 

or both tanks, following a desired signal. This paper focuses 

on controlling the water level in Tank 2. The physical 

implications of these characteristics are shown in Table I. 

TABLE I.   COUPLED-TANK SYSTEM PARAMETERS EMPLOYED FOR 

BENCHMARK-TEST 

Symbol Explanation Size Unit 

A1 Surface area of tank 1's interior 16.619 cm2 

A2 Surface area of tank 2's interior 16.619 cm2 

b1 
The drainpipe’s cross-sectional area 

in Tank 1 
1 cm2 

b2 
The drainpipe’s cross-sectional area 

in Tank 2 
1 cm2 

C1 Tank 1 outlet discharge coefficient 0.8  

C2 Tank 2 outlet discharge coefficient 0.8  

g Gravitation force 981 cm/ s2 

Kp Gain of the pump 50 cm3/(s.V) 

 

III. THE PROPOSED EANSMC-MDE CONTROLLER 

A. The Problem Statement and ANSMC Controlling 

Technique 

The following content describes the implementation of 

the ANSMC controller for the CTS plant (2). 

{
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑢)
𝑦 = ℎ(𝑥)

 (2) 

Let ℎ(𝑥) = 𝑥2. Then equation (2) can be rewritten as 

{
 
 

 
 𝑥̇1 =

1

𝐴1
(𝐾𝑝𝑢 − 𝑏1 𝐶1 √2𝑔𝑥1)

𝑥̇2 =
1

𝐴2
(𝑏1 𝐶1 √2𝑔𝑥1 − 𝑏2 𝐶2√2𝑔𝑥2)

𝑦 = 𝑥2

 (3) 

The CST system (2) has two degrees of freedom. 

𝑦̈ = 𝑎(𝑥) + 𝑏(𝑥)𝑢 (4) 

Regulating the output 𝑦(𝑡) to follow the predetermined 

required curve 𝑦𝑑(𝑡) It is the duty to solve.  

The conventional SMC control law is developed as 

follows. 

Choose 𝑒 = 𝑦𝑑 − 𝑦 , where 𝑦𝑑 is the desired reference 

signal. It follows that 

𝑒̇ = 𝑦̇𝑑 − 𝑦̇ 
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Hence, 

𝑒̈ = 𝑦̈𝑑 − 𝑦̈ = 𝑦̈𝑑 − (𝑎(𝑥) + 𝑏(𝑥)𝑢) (5) 

The CTS system (2) has the second order. Choose the 

sliding surface as follows. 

𝑆 = 𝑒̇ + 𝑘𝑒 (6) 

Then, 

𝑆̇ = 𝑒̈ + 𝑘𝑒̇ (7) 

Substituting (5) into (7) yields the following equation. 

𝑆̇ = 𝑦̈𝑑 − (𝑎(𝑥) + 𝑏(𝑥)𝑢) + 𝑘𝑒̇ (8) 

Choose a quadratic Lyapunov function. 

𝑉1 =
1

2
𝑆2 (9) 

Then, 

𝑉̇1 = 𝑆𝑆̇ (10) 

Choose the derivative of the sliding surface as follows. 

𝑆̇ = −𝐾𝑠𝑖𝑔𝑛(𝑆) (11) 

Where K is a positive constant. It follows that 

𝑉̇1 = −𝐾|𝑆| ≤ 0 (12) 

Substituting (8) into (11) gives the SMC law as follows. 

𝑢 =
1

𝑏(𝑥)
[−𝑎(𝑥) + 𝑦̈𝑑 + 𝑘𝑒̇ + 𝐾𝑠𝑖𝑔𝑛(𝑆)] (13) 

Where, k is selected to satisfy the Routh-Hurwitz criteria. 

The quadratic Lyapunov function (9) satisfies 𝑉̇1 ≤ 0 as 

shown in (12). Therefore, the system is stable according to 

Lyapunov’s stability criterion. 

The sliding control law (13) can be rewritten as follows. 

𝑢 =
1

𝑏(𝑥)
[−𝑎(𝑥) + 𝑣(𝑡)] (14) 

Problem 1 formulation: 

In this case, v(t) denotes the system's input signal. 

Therefore, the linearized feedback law can be used to 

generate the controller (14) if both the nonlinear functions 

𝑎(𝑥) and 𝑏(𝑥) are known beforehand. Nevertheless, in many 

real-world situations, the descriptions 𝑎(𝑥), 𝑏(𝑥) are either 

undetermined or altered while in operating mode. Suppose 

these two components are unknown; the control law (14) 

cannot be implemented in this case. Therefore, the problem 

is to design a control law that allows for online estimation of 

the nonlinear elements 𝑎(𝑥) , 𝑏(𝑥)  and thus calculate the 

controller u. This rule is referred to as indirect adaptive 

control. If the control law u is estimated directly, it is known 

as direct adaptive control. To address this issue, this research 

suggests a direct adaptive sliding mode controller, which is 

shown in Fig. 3.  

 

Fig. 3. Layout of the CTS plant's ANSMC controller 

The suggested ANSMC for the doubled-tank plant is 

shown in Fig. 3. The ANSMC control law (22) consists of 

two components: the adaptive control component 𝑢̂ (15) and 

the sliding control component 𝑢𝑠𝑑 (37), which are computed 

based on the system state x, the sliding surface 𝑒𝑠 (25), and 

the output error 𝑒0 (26). The control design and computation 

are carried out as follows. 

A Radial Basis Function (RBF) neural network with two 

inputs, 𝑥1  and 𝑥2 , is used to directly estimate the ideal 

controller (14), which also corresponds to the adaptive 

control component defined in (15). Nine basis functions in 

the hidden layer are shown in Fig. 4. 

A Radial Basis Function (RBF) neural network with two 

inputs, 𝑥1  and 𝑥2 , is used to directly estimate the ideal 

controller (14), which also constitutes the adaptive control 

component (15). Nine basis functions in the hidden layer are 

shown in Fig. 4 

 

Fig. 4. The RBF neural network approximating the linearized feedback 

controller 

In Fig. 4, the RBF network directly approximates the 

adaptive control law 𝑢̂, and the output weights 𝜃𝑢 are updated 

online. 

𝑢̂ = 𝜉𝑢
𝑇𝜃𝑢 (15) 

𝜉𝑢represents the hidden layer's output. 

𝜉𝑢(𝑥) = [𝜉𝑢1(𝑥) 𝜉𝑢2(𝑥) ... 𝜉𝑢9(𝑥)]
𝑇 (16) 

The following is the definition of the i-th RBF basis 

function. 
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𝜉𝑢𝑖(𝑥) = 𝑒
−
[(𝑥1−𝜇1𝑖)

2+(𝑥2−𝜇2𝑖)
2]

𝜎𝑖
2

 
(17) 

These functions are chosen so that they distribute 

uniformly throughout the state space and the dispersions 𝜎𝑖 
( i = 1…9) are chosen to be equal, choose 𝜎𝑖 = 𝜎 . The 

positions of the RBF neuron centers are distributed, as shown 

in Fig. 5. 

 

Fig. 5. The centers positions of the RBF neural network 

𝜃𝑢 is the weight vector of the output layer of the RBF 

network. 

𝜃𝑢 = [𝜃𝑢1 𝜃𝑢2 ... 𝜃𝑢9]
𝑇 (18) 

The RBF network updates the vector 𝜃𝑢  online to get 

𝑢̂closer to the optimal value 𝑢∗. There is a structural error in 

the network 𝛿𝑢(𝑥) , because it is used to approximate the 

optimal control rule with limited RBF nodes, 

𝑢∗(𝑥) = 𝜃𝑢
∗𝜉𝑢(𝑥) + 𝛿𝑢(𝑥) (19) 

Consequently, the following represents the variation 

between the achieved rule 𝑢̂along with the optimal rule 𝑢∗ 

𝑢̂(𝑥) − 𝑢∗(𝑥) = 𝜃̃𝑢𝜉𝑢(𝑥) − 𝛿𝑢(𝑥) (20) 

With 𝜃̃𝑢 denoting the approximation error 

𝜃̃𝑢 = 𝜃𝑢 − 𝜃𝑢
∗ (21) 

Hypothesis 1: There is a continuous function 𝛿̄𝑢(𝑥) since 

the RBFNN approximates the controller in a way that allows 

the top bound of the structural error 𝛿𝑢(𝑥) to be known 

beforehand in a manner that |𝛿𝑢(𝑥)| ≤ 𝛿̄𝑢(𝑥), ∀𝑥. 

Owing to structural error 𝛿𝑢(𝑥), we select the following 

control law to guarantee the system's stability. 

𝑢 = 𝑢̂ + 𝑢𝑠𝑑 (22) 

Wherein 𝑢𝑠𝑑 is the sliding controller responsible for 

stabilizing the system, chosen such that the derivative of the 

Lyapunov function is negative semi-definite. From equation 

(4), it gives, 

𝑦̈ = 𝑎(𝑥) + 𝑏(𝑥)𝑢∗(𝑡) + 𝑏(𝑥)[𝑢(𝑡) − 𝑢∗(𝑡)] (23) 

𝑦̈ = 𝑣(𝑡) + 𝑏(𝑥)[𝑢(𝑡) − 𝑢∗(𝑡)] 

Wherein 𝑣(𝑡) ∈ 𝑅  denotes the dynamic system's input 

matrix, which has the following definition. 

𝑣(𝑡) = 𝑦̈𝑑 + 𝑒̄𝑠 + 𝜂𝑒𝑠 (24) 

With 0,  𝑒𝑠  and 𝑒̄𝑠 are given by the following 

definitions. 

𝑒𝑠(𝑡) = 𝑒̇0(𝑡) + 𝑘1𝑒0(𝑡) (25) 

𝑒0(𝑡) = 𝑦𝑑(𝑡) − 𝑦(𝑡) (26) 

𝑒̄𝑠 = 𝑒̇𝑠 − 𝑒̈0 = 𝑘1𝑒̇0 (27) 

Wherein 𝑒0(𝑡)  indicates the plant’s output error and 𝑒𝑠(𝑡) 
indicates the track’s erroneous value. The parameter 𝑘1 is 

selected to satisfy the Routh-Hurwitz criteria. Here Hurwitz 

polynomial is: 𝛥𝑠 = 𝑠̇ + 𝑘1𝑠. 

Equations above-mentioned (27), (23)-(24), when 

combined, yield 

𝑒̈0(𝑡) = 𝑦̈𝑑(𝑡) − 𝑦̈(𝑡) (28) 

𝑒̈0(𝑡) = 𝑦̈𝑑(𝑡) − 𝑣(𝑡) − 𝑏(𝑥)[𝑢(𝑡) − 𝑢
∗(𝑡)] (29) 

𝑒̈0(𝑡) = −𝑒̄𝑠 − 𝜂𝑒𝑠 − 𝑏(𝑥)[𝑢̂(𝑡) + 𝑢𝑠𝑑(𝑡) − 𝑢
∗(𝑡)] (30) 

Following the substitution of (20) and (27) into (30), the 

tracking error's dynamic properties are given as follows. 

𝑒̇𝑠 + 𝜂𝑒𝑠 = −𝑏𝜃̃𝑢𝜉𝑢(𝑥) + 𝑏𝛿𝑢(𝑥) − 𝑏𝑢𝑠𝑑 (31) 

Choosing a quadratic Lyapunov candidate as follows, 

𝑉 =
1

2𝑏
𝑒𝑠
2 +

1

2
𝜃̃𝑢
𝑇𝑄𝑢𝜃̃𝑢 (32) 

With 𝑄𝑢being a positive definite weighting matrix. 

Hypothesis 2: 𝑏(𝑥) remains within a bounded range 

0 < 𝑏̱(𝑥) ≤ 𝑏(𝑥) ≤ 𝑏̄(𝑥) < ∞ 

Making a differentiation of the function𝑉 with respect to 

time yields 

𝑉̇ =
1

𝑏
𝑒𝑠𝑒̇𝑠 −

𝑏̇

2𝑏2
𝑒𝑠
2 + 𝜃̃𝑢

𝑇𝑄𝑢𝜃̇𝑢 (33) 

When (31) is inserted to 𝑉̇, it gives, 

𝑉̇ = −
𝜂𝑒𝑠

2

𝑏
− 𝑒𝑠𝑢𝑠𝑑 + 𝑒𝑠𝛿𝑢 + 𝜃̃𝑢

𝑇(𝑄𝑢𝜃̇𝑢 − 𝜉𝑢𝑒𝑠)

−
𝑏̇

2𝑏2
𝑒𝑠
2 

(34) 

The following is the selection of the adaptive law. 

𝜃̇𝑢 = 𝑄𝑢
−1𝜉𝑢𝑒𝑠 (35) 

By inserting (35) into (34), we derive. 
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𝑉̇ = −
𝜂𝑒𝑠

2

𝑏
− 𝑒𝑠𝑢𝑠𝑑 + 𝑒𝑠𝛿𝑢 −

𝑏̇

2𝑏2
𝑒𝑠
2 

𝑉̇ ≤ −
𝜂𝑒𝑠

2

𝑏
− 𝑒𝑠𝑢𝑠𝑑 + |𝑒𝑠|(|𝛿𝑢| +

|𝑏̇|

2𝑏2
|𝑒𝑠|) 

𝑉̇ ≤ −
𝜂𝑒𝑠

2

𝑏̄
− 𝑒𝑠𝑢𝑠𝑑 + |𝑒𝑠|(|𝛿̄𝑢| +

𝛾𝑏
2𝑏̱2

|𝑒𝑠|) (36) 

Hypothesis 3: There is a continuous function𝛾𝑏(𝑥)  for 

which |𝑏̇|(𝑥) ≤ 𝛾𝑏(𝑥), and 𝑏(𝑥)has a limited fluctuation rate 

Definition of the sliding mode controller 

𝑢𝑠𝑑 = (𝛿̄𝑢 +
𝛾𝑏
2𝑏̱2

|𝑒𝑠|) 𝑠𝑔𝑛( 𝑒𝑠) (37) 

By inserting (37) into (36), we derive. 

𝑉̇ ≤ −
𝜂𝑒𝑠

2

𝑏̄
≤ 0 (38) 

The system stays stable because V denotes a non-negative 

definite equation along with 𝑉̇ ≤ 0. Therefore, the Lyapunov 

stability theorem guarantees the ANSMC controller's 

stability. 

Problem 2 formulation: 

Trial and error is used to find 𝜎𝑖 , 𝑘1 , 𝜂  and 𝑄𝑢  in 

equations (17), (25), (31), and (35) due to the controller's 

settings. As a result, it isn't easy to optimize these values. As 

explained in parts B and C, this study suggests using 

optimization methods to optimize these parameters to address 

this issue. 

B. Evaluation of Optimization Techniques for EANSMC 

Controller Parameter Tuning Within the Coupled-Tank 

System  

Five optimization techniques- PSO [59], GA [63], RAO 

3 [68], FISA [71], and MDE [78] will be applied to optimally 

identify the ANSMC’s parameters. All these methods have 

unique requirements and objective equations. To guarantee a 

fair comparison, each method is executed ten times from the 

same initial location. The average outcomes from these ten 

runs are then used to compare the method’s convergence 

values. 

Table II presents the parameters used in the simulations 

for the five optimization techniques: PSO, GA, RAO-3, 

FISA, and MDE, including both common and algorithm-

specific parameters. An improper selection of these 

parameters may negatively impact the convergence quality of 

the algorithms. After testing, the parameters listed in this 

table provide the best convergence of the objective function 

for the considered optimization algorithms when tuning the 

controller parameters for the CTS system (1), under the 

physical constraints of the system, including the control input 

voltage u ∈ [0, 24] V, and state variables 𝑥1,  𝑥2 ∈ [0, 30] cm. 

The following objective equation, used for all five 

algorithms, is chosen based on the ISE criterion evaluated 

over a 350-second duration. Objective function. 

𝑓 = ∫ 𝑒0
2(𝑡)𝑑𝑡

𝑡

0

 (39) 

with 𝑒0 = (𝑦𝑑 − 𝑦) from (26). 

TABLE II.  PARAMETERS USED FOR FIVE OPTIMIZATION 

TECHNIQUES 

Method Parameters Value 

General 

Population size, NP 50 

Number of generations, 400 

Upper bound of  4 variables, 

[𝑘1, 𝜂, 𝜎, Q𝑢] 
[50, 20, 20, 100] 

 

Lower bound of  4 variables [0.01, 0.01, 0.01, 1] 

Initial objective function value 13.552 

PSO 
Velocity update constant  𝑐1, c2 2 

Inertia weight 0.4 

GA 

Mutation rate 10% 

Crossover rate 90% 

Stall generation 200 

Convergence function tolerance 10−3 

RAO 3 No specific method parameters  

FISA No specific method parameters  

MDE 
Mutation coefficient, F [0.4, 1] 

Crossover rate, CR [0.7, 1] 

 

Fig. 6 illustrates the comparative outcomes of ANSMC 

coefficients tuning, revealing that the FISA method produced 

the poorest convergent curve, while the MDE method 

exhibited the best and smallest convergence. Consequently, 

this study suggests the MDE optimization method to fine-

tune the ANSMC’s parameters, as elaborated in the 

subsequent subsection. The performance of the MDE 

algorithm can be significantly affected if the parameters CR 

and F in Table II are not appropriately selected. In this paper, 

the MDE algorithm [78] is employed, where the parameters 

CR and F are dynamically adjusted at random within the 

ranges [0.4, 1] and [0.7, 1], respectively, to enhance the 

algorithm's ability to search in many different directions. 

Additionally, the mutation phase of the standard DE 

algorithm is modified by combining two mutation strategies, 

rand/1 and best/1, to generate trial vectors, instead of using 

only a single mutation operator (either rand/1 or best/1) as in 

the standard DE. This modification aims to balance the global 

exploration and local exploitation capacities, thereby 

improving the ability to find the global optimum solution. 

 

Fig. 6. Comparative results of various optimal approaches for ANSMC  
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C. DE Meta-Heuristic Method 

The DE optimization method [72] effectively searches for 

the global optimum of objective functions, including non-

differentiable ones. The following is a summary of the 

method. 

1) Initialization: An Initial Population of NP Candidates, 

Each Expressed as a D-Dimensional Vector, is Generated 

at Random to Begin the DE Method 

𝑋⃗𝑖,𝐺 = (𝑥1,𝑖,𝐺 , 𝑥2,𝑖,𝐺 , . . . , 𝑥𝐷,𝑖,𝐺) (40) 

Every candidate 𝑋⃗𝑖,𝐺represents an optimal solution with 

D variables limited within the bounds 𝑥𝑀𝑖𝑛and 𝑥𝑀𝑎𝑥  . G is 

the number of evolution generations,  where G = 

0,1,2…,𝐺𝑀𝑎𝑥, I = 1,2,…,NP. 

2) Mutation  

The modified vector (the goal vector) for the i-th 

candidate is created by the randomized merging of three 

different vectors 𝑋⃗𝑟1𝑖
, 𝑋⃗𝑟2𝑖

, 𝑋⃗𝑟3𝑖
  from the present iteration 

population. 

𝑉⃗⃗𝑖,𝐺 = 𝑋⃗𝑟1𝑖 ,𝐺
+ 𝐹(𝑋⃗𝑟2𝑖 ,𝐺

− 𝑋⃗𝑟3𝑖 ,𝐺
) (41) 

The randomized integers 𝑟1
𝑖 , 𝑟2

𝑖  and 𝑟3
𝑖  are random 

numbers within [1, NP]. Between either of the three vectors, 

the modified factor 𝐹 ∈ [0,1] lessens the difference. 

3) Crossover 

The crossover operation is carried out to enhance the 

variety within the population after the modified vector has 

been created. A test vector 𝑈⃗⃗⃗𝑖,𝐺 = [𝑢1,𝑖,𝐺 , 𝑢2,𝑖,𝐺 , . . . , 𝑢3,𝑖,𝐺] is 

produced by crossing the mutation-resulting vector 𝑉⃗⃗𝑖,𝐺  with 

a vector 𝑋⃗𝑖,𝐺 . The testing vector is usually created using the 

DE method using a binomial crossover strategy, which is 

explained as follows: 

𝑢𝑗,𝑖,𝐺 = {
𝑣𝑗,𝑖,𝐺  if (rand𝑗,𝑖[0,1] ≤ 𝐶𝑅)

𝑥𝑗,𝑖,𝐺  otherwise
 (42) 

Here, i=1, 2, …, NP; j= 1,2, …, D; CR stands for the 

Crossing Ratio, and rand𝑗,𝑖[0,1] is an arbitrary number. 

4) Selection 

A comparison is made between the target vector 𝑋⃗𝑖,𝐺 and 

trial vector 𝑈⃗⃗⃗𝑖,𝐺 . The procedure for selection is described 

below. 

𝑋⃗𝑖,𝐺+1 = {
𝑈⃗⃗⃗𝑖,𝐺  if  𝑓(𝑈⃗⃗⃗𝑖,𝐺) ≤ 𝑓(𝑋⃗𝑖,𝐺)

𝑋⃗𝑖,𝐺
 (43) 

Here, 𝑓(𝑋⃗) denotes objective function. 

5) Convergence 

The entire process, including mutation, crossover, and 

selection, is carried out in a single iteration. The iterative 

cycle keeps going until one of the events listed below 

happens: the objective function reaches the desired minimal 

value, the quantity of generations approaches an upper limit, 

or the objective function stays constant for a meaningful 

amount of time. 

D. ANSMC Controller Parameter Optimization with the 

Suggested Modified MDE Technique   

In part C, the fundamental DE optimizing method [72] 

makes use of a predetermined crossover rate  𝐶𝑅 = 0.7and 

mutation coefficient 𝐹 = 0.4. These two parameters, along 

with the population size NP, significantly impact the quality 

of the DE method.  

The mutation coefficient F adjusts the amplitude of the 

differential vector when creating the mutated vector. A large 

𝐹 encourages exploration of a larger seeking area but may 

cause an early convergent curve. Conversely, a reduced 𝐹 

confines the search to a local area but increases convergent 

time. The crossover rate, CR, confirms the diverse particles. 

A high CR increases the likelihood of introducing new 

individuals into the population, expanding the search space, 

but possibly slowing convergence. On the other hand, a very 

low CR results in fewer new individuals entering the 

population, which could lead to premature convergence. 

Therefore, CR should be sufficiently large to ensure adequate 

search space while being small enough to allow for 

acceptable convergence time. This study suggests an MDE 

method [78] where 𝐹 and 𝐶𝑅 are not fixed, as in the basic DE 

method  [72], but change randomly after every generation 

with 𝐹 ∈ [0.4,1]  and 𝐶𝑅 ∈ [0.7,1]  to enhance the 

optimization performance of the DE method.  

Fig. 7 shows the structure of the ANSMC controller with 

parameters optimized using the MDE algorithm. The 

ANSMC controller parameters are optimized offline via the 

objective function (39). The flowchart of the proposed 

EANSMC-MDE algorithm is presented in Fig. 8. 

 
Fig. 7. The ANSMC Controller that has been optimized using the MDE 

method. 

Fig. 8 illustrates the flowchart of the proposed EANSMC-

MDE controller. First, the system state x(t) is updated. Then, 

the output error 𝑒0 in (26) and the sliding surface 𝑒𝑠 in (25) 

are calculated. Next, this sliding surface is used to compute 

the adaptive law (35) to eliminate the approximation error 𝜃̃𝑢 

in (21). Simultaneously, it is also employed to calculate the 

sliding control law 𝑢𝑠𝑑  in (37). Based on the adaptive law 

(35), the output weights 𝜃𝑢 of the RBFNN are updated. 

Afterward, the adaptive controller 𝑢̂  in (15) is calculated. 

Subsequently, the overall ANSMC control law u in (22) is 

computed before being applied to control the CTS system. 

Finally, the control performance of the proposed algorithm is 

evaluated. 
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Fig. 8. The proposed EANSMC-MDE Controller flowchart 

Fig. 9 presents the graph of the objective function after 

ten optimization runs of the ANSMC controller parameters 

over 400 generations, showing a consistent decrease in the 

objective function. Moreover, after around 200 generations, 

all runs exhibit the objective function values approaching the 

optimal and becoming nearly identical. Finally, convergence 

to the same objective value of 6.94026. This demonstrates the 

convergence capability of the proposed MDE method in 

tuning the parameters of the ANSMC controller. Among the 

runs, the 7th run, represented by the MDE6 curve, achieved 

the lowest convergence value of 6.9402062421618. The 

MDE method is designed to find the objective function's 

lowest value, and when the objective function (39) reaches its 

minimum, the error 𝑒 also reaches its minimum. The results 

of the decision variables are as follows. 

Table III presents the parameters of the ANSMC 

controller after being optimally tuned using the MDE 

algorithm. These parameters will be used in the simulations 

presented in Section IV. However, these parameters are no 

longer optimal when applied in real-time due to the variation 

of uncertain nonlinear factors during operation. In such cases, 

the ANSMC algorithm will adjust itself to adapt to these 

changes. 

 

Fig. 9. Objective function while employing the MDE method to optimize the 

ANSMC controller's parameters 

TABLE III.  THE PARAMETERS OF THE ANSMC CONTROLLER AFTER 

BEING OPTIMALLY TUNED USING THE MDE ALGORITHM 

Solution X 
Decision variables 

𝒌𝟏 𝜼 𝝈 𝑸𝒖 

Value 0.01 6.5712 17.1839 21.1282 

 

IV. SIMULATION RESULTS  

The simulation of the EANSMC-MDE control system is 

carried out using the parameters of the ANSMC control 

system optimized by the MDE method in part D to control 

the CTS system. The results are compared with the ANSMC 

method and the SMC-MDE method, which is the 

conventional SMC technique (13) optimized by the MDE 

algorithm. Both controllers were parameter optimized using 

the same MDE settings as applied to the ANSMC control 

system. 

Use a reference signal that was previously trained and 

varied over several levels to compare the CTS system's output 

response across several control methods.  

Fig. 10 presents a comparison of the methods' output 

responses using the learned benchmark signal. Every method 

exhibits output tracking of the fluctuating benchmark test, 

which represents oscillating around the benchmark signal 

because of chattering. The EANSMC-MDE method achieves 

the fastest response, reaching steady-state within 

approximately 20 seconds, with zero steady-state error and 

no overshoot. Furthermore, the indexes of control quality for 

each method, as shown in Table IV, indicate that the 

EANSMC-MDE method outperforms the others in control 

quality. The methods will be further validated with an 

untrained reference signal, model parameter variations, and 

output sensor noise in the following sections. 

TABLE IV.  EVALUATION OF CONTROL QUALITY INDEXES ACROSS 

DIFFERENT METHODS 

Quality 

Indexes 
EANSMC-MDE ANSMC SMC-MDE 

IAE 249.4 263 320.5 

ISE 1300 1358 1676 

ITAE 3.958*104 4.313*104 5.42*104 
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Fig. 10. Evaluation of the CTS system's output performance across different 

methods using the trained benchmark  

• Validate the output response results with varying and 

untrained reference signals. 

• Validate the output response results with an untrained 

reference signal, output sensor noise, and varying model 

disturbing the outlet valve area 𝑏2of Tank 2 in Fig. 12, Fig. 

13 to Fig. 14. 

Fig. 11 presents a comparison of output response curves 

among the methods with the not-yet-trained reference signal. 

Despite more significant variations in the reference signal 

than the trained signal, the output response of EANSMC-

MDE remains fast, without overshooting, and with zero 

steady-state error. Meanwhile, between 100 and 150 seconds, 

the SMC-MDE method exhibits an undershoot response. 

 

Fig. 11. The CTS system output𝑥2response to an untrained reference signal  

 

Fig. 12. The CTS system output𝑥2 response to output sensor noise and 

disturbance drain𝑏2with an untrained reference signal  

 

Fig. 13. CTS system output𝑥2response to output sensor noise and decrease 

drain 𝑏2with untrained reference signal (zooming from Fig. 12)  

 

Fig. 14. CTS system output𝑥2response to output sensor noise and increase 

drain𝑏2with untrained reference signal (zooming from Fig. 12)  

Fig. 13 and Fig. 14 are zoomed pictures from Fig. 12, 

depicting the valve opening of Tank 2 decreasing 30% from 

220 seconds and increasing 50% from 270 seconds. 

Consequently, the output response of the EANSMC-MDE 

and ANSMC overshoot lasted for about 1.5 seconds before 

returning to a steady state. Meanwhile, the SMC-MDE 

method becomes unstable from 220 seconds onwards. This is 

because the traditional SMC algorithm (13) depends on the 

mathematical model of the controlled system. Therefore, 

when the model parameters change significantly along with 

variations in the reference signal, the system becomes 

unstable. In such cases, the controller parameters need to be 

re-tuned appropriately so that the system may respond 

properly, depending on the specific conditions. With the 

presence of output sensor noise starting at 260 seconds, with 
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a zero mean and variance of 0.05, the output responses of the 

EANSMC-MDE and ANSMC methods oscillate around the 

reference signal. Additionally, when the drain increases by 

50% from 270 seconds onwards, the outputs oscillate more 

for about 3 seconds, then stabilize around the reference signal 

under the influence of output sensor noise. 

Fig. 15 presents the responses of the nine output weights 

𝜃𝑢  of the RBF network in the EANSMC-MDE controller 

under the influence of output sensor noise and disturbance 

drain 𝑏2  of Tank 2 with an untrained signal. These results 

indicate that when there are changes in the reference signal, 

output sensor noise, or model parameters, these weights 

respond quickly to help the system return to a stable state and 

track the reference signal. 

 

Fig. 15. CTS system output 𝑥2 response to output sensor noise and 

disturbance drain 𝑏2of Tank 2 with an untrained reference signal  

• Validate the output response results with an untrained 

reference signal, output sensor noise change to simulate 

measurement noise that may be present in a real system, 

and Gaussian noise with zero mean and a variance of 0.1 

is added [80]. In addition, further validation is conducted 

for cases where the noise level increases by a factor of 2 

to 8, corresponding to variances of 0.2, 0.4, and 0.8. 

• Validate the output response results with an untrained 

reference signal and varying model disturbing the outlet 

valve area 𝑏2of Tank 2 

The following simulation results validate the output 

response of 𝑥2 to a high-level reference signal under the 

influence of the gradual increase of the outlet valve area 𝑏2 

of Tank 2. 

Fig. 16 presents the validation results of the output 

response when the output sensor signal is corrupted by noise 

with increasing variance from 0.1 to 0.8. Table V summarizes 

the total error using the ISE criterion corresponding to each 

variance level. When the variance is 0.1, the output tracks the 

reference signal well, with a total error of 3958. If the 

variance is doubled, the error increases by 10%. However, as 

the variance continues to rise, the error grows rapidly. When 

the variance reaches 0.8, the error increases by 44% 

compared to the case with a variance of 0.1. The zoomed 

view in Fig. 16 shows that as the variance increases, the 

output's ability to track the reference signal, particularly 

during significant transitions from 5 cm to 25 cm, 

significantly deteriorates. This indicates that the higher the 

amplitude of sensor noise, the more it negatively affects the 

output tracking performance of the system.  

 

Fig. 16. CTS system output 𝑥2 response to output sensor noise change 

variance with an untrained reference signal  

TABLE V.  EVALUATION OF CONTROL QUALITY INDEXES ACROSS 

OUTPUT SENSOR NOISE CHANGE VARIANCE 

Variance 0.1 0.2 0.4 0.8 

ISE 3958 4346 5035 6765 

Increase  10% 17% 44% 

 

Fig. 17 shows that when the outlet valve area 𝑏2of Tank 

2 increases from 0.7 cm² to 1.2 cm², the water level 𝑥1  in 

Tank 1 rises to approximately 28.7 cm. At this point, the 

output 𝑥2closely tracks the reference signal Ref = 20 cm. 

When 𝑏2 increases from 0.7 cm² to 1.2247 cm², 𝑥1 further 

increases to 𝑥1𝑚𝑎𝑥 cm, while the output 𝑥2 still maintains 

good tracking of the reference Ref = 20 cm. However, when 

𝑏2 increases from 0.7 cm² to 1.25 cm², 𝑥1  reaches its 

maximum level 𝑥1𝑚𝑎𝑥  cm, but 𝑥2  can no longer track the 

reference signal Ref = 20 cm and only maintains at 19.2 cm. 

These results can be explained by the physical constraints 

of the CTS system (1) as follows: 

 

Fig. 17. CTS system output𝑥2response to increased drain𝑏2with an untrained 

reference signal  
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The controller is responsible for ensuring that the output 

𝑥2 tracks the reference, Ref. When the output 𝑥2 reaches a 

specific value 𝑥2 = 𝑥20, 𝑥20 may or may not coincide with 

Ref, depending on the controller’s capability and the physical 

limitations of the CTS system. At that time, the differential 

equation 𝑥̇2 =
1

𝐴2
(𝑏1𝐶1√2𝑔𝑥1 − 𝑏2𝐶2√2𝑔𝑥2)  of the CTS 

system (1) becomes 

1

𝐴2
(𝑏1𝐶1√2𝑔𝑥1 − 𝑏2𝐶2√2𝑔𝑥20) = 0 (44) 

From (44), 𝑥20is obtained as follows: 

𝑥20 = (
𝑏1𝐶1
𝑏2𝐶2

)
2

𝑥1 (45) 

When the outlet valve area 𝑏2 increases, the controller 

attempts to increase 𝑥1  accordingly so that 𝑥20  reaches the 

reference value, Ref. However, 𝑥1 is limited by its physical 

constraint 𝑥1 = 𝑥1𝑚𝑎𝑥. If 𝑏2continues to increase beyond the 

limit 𝑏2𝑚𝑎𝑥 as defined in (46), then 𝑥20 still cannot reach the 

reference value, Ref, even though the controller has already 

driven 𝑥1to its maximum 𝑥1 = 𝑥1𝑚𝑎𝑥 . 

𝑅𝑒𝑓 = 𝑥20 = (
𝑏1𝐶1
𝑏22𝑚𝑎𝑥

()2
1𝑚𝑎𝑥

) (46) 

Alternatively, to ensure 𝑥20= Ref, the maximum value 

𝑏2𝑚𝑎𝑥 is determined as follows. 

𝑏
𝑏1𝐶1
𝐶2

√
𝑥1𝑚𝑎𝑥
Ref

2𝑚𝑎𝑥

 (47) 

When 𝑥1 = 𝑥1𝑚𝑎𝑥  cm, to achieve 𝑥20 = Ref = 20  cm, 

from (47), we obtain 𝑏2𝑚𝑎𝑥 cm². When increasing 𝑏2 beyond 

this value, for example, 𝑏2= 1.25 cm², with 𝑥1 = 𝑥1𝑚𝑎𝑥 cm, 

𝑏1 = 1  cm² and 𝐶1 = 𝐶2 = 0.8  cm² (from Table I). From 

(45), 𝑥2 can be calculated as 19.2 cm. In this case, 𝑥2 cannot 

reach the reference value Ref = 20 cm. Therefore, in order for 

𝑥2  to reach Ref = 20 cm, 𝑏2  must not exceed this limit of 

𝑏2𝑚𝑎𝑥 cm². These calculations confirm the simulation results 

shown in Fig. 17. Hence, when changing Ref or modifying 

parameters of the CTS system model (1), in order to track 

Ref, the physical constraint (45) must be satisfied. When only 

Ref and 𝑏2  are varied,  these two quantities must satisfy 

condition (48) 

{Ref = 𝑥20 ≤ (
𝑏1𝐶1
𝑏22𝑚𝑎𝑥

()2
1𝑚𝑎𝑥

|𝑏2 ≤ 𝑏
𝑏1𝐶1
𝐶2

√
𝑥1𝑚𝑎𝑥
Ref

2𝑚𝑎𝑥

{) (48) 

The above simulation results clearly demonstrate that the 

EANSMC-MDE method surpasses the other methods in 

terms of output response characteristics and performs well 

with both changing reference signals and untrained signals, 

as shown in Fig. 10 and Fig. 11. Next, the online adaptive 

capability of the EANSMC-MDE method is validated by 

varying the model parameters and output sensor noise in Fig. 

12, Fig. 13, Fig. 14 to Fig. 15 demonstrates the rapid and 

effective response capabilities of the RBF network to various 

disturbances, demonstrating the controller's effective online 

adaptation. Moreover, Fig. 16 presents the system’s output 

response when sensor noise increases several times compared 

to the levels that could be present in the real system model 

[80], resulting in a rapid rise in output tracking error, which 

leads to a significant reduction in control performance. 

Furthermore, Fig. 17 shows the output response when the 

reference signal undergoes large changes and the outlet valve 

parameter varies significantly beyond the physical limits of 

the system, causing the output to fail to follow the reference. 

To ensure control performance, these variations must satisfy 

the physical constraint conditions (45) and (48) of the CTS 

system (1). The above simulation results demonstrate that the 

proposed controller can provide satisfactory performance 

under output sensor noise, external disturbances that cause 

variations in model parameters, and changes in reference 

signals—conditions that may occur in a real-world uncertain 

nonlinear system, provided that these changes remain within 

the system’s physical constraints. Furthermore, the proposed 

controller, as designed in Section III.A, does not require the 

mathematical model of the plant. Therefore, the proposed 

method holds promise for application to other uncertain 

nonlinear MISO/MIMO systems. 

V. CONCLUSION 

The EANSMC-MDE method for liquid level control in a 

CTS system, which is a nonlinear system with high delays 

and several uncertainties, such as load variations, model 

parameter variations, sensor noise, etc., is suggested in this 

study. The proposed method integrates the ANSMC method 

optimized via the MDE optimization method. This 

optimization method is compared with other meta-heuristic 

methods such as PSO, GA, RAO-3, and FISA. The controller 

was designed using the Lyapunov stability theorem to 

guarantee system stability. Benchmark tests applied to the 

suggested method, the ANSMC and conventional SMC, all 

optimized with the MDE method under the same settings as 

the ANSMC method, were carried out to show the efficacy of 

the suggested method. According to simulation results, the 

suggested method produces a quick output response with no 

overshoot and no steady-state inaccuracy. Most control 

quality indices perform superior compared to the results of 

other methods. Moreover, the system output responds well 

despite significant changes in the reference signal, regardless 

of prior training. Additionally, the results verified with 

varying model parameters and output sensor noise 

demonstrate the good adaptive capability of the proposed 

controller. As a result, the suggested EANSMC-MDE 

method validates its capacity for efficient application in 

controlling a variety of additional nonlinear MISO and 

MIMO systems. However, if the sensor noise variance is 

increased to several times higher than the level that could 

exist in a real system [80], the response quality of the system 

significantly deteriorates. Additionally, when the reference 

signal undergoes large changes, if the system parameters are 

altered excessively beyond the physical limits of the system, 

the output cannot follow the reference even if the controller 

performs well. The strength of the proposed algorithm lies in 

its ability to provide stable control performance right from the 

initialization phase, thanks to the parameters having been 

optimized beforehand. However, the limitation is that the 

ANSMC controller parameters are optimally tuned offline 
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using the MDE algorithm. Therefore, a model of the system 

is required for parameter optimization. As a result, when 

applying the controller to a real system, the system model 

must first be identified before applying MDE to tune the 

controller parameters. Moreover, these optimized parameters 

may no longer remain optimal when the system encounters 

changing uncertainties during real-time operation. 

Nevertheless, the ANSMC controller is capable of 

compensating for such varying uncertainties through 

approximation, thereby maintaining control quality. 

Furthermore, the proposed MDE optimization algorithm [78] 

relies on the dynamic adjustment of parameters F and CR, but 

its performance has not been verified under different 

variations of these parameters. Future work will focus on 

applying the proposed algorithm to real systems, systems 

with fast dynamic responses, by incorporating nonsingular 

terminal sliding mode control to regulate the convergence 

time of the system. 
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