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Abstract—Emotion recognition using EEG signals has 

gained significant attention in affective computing and brain-

computer interface (BCI) applications. However, achieving high 

classification accuracy remains a challenge due to the 

complexity and variability of EEG signals. This study aims to 

optimize the Gated Recurrent Unit (GRU) model for improving 

the performance of EEG-based emotion classification. The 

approach involves feature selection and architectural 

modifications to the GRU model. Selected EEG features include 

mean, standard deviation, statistical moments (skewness and 

kurtosis), min-max values, logarithmic covariance matrix, 

covariance matrix, Shannon entropy, log-energy entropy, Fast 

Fourier Transform, and autocorrelation, extracted from alpha 

and beta frequency bands. The proposed GRU model consists of 

four stacked GRU layers with decreasing hidden state sizes, 

ensuring efficient temporal feature extraction while reducing 

computational complexity. Experimental results demonstrate 

the superiority of the proposed GRU model compared to Simple 

RNN, LSTM, and traditional Machine Learning models (Naïve 

Bayes, SVM, Random Forest, and Linear Regression). The GRU 

model achieves high recall (98.81%), specificity (99.42%), 

precision (98.82%), accuracy (99.22%), and F1 Score (98.81%), 

outperforming alternative models in all evaluation metrics. 

These findings indicate that the GRU model effectively captures 

temporal dependencies in EEG signals, making it a robust and 

efficient approach for EEG-based emotion classification. In 

conclusion, this research confirms that GRU is an optimal deep 

learning model for emotion recognition using EEG. Future 

research could explore multi-modal emotion recognition, 

attention-based architectures, and real-time deployment in 

wearable EEG devices to further enhance classification 

accuracy and real-world applicability. 

Keywords—EEG-based Emotion Classification; BCI; 

Affective Computing; Gated Recurrent Unit; Temporal Feature 

Extraction. 

I. INTRODUCTION 

EEG signal-based emotion classification has become a 

major focus in Affective Computing and human-machine 

interaction research [1]. Emotions are a fundamental aspect 

of human life that influences decision-making, social 

behavior, and mental health [2]. However, measuring and 

classifying emotions remains a challenge due to its subjective 

and complex nature [3]. EEG, as a technique for recording 

brain electrical activity, offers a more objective approach to 

recognizing emotions compared to methods based on facial 

expressions or voice analysis [4]. With its ability to capture 

brain wave patterns in real-time, EEG is a promising tool for 

detecting and classifying a person's affective state, such as 

happy, sad, angry, or neutral [5]. The main advantage of EEG 

in emotion classification is its ability to capture brain activity 

that cannot be consciously controlled, thus providing a more 

accurate picture of a person's emotional state [6]. EEG also 

has high temporal resolution, allowing the detection of 

changes in brain activity in milliseconds, much faster than 

other brain imaging methods such as fMRI [7]. In addition, 

modern EEG devices are increasingly portable and non-

invasive, allowing for use in a variety of environments, 

including psychology research, Human-Computer 

Interaction (HCI), and neurofeedback therapy [8]. Despite 

these advantages, EEG signals face several notable 

limitations. EEG is highly susceptible to noise from various 

sources, such as muscle movements, eye blinks, and 

environmental interference, which can significantly affect 

signal quality and classification accuracy [9]. In recent years, 

Artificial Intelligence, especially Machine Learning and 

Deep Learning, have played a significant role in improving 

the accuracy of EEG-based emotion classification [10]. AI 

models are able to extract complex patterns from EEG signals 

that are difficult to interpret manually. Techniques such as 

SVM, Random Forest, and k-NN have been widely used in 

EEG feature processing [11].  

However, Deep Learning-based approaches are 

increasingly being adopted due to their ability to process EEG 

data directly without the need for manual feature extraction 

[12]. These models have shown significant improvements in 

emotion classification accuracy and open up broad 

opportunities in various applications [13]. Several recent 

studies have proposed various methods to enhance the 

accuracy of EEG-based emotion detection or classification. 

One promising approach is the integration of EEG with 

audiovisual signals using contrastive learning, as done by Lee 

et al. (2024) [14]. This model combines cross-modal attention 

mechanisms to improve the accuracy of emotion 

classification, demonstrating that the use of multimodal data 

can improve the accuracy of EEG-based classification 

systems. In the context of deep learning, several architectures 

have been explored to improve the performance of emotion 

classification. Kulkarni et al. (2024) developed a model based 

on DCNN and Bi-GRU, combined with Fourier Transform 

and Common Spatial Pattern for feature extraction [15]. This 

model achieved an accuracy of 96.24%, indicating that the 

combination of transform-based feature extraction and deep 
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learning can improve the effectiveness of EEG-based 

emotion classification systems. In addition, Dai et al. (2022) 

proposed a Cross-Connected Convolutional Neural Network 

(C-CNN) that integrates information from multiple 

convolutional layers, achieving an accuracy of 93.7%, 

demonstrating the superiority of this model in capturing 

complex patterns in EEG signals [16]. 

Classical machine learning-based approaches are also still 

used for EEG-based emotion classification. Reis et al. (2025) 

evaluated SVM, MLP, and Random Forest in human-

machine interaction to predict valence and arousal [17]. This 

study highlights that with proper feature selection, classical 

machine learning models can still provide competitive 

performance in EEG-based emotion classification systems. 

Meanwhile, Zuo et al. (2025) compared the effectiveness of 

various machine learning models in classifying EEG signals 

triggered by 2D and 3D VR stimuli, with the result that the 

Common Spatial Patterns (CSP) method was superior to 

Power Spectral Density (PSD) [18]. The Random Forest 

model achieved the highest accuracy of 95.02%, 

demonstrating the effectiveness of machine learning methods 

for VR-based emotion analysis. In addition to deep learning 

and machine learning, fuzzy inference-based approaches 

have begun to be developed to handle ambiguity in EEG 

signals. Li et al. (2025) developed a model based on adaptive 

fuzzy rule generation and fuzzy rule interpolation, which is 

able to improve the accuracy of emotion classification better 

than conventional methods [19]. This study shows that fuzzy 

inference can provide robustness to uncertainty in EEG 

signals, making it a promising alternative to deep learning-

based methods.  

In addition, Cruz-Vazquez et al. (2025) explored the use 

of quantum transforms and Fourier Neural Networks to 

improve EEG signal processing [20]. With this approach, 

their model achieved 95% accuracy, indicating that advanced 

signal transforms can significantly improve EEG 

classification accuracy. On the other hand, recent studies 

have also focused on adaptive electrode selection techniques 

to improve the efficiency of EEG-based emotion 

classification. Gannouni et al. (2021) developed a Zero-Time 

Windowing (ZTW) method for epoch estimation in EEG 

signals, which allows the system to select the most relevant 

parts of the EEG signal for emotion classification [21]. With 

this method, the classification accuracy can increase up to 

89%, indicating that appropriate epoch estimation and 

electrode selection techniques can significantly improve the 

performance of EEG classification models. Therefore, this 

study focuses on optimizing GRU to improve the accuracy 

and efficiency of EEG-based emotion classification. To 

achieve this goal, this study will implement various 

optimization techniques, such as more effective feature 

selection, GRU hyperparameter tuning, and the use of 

attention mechanisms to improve EEG feature representation. 

In addition, this study will also compare the performance of 

GRU with other deep learning models to assess the 

superiority of GRU in capturing temporal patterns of EEG 

signals. With this approach, it is expected that the developed 

model can improve the accuracy of EEG emotion 

classification and accelerate the inference process, so that it 

can be applied in real-time applications, such as Brain-

Computer Interface (BCI), mental health, and more adaptive 

human-machine interaction systems. 

II. METHODOLOGY 

A. EEG Brainwave Dataset 

The EEG Brainwave dataset was collected from two 

participants, one male and one female, to record their brain 

activity in three main emotional states, namely positive, 

neutral, and negative [22]. Each state was recorded for 3 

minutes per session, with an additional 6 minutes of neutral 

data during rest. The use of the same duration in each session 

aims to ensure that the data obtained is sufficient to analyze 

the pattern of changes in brain activity when individuals 

experience different emotions. With this approach, research 

can be more accurate in identifying differences in brain wave 

patterns that arise due to different emotional responses. The 

device used in data collection is the Muse EEG headband, a 

wearable EEG device that uses dry electrode sensors, 

allowing EEG signal recording without complex conductive 

procedures. This device records signals from four main 

points, namely TP9, AF7, AF8, and TP10, which have high 

relevance in emotional processing. Electrodes AF7 and AF8 

are located in the frontal area of the brain that plays a role in 

cognition and emotional regulation, while electrodes TP9 and 

TP10 are located in the temporal region related to sensory 

processing and emotional memory. With this configuration, 

the device can capture patterns of brain activity that are 

directly related to emotional changes, allowing for deeper 

analysis of how the brain responds to emotional stimuli. The 

Fig. 1 are EEG signal measurement points (electrode 

channels) on the scalp. 

 

Fig. 1. Placement of electrode channels on the scalp [23] 
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To induce emotional reactions that can be observed in 

EEG signals, this study used movie clips as stimuli [24]. 

Movies were selected based on their ability to consistently 

evoke positive and negative emotions, so that they can 

produce stable responses from participants during the EEG 

recording process. The selection of movies with strong 

emotional content aims to ensure that the changes in brain 

activity recorded truly reflect the natural emotional responses 

of the individuals being tested. In evoking negative emotions, 

three movie clips with emotionally strong scenes were used. 

The first movie is Marley and Me (Twentieth Century Fox), 

which shows the death of Marley's pet dog. This scene is 

often associated with deep sadness and emotional attachment 

to pets. The second movie, Up (Walt Disney Pictures), 

presents a scene of losing a partner in a married life, which 

can trigger emotions of grief and deep feelings of loss. 

Meanwhile, the clip from My Girl (Imagine Entertainment) 

shows a funeral ceremony, which can evoke strong empathy 

and sadness for the loss of a loved one. Conversely, to evoke 

positive emotions, this study used three movie clips that have 

been proven to be able to trigger responses of happiness and 

joy. The first film, La La Land (Summit Entertainment), 

features an opening sequence with upbeat music and dancing, 

creating a joyful and energetic atmosphere. The second film, 

Slow Life (BioQuest Studios), is a documentary clip about 

the beauty of nature, which is known to create a sense of calm 

and happiness. Finally, the Funny Dogs (MashupZone) clip 

features a collection of funny dog videos, which are often 

used in affective neuroscience research to evoke positive 

emotions and laughter. By selecting the right stimuli, this 

study ensures that the emotional responses recorded via EEG 

truly reflect natural emotional experiences. 

B. Features of EEG Signal 

Electroencephalography (EEG) signal features are an 

important aspect in the analysis and classification of brain 

activity, especially in areas such as emotion recognition, 

neurological disorder diagnosis, and Brain-Computer 

Interface (BCI) development [25]. EEG signals recorded 

from scalp electrodes consist of non-stationary and complex 

brain electrical patterns, requiring feature extraction 

techniques to obtain interpretable information [26]. These 

features can be grouped into time domain, frequency domain, 

time-frequency domain, and connectivity-based features, 

each of which has its own advantages in characterizing brain 

activity [27]. In the EEG Brainwave dataset, the signal is 

extracted into several features, including: 

1) Mean Values 

Mean is the average amplitude of the EEG signal over a 

certain time interval [28]. This feature is used to determine 

the general trend of the EEG signal and can indicate the 

overall level of brain activity. 

𝜇 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 (1) 

where 𝑥𝑖  is the EEG signal value at time point 𝑖; and 𝑁 is the 

total number of samples. 

 

2) Standard Deviation Values 

Standard deviation (STD) measures the degree of 

variation or dispersion in the EEG signal from its mean [29]. 

A high STD indicates fluctuating brain activity, while a low 

STD indicates signal stability. 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 (2) 

where 𝜇 is the mean EEG value; 𝑥𝑖 is the EEG signal value at 

point 𝑖; and 𝑁 is the total number of samples. 

3) Statistical Moments 

Statistical moments are used to analyze the distribution of 

EEG data. The commonly used moments include Skewness 

and Kurtosis [30]. Skewness is used to measure the 

asymmetry of the EEG data distribution. Meanwhile Kurtosis 

is used to measure the sharpness or flatness of the EEG signal 

distribution compared to a normal distribution. 

𝑆 =

1
𝑁
∑ (𝑥𝑖 − 𝜇)3𝑁
𝑖=1

𝜎3
 

(3) 

𝐾 =

1
𝑁
∑ (𝑥𝑖 − 𝜇)4𝑁
𝑖=1

𝜎4
 

(4) 

A positive skewness value indicates a right-skewed 

distribution, while a negative skewness value indicates a left-

skewed distribution. A high kurtosis value signifies a sharp 

peak, whereas a low value suggests a flatter distribution. 

4) Max Value 

Represents the highest amplitude value recorded in the 

EEG signal during a given interval [31]. This feature helps 

detect extreme brain activity, such as during emotional surges 

or high cognitive responses. 

𝑋𝑚𝑎𝑥 = max (𝑥1, 𝑥2, … 𝑥𝑁) (5) 

5) Min Value 

Represents the lowest amplitude value recorded in the 

EEG signal over a given interval [32]. This feature can 

indicate relaxation or inactivity in brain regions. 

𝑋𝑚𝑖𝑛 = min (𝑥1, 𝑥2, … 𝑥𝑁) (6) 

6) Logarithmic Covariance Matrix 

Used to measure statistical relationships between EEG 

electrodes. The logarithm of the covariance matrix enhances 

feature stability for emotion classification or neurological 

disorder detection [33]. 

𝐶𝑙𝑜𝑔 = log(det (𝐶)) (7) 

where 𝐶is the EEG covariance matrix. 

7) Covariance Matrix 

The covariance matrix measures the linear relationship 

between pairs of EEG electrodes [34]. It is commonly used in 

brain connectivity analysis and synchronization studies 

between brain regions. 
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𝐶𝑖𝑗 =
1

𝑁 − 1
∑(𝑥𝑖𝑘 − 𝜇𝑖)(𝑥𝑗𝑘 − 𝜇𝑗)

𝑁

𝑘=1

 (8) 

where 𝐶𝑖𝑗  is the covariance between electrodes 𝑖 and 𝑗; and 

𝜇𝑖, 𝜇𝑗 are the mean values of EEG signals at each electrode. 

8) Shannon Entropy 

Shannon entropy measures the diversity or uncertainty of 

the EEG signal [35]. A high value indicates high variability, 

while a low value suggests a more regular signal. 

𝐻 = −∑𝑃(𝑥𝑖) log 𝑃(𝑥𝑖)

𝑁

𝑖=1

 (9) 

where 𝑃(𝑥𝑖) represents the probability of the EEG signal 

value 𝑥𝑖. 

9) Log-Energy Entropy 

Log-Energy Entropy measures the strength of the EEG 

signal while considering energy variations [36]. It is 

commonly used in epilepsy detection and emotion 

classification. 

𝐻𝑙𝑜𝑔 = ∑log(𝑥𝑖
2)

𝑁

𝑖=1

 (10) 

10) Fast Fourier Transform (FFT) 

FFT converts the EEG signal from the time domain to the 

frequency domain, allowing the analysis of frequency 

components such as delta, theta, alpha, beta, and gamma 

waves [37]. 

𝑋(𝑓) = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛/𝑁
𝑁−1

𝑛=0

 (11) 

where 𝑥(𝑛) is the EEG signal in the time domain; and 𝑋(𝑓) 
is the transformed signal in the frequency domain. FFT is 

widely used for detecting specific brain activity based on 

frequency bands. 

11) Autocorrelation 

Autocorrelation measures how similar an EEG signal is 

to a time-shifted version of itself [38]. It is useful for 

detecting brain rhythms and repeating patterns in EEG 

signals. 

𝑅(𝜏) = ∑ 𝑥(𝑛)𝑥(𝑛 + 𝜏)

𝑁−𝜏

𝑛=0

 (12) 

where 𝜏 is the time lag; and 𝑅(𝜏) is the autocorrelation 

coefficient. A high autocorrelation at a certain lag indicates a 

repeating pattern in the EEG signal, which can be used for 

brain rhythm analysis and wave synchronization. 

C. Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is a type of Recurrent 

Neural Network (RNN) introduced as an alternative to Long 

Short-Term Memory (LSTM) [39]. GRU is designed to 

process sequential data, such as text, EEG signals, and other 

time-series data, by enhancing the model's ability to handle 

long-term dependencies without suffering from the vanishing 

gradient problem, which often occurs in conventional RNNs 

[40]. Compared to LSTM, GRU has a simpler structure as it 

only uses two main gates, namely the reset gate and update 

gate, making it computationally lighter and faster to train 

[41]. GRU plays a crucial role in sequential data processing, 

especially in applications such as Natural Language 

Processing (NLP), signal analysis, and time-series 

classification like EEG signals [42]. One of its primary 

functions is maintaining long-term memory in sequential 

data, enabling the model to retain relevant information from 

previous steps within a sequence [43]. This feature is 

particularly beneficial in EEG signal analysis, where 

temporal patterns and interdependencies are critical for 

recognizing emotions or detecting neurological disorders 

[44]. 

Additionally, GRU serves as a filter for relevant 

information in a sequence using the update gate, which 

decides whether information from the previous step should 

be retained or updated [45]. Meanwhile, the reset gate allows 

the model to discard irrelevant information when necessary 

[46]. By leveraging both mechanisms, GRU efficiently 

retains long-term dependencies better than standard RNNs 

while remaining computationally lighter than LSTMs, 

making it ideal for real-time applications [47]. The Fig. 2 is 

the architecture of the Gated Recurrent Unit. 

 

Fig. 2. Architecture of the Gated Recurrent Unit 

1) Reset Gate (𝑟𝑡) 

The reset gate determines how much past information 

should be forgotten [48]. A small reset gate value causes the 

model to ignore previous information, allowing it to focus on 

new inputs. 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡]) (13) 

where 𝑊𝑟 represents the reset gate weight; ℎ𝑡−1 is the 

previous hidden state; and 𝑥𝑡 is the input at time step 𝑡. 

2) Update Gate (𝑧𝑡) 

The update gate determines how much information from 

the previous state should be carried forward [49]. If the 

update gate value is large, most of the previous information 

is retained; if it is small, the new input dominates. 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡]) (14) 

where 𝑊𝑧 represents the update gate weight. 
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3) New Candidate State Calculation (ℎ̃𝑡) 

After applying the reset gate, GRU computes the 

candidate new state ℎ̃𝑡, representing the potential value for 

the current hidden state [50]. 

ℎ̃𝑡 = tanh(𝑊ℎ. [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡]) (15) 

where the reset gate (𝑟𝑡) controls how much information from 

the previous hidden state ℎ𝑡−1 is carried forward. 

4) Final Hidden State Calculation (ℎ𝑡) 

A combination of past and new information is determined 

using the update gate, producing the final hidden state [51]: 

ℎ𝑡 = 𝑧𝑡 ⊙ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 (16) 

where the update gate (𝑧𝑡) regulates the balance between the 

old state and the new state in determining the next hidden 

state. 

The following is a proposed GRU model for EEG-based 

emotion classification. 

The Fig 3. illustrates the architecture of a GRU-based 

model for EEG-based emotion classification. It consists of 

multiple Gated Recurrent Unit (GRU) layers followed by a 

dense layer with a softmax activation function to classify 

emotions into three categories. This structured pipeline 

ensures the effective extraction of temporal dependencies in 

EEG signals, enabling accurate emotion recognition. The 

process starts with EEG Data, which consists of raw 

brainwave signals collected from EEG sensors. These signals 

contain time-series information that reflects different 

emotional states. Since raw EEG data is highly complex and 

contains noise, the next step is EEG Feature Extraction, 

where various signal processing techniques are applied to 

derive meaningful features from the data. Following feature 

extraction, the first GRU layer is applied with 128 units. This 

layer processes the sequential EEG features and captures 

long-term dependencies in brainwave activity. The high 

number of units allows the model to learn rich temporal 

patterns that are crucial for distinguishing different emotional 

states. The second GRU layer (GRU_1) reduces the number 

of units to 64, which helps in refining the learned features 

while reducing computational complexity. 

The third (GRU_2) and fourth (GRU_3) GRU layers 

further reduce the hidden state size to 32 units, enabling the 

model to progressively refine high-level temporal features. 

These layers ensure that the most relevant information is 

retained while minimizing redundant patterns, making the 

network more efficient and generalizable for real-world 

EEG-based emotion classification. After the sequential 

processing through the GRU layers, the model includes a 

Dense Layer with 3 neurons, corresponding to the three 

emotion classes (e.g., positive, neutral, and negative 

emotions). The softmax activation function is then applied, 

converting the output into probability distributions, ensuring 

that each instance is classified into one of the three emotion 

categories. Finally, the model produces the Emotion 

Classification output, which provides the final prediction 

based on the learned EEG features. 

 

Fig. 3. The proposed GRU architecture 

Table I shows the Keras implementation of the proposed 

GRU architecture. 

TABLE I.  KERAS IMPLEMENTATION OF THE PROPOSED GRU 

Layer (type) Output Shape Param # 

gru (GRU) (None, 1, 128) 1028352 

gru_1 (GRU) (None, 1, 64) 37248 

gru_2 (GRU) (None, 1, 32) 9408 

gru_3 (GRU) (None, 32) 6336 

dense (Dense) (None, 3) 99 

Total params: 1,081,443 

Trainable params: 1,081,443 

Non-trainable params: 0 

 

The Table I presents a deep learning model designed for 

EEG-based emotion classification, utilizing Gated Recurrent 

Unit (GRU) layers followed by a fully connected dense layer. 

The model consists of four GRU layers with progressively 

EEG Data

EEG Features

GRU Layer (Units = 128)

GRU_1 Layer (Units = 64)

GRU_2 Layer (Units = 32)

GRU_3 Layer (Units = 32)

Dense (3)

Softmax Activation

Emotion Classification
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decreasing hidden state sizes, which help in capturing 

temporal dependencies in EEG signals while gradually 

refining the learned features. The total number of trainable 

parameters in this architecture is 1,081,443, indicating a 

complex model capable of handling high-dimensional EEG 

data. The first GRU layer has 128 hidden units and contains 

1,028,352 parameters, making it the most computationally 

expensive component of the model. This layer processes the 

raw EEG signals, extracting initial features related to 

brainwave activity and emotional states. The large number of 

parameters arises from the weight matrices used for input-to-

hidden and hidden-to-hidden connections, which are essential 

for learning sequential patterns in the EEG signals. 

As the data flows through the model, the second GRU 

layer (gru_1) reduces the hidden state size to 64 units, 

significantly decreasing the number of parameters to 37,248. 

This layer continues refining time-dependent patterns 

extracted from EEG signals, ensuring that relevant 

information is passed while reducing computational 

complexity. The third (gru_2) and fourth (gru_3) GRU layers 

further reduce the hidden state to 32 units, containing 9,408 

and 6,336 parameters, respectively. These layers help extract 

high-level temporal representations that are useful for 

distinguishing emotional states. Finally, the dense layer, with 

99 parameters, maps the GRU output to a 3-class 

classification, indicating that the model is trained to classify 

EEG signals into three emotional states (positive, neutral, and 

negative emotions). This fully connected layer is responsible 

for making the final prediction based on the learned 

representations from the GRU layers. Fig 4. shows the 

proposed GRU architecture with input and output vector 

shapes. 

 

Fig. 4. Proposed GRU architecture with input and output vector forms 

D. Performance Evaluation 

Evaluating the performance of EEG-based emotion 

classification is crucial to ensure the reliability and 

effectiveness of the model [52]. Several key metrics are 

commonly used, including Sensitivity (Recall), Specificity, 

Precision, Accuracy, and F1 Score. These metrics help assess 

how well the model distinguishes between different 

emotional states and provide insights into false positives and 

false negatives, which are critical in brain-computer interface 

(BCI) and affective computing applications [53]. 

1) Sensitivity (Recall) 

Sensitivity (also known as Recall) measures the ability of 

the model to correctly identify positive instances among all 

actual positive samples [54]. In EEG-based emotion 

classification, it quantifies how well the model detects a 

particular emotional state (e.g., positive emotion) when it 

truly occurs. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

where: TP (True Positive) = correctly classified positive 

samples; and FN (False Negative) = misclassified positive 

samples. A high Sensitivity value means that the model rarely 

misses a positive case, which is crucial in applications like 

mental health monitoring, where failing to detect distress or 

anxiety could be problematic. 

2) Specificity 

S         y    su  s  h    d  ’s  b    y            y 

classify negative instances while minimizing false positives 

[55]. In EEG-based emotion recognition, it indicates how 

well the model avoids incorrectly labeling a neutral or 

negative emotion as positive. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (18) 

where: TN (True Negative) = correctly classified negative 

samples; and FP (False Positive) = misclassified negative 

samples. A high Specificity ensures that the model is not 

overly biased toward predicting positive emotions, which is 

essential in maintaining balanced classification performance. 

3) Precision 

Precision evaluates the proportion of correctly classified 

positive instances among all predicted positive cases [56]. 

This metric is essential in EEG emotion classification, 

especially in scenarios where false positives need to be 

minimized, such as when diagnosing stress levels. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖 𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

High Precision means that when the model predicts a specific 

emotional state, it is likely to be correct, reducing false alarms 

in emotion classification. 

4) Accuracy 

Accuracy represents the overall correctness of the model 

by measuring the proportion of correctly classified instances 

across all categories [57]. It is a general measure of model 

performance in multi-class EEG emotion classification. 

dense (Dense)

Input: (None, 32) Output: (None, 3)

gru_3 (GRU)

Input: (None, 1, 32) Output: (None, 32)

gru_2 (GRU)

Input: (None, 1, 64) Output: (None, 1, 32)

gru_1 (GRU)

Input: (None, 1, 128) Output: (None, 1, 64)

gru (GRU)

Input: (None, 1, 128) Output: (None, 1, 128)
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𝐴𝑐𝑐𝑢𝑟 𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

While Accuracy is a useful metric, it may not always be 

reliable if the dataset is imbalanced. For instance, if one 

emotional category (e.g., neutral) dominates the dataset, the 

model may have high accuracy but poor performance in 

minority classes. 

5) F1 Score 

The F1 Score is the harmonic mean of Precision and 

Recall (Sensitivity), providing a balanced measure that 

considers both false positives and false negatives. This metric 

is particularly useful in EEG-based emotion classification 

when dealing with imbalanced datasets, ensuring that the 

model performs well across all emotional categories [58]. 

𝐹1 𝑆𝑐 𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖 𝑛 × 𝑅𝑒𝑐 𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖 𝑛 + 𝑅𝑒𝑐 𝑙𝑙
 (21) 

A high F1 Score means the model balances both identifying 

positive cases correctly (Recall) and reducing false positives 

(Precision), making it a reliable metric for evaluating EEG 

emotion classification models. 

 In addition, a 5-fold cross-validation method is applied to 

test the performance of the EEG-based emotion classification 

model using a Gated Recurrent Unit (GRU). The EEG dataset 

is divided into five parts, where alternately four parts are used 

as training data and one part as testing data. This approach 

was taken to ensure that the evaluation results of the GRU 

model are objective, consistent, and can be generalised well 

to unfamiliar data [59]. 

III. RESULTS AND DISCUSSIONS 

This study focuses on optimizing the GRU model to 

improve the accuracy and efficiency of EEG-based emotion 

classification. To achieve this goal, there is a selection of 

EEG signal features for the classification process and 

modifications to the GRU architecture layer used. The signal 

features used include mean, standard deviation, statistical 

moments (skewness and kurtosis), min-max value, 

logarithmic covariance matrix, covariance matrix, shannon 

entropy, log-energy entropy, FFT, and autocorrelation. These 

features are extracted in the alpha and beta bands of the EEG 

waveform. In addition, the proposed GRU model for the 

classification process consists of four GRU layers with 

decreasing hidden state sizes, which helps capture temporal 

dependencies in the EEG signal while gradually refining the 

learned features [60]. The total number of trainable 

parameters in this architecture is 1,081,443, indicating a 

complex model capable of handling high-dimensional EEG 

data. Meanwhile, the dense layer maps the GRU output to a 

3-class classification, which shows that this model was 

trained to classify EEG signals into three emotional states 

(positive, neutral and negative emotions). 

To ensure the robustness and generalizability of the 

model, 5-fold cross-validation was conducted during the 

training and testing phases [61]. This technique helps reduce 

overfitting and provides a more accurate estimate of the 

  d  ’s                u s    d    [62]. Each fold serves 

as a test set once while the remaining folds are used for 

training, ensuring that all data points contribute to both 

training and evaluation [63]. The Table II is a confusion 

matrix resulting from EEG-based emotion classification 

testing using the GRU model. 

TABLE II.  CONFUSION MATRIX OF THE PROPOSED GRU 

Emotion 
Confusion Matrix 

TP TN FP FN 

Negative 133 289 2 3 

Neutral 142 281 3 1 

Positive 147 279 0 1 

 

The confusion matrix of the proposed GRU model 

demonstrates its effectiveness in EEG-based emotion 

classification, with high True Positive (TP) and True 

Negative (TN) values across all emotion categories 

(Negative, Neutral, and Positive). Meanwhile, the low FP and 

FN values across all categories indicate that the model has 

high accuracy, precision, and recall, making it a reliable tool 

for EEG-based emotion recognition with minimal 

misclassification errors [64]. From the previous confusion 

matrix table, the performance values of the proposed GRU 

model are obtained as Table III. 

TABLE III.  PERFORMANCE VALUES OF THE PROPOSED GRU 

Emotion 

Performance Evaluation 

Recall Specificity Precision Accuracy 
F1 

Score 

Negative 97.79 99.31 98.52 98.83 98.15 

Neutral 99.30 98.94 97.93 99.06 98.61 

Positive 99.32 100.00 100.00 99.77 99.66 

Average 98.81 99.42 98.82 99.22 98.81 

 

From the table, the model demonstrates high recall values 

across all emotion categories, with the Negative class at 

97.79%, Neutral at 99.30%, and Positive at 99.32%, resulting 

in an average recall of 98.81%. This indicates that the model 

correctly identifies most instances of each emotion, with very 

few false negatives. The specificity values are also notably 

high, with the Positive class achieving 100% specificity, 

meaning it has no false positives, while the Negative and 

Neutral classes have 97.31% and 98.94% specificity, 

respectively. This shows that the model is highly effective at 

correctly identifying non-target classes, reducing 

misclassification. The precision values further confirm the 

  d  ’s      b    y, w  h  h  h gh s       s     bs  v d     h  

Positive class (100%), meaning every detected positive 

emotion was classified correctly. The Negative and Neutral 

classes also exhibit high precision scores of 98.52% and 

97.93%, respectively, leading to an overall precision of 

98.82%. Additionally, the accuracy of the model is 

consistently high across all emotion categories, with an 

average of 99.22%, demonstrating that the model can 

generalize well across different emotions. Finally, the F1 

Score, which balances precision and recall, is also 

significantly high across all classes, with an average F1 Score 

of 98.81%, indicating that the model maintains strong 

performance without sacrificing either precision or recall.  

In addition, the Fig. 5 is a comparison of the performance 

values of the proposed GRU with Deep Learning (DL) 

models such as RNN and LSTM. 
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Fig. 5. Comparison of Emotion Classification Performance using DL 

The comparison of EEG-based emotion classification 

performance using different deep learning models (Proposed 

GRU, Simple RNN, and LSTM) demonstrates the superiority 

of GRU across all key performance metrics (Sensitivity, 

Specificity, Precision, Accuracy, and F1 Score). The results 

indicate that the Proposed GRU model consistently 

outperforms Simple RNN and LSTM, making it a more 

reliable approach for emotion recognition based on EEG 

signals [65]. The Proposed GRU model achieves the highest 

Sensitivity (98.81%), indicating that it effectively detects 

emotional states while minimizing false negatives. In 

comparison, Simple RNN and LSTM both achieve 97.86%, 

suggesting that these models are slightly less effective at 

correctly identifying emotional states. Similarly, Specificity, 

which measures the ability to correctly classify non-target 

classes, is highest for GRU (99.42%), while Simple RNN and 

LSTM both score 98.95%. This suggests that GRU has fewer 

misclassifications, making it more precise in distinguishing 

between different emotional states, a crucial aspect in 

affective computing and mental health monitoring 

applications [66]. 

 h       s            u  h          s G U’s superiority, 

achieving 98.82%, compared to LSTM (97.90%) and Simple 

RNN (98.12%). A higher precision score means that GRU 

produces fewer false positives, making it more trustworthy in 

emotion recognition tasks, particularly in real-time 

applications such as brain-computer interfaces (BCI), where 

accurate and immediate classification is essential [67]. 

Additionally, Accuracy, which measures the proportion of 

correctly classified instances across all emotion categories, is 

highest for GRU (99.22%), compared to Simple RNN 

(  .6 %)   d LS M (  .5 %).  h s h gh  gh s G U’s 

ability to generalize better across different emotional states, 

reducing errors and increasing the overall reliability of the 

model. The F1 Score, which balances Precision and Recall, 

further v   d   s G U’s            , s     g   .  %, 

compared to Simple RNN (97.98%) and LSTM (97.86%). 

This confirms that GRU maintains a strong balance between 

correctly identifying emotions and minimizing 

misclassifications, making it a robust choice for EEG-based 

emotion classification. The higher F1 Score and accuracy of 

GRU suggest that it is better suited for capturing temporal 

dependencies in EEG signals, making it more effective than 

Simple RNN and computationally more efficient than LSTM 

[68]. 

The superior performance of GRU can be attributed to its 

gated architecture, which effectively handles long-term 

dependencies in sequential EEG data [69]. Unlike Simple 

RNN, which suffers from the vanishing gradient problem, 

GRU incorporates reset and update gates, enabling it to retain 

relevant information over long sequences without excessive 

computational cost [70]. Compared to LSTM, which has 

 h    g   s (   u ,    g  ,   d  u  u  g   s), G U’s  w -gate 

mechanism makes it computationally lighter while 

maintaining similar or better performance [71]. Studies such 

as Rivas et al. (2025) and Glenn et al. (2023) support this 

finding, showing that GRU balances efficiency and 

performance better than LSTM, particularly in sequential 

data tasks such as EEG analysis [72, 73]. Furthermore, recent 

studies on EEG-based emotion recognition (Chowdary et al., 

2022; Abgeena et al., 2023) confirm that GRU-based 

architectures outperform both RNN and LSTM due to their 

ability to extract highly relevant temporal features while 

reducing unnecessary complexity [74, 75]. This makes GRU 

particularly advantageous for real-time emotion recognition 

applications, where models must be both accurate and 

computationally efficient to provide immediate feedback in 

affective computing, mental health monitoring, and 

neuroscience applications [76]. Meanwhile, if the proposed 

GRU model's classification performance value is compared 

with several Machine Learning (ML) models such as SVM, 

K-NN, Random Forest, Decision Trees, and Naive Bayes, the 

Fig. 6 comparison results are obtained. 

 

(a) Proposed GRU vs Naïve Bayes and SVM 

 

(b) Proposed GRU vs Random Forest and Linear Regression 

Fig. 6. Comparison of Emotion Classification Performance using ML 
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The performance comparison analysis between the Gated 

Recurrent Unit (GRU) and several traditional Machine 

Learning models, such as Naïve Bayes, Support Vector 

Machine (SVM), Random Forest, and Linear Regression, in 

EEG-based emotion classification demonstrates the 

significant superiority of GRU in handling sequential data. 

The evaluation is based on five key metrics, such as 

Sensitivity, Specificity, Precision, Accuracy, and F1 Score. 

The results show that GRU outperforms all Machine 

Learning models in every evaluation metric, confirming its 

effectiveness in capturing temporal patterns in EEG signals. 

In the comparison between GRU and Naïve Bayes and SVM, 

GRU achieves the highest Sensitivity (98.81%), significantly 

outperforming Naïve Bayes (64.29%) and SVM (95.70%). 

Higher Sensitivity means that GRU better detects emotions 

accurately, with fewer False Negative (FN) cases. GRU also 

exhibits higher Specificity (99.42%) compared to Naïve 

Bayes (63.18%) and SVM (98.52%), indicating that this 

model is more accurate in avoiding false positive predictions. 

Additionally, GRU's Precision (98.82%) surpasses that of 

Naïve Bayes (58.18%) and SVM (98.50%), proving that 

GRU's predictions are more reliable and less prone to errors. 

The overall Accuracy of GRU (99.22%) also exceeds Naïve 

Bayes (76.49%) and SVM (99.06%), highlighti g G U’s 

ability to consistently classify various emotion categories 

more effectively. 

Meanwhile, in the comparison between GRU and 

Random Forest and Linear Regression, GRU once again 

demonstrates superior performance. GRU achieves the 

highest Specificity (99.42%), compared to Random Forest 

(98.08%) and Linear Regression (69.08%), reaffirming that 

GRU makes fewer errors in classifying non-target emotions. 

GRU's Precision (98.82%) is also higher than that of Random 

Forest (97.19%) and Linear Regression (59.08%), meaning 

G U’s    d      s          s          d    u    . G U's 

Accuracy (99.22%) outperforms Random Forest (98.53%) 

and Linear Regression (79.50%), confirming that GRU can 

generalize better than rule-based models like Random Forest 

and regression-based models like Linear Regression. The 

superiority of GRU over traditional Machine Learning 

models can be explained by its ability to capture temporal 

dependencies in EEG signals [77], something that Naïve 

Bayes, SVM, Random Forest, and Linear Regression cannot 

do, as they rely on statistical or decision tree-based 

approaches [78]. Machine Learning models such as Random 

Forest and SVM perform better on static feature-based data 

but are not designed to analyze time-dependent patterns 

deeply [79]. Naïve Bayes assumes independence between 

features, making it unsuitable for handling EEG data that 

heavily relies on temporal context [80]. Linear Regression 

performs the worst, as it works with simple linear 

relationships and cannot capture the complex, non-linear 

patterns present in brain signals [81]. 

IV. CONCLUSION 

The findings of this study demonstrate the effectiveness 

of the optimized Gated Recurrent Unit (GRU) model in 

improving the accuracy and efficiency of EEG-based 

emotion classification. By integrating a feature selection 

process and modifying the GRU architecture, the model 

successfully captured temporal dependencies in EEG signals, 

enabling highly accurate classification of positive, neutral, 

and negative emotions. The high recall (98.81%), specificity 

(99.42%), precision (98.82%), accuracy (99.22%), and F1 

Score (98.81%) confirm the robustness of the proposed GRU 

model in handling high-dimensional EEG data. Comparisons 

with Simple RNN and LSTM reveal that GRU consistently 

outperforms both models in all key performance metrics, 

demonstrating its computational efficiency and superior 

classification accuracy. Additionally, GRU surpasses 

traditional Machine Learning models such as Naïve Bayes, 

SVM, Random Forest, and Linear Regression, highlighting 

its ability to effectively process sequential EEG data, which 

is crucial for real-time affective computing and brain-

computer interface (BCI) applications. Despite its impressive 

performance, several future research directions can be 

explored to further enhance EEG-based emotion 

classification. Firstly, expanding the dataset by including a 

more diverse group of participants with varying emotional 

responses could improve the generalizability of the model. 

Secondly, integrating multi-modal fusion techniques, such as 

combining EEG with facial expression recognition or 

physiological signals (e.g., heart rate variability), may 

  h      h    d  ’s  b    y    d             s      

comprehensively. Additionally, exploring attention 

mechanisms or hybrid architectures (such as Transformer-

GRU models) could further refine feature extraction and 

classification accuracy. 
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