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Abstract—Modern logistics systems increasingly require 

high flexibility in handling simultaneous package transfers in 

compact, dynamic environments without collisions. Improper 

handling of multi-package transfers in omnidirectional 

conveyor systems can lead to deadlocks, congestion, or delivery 

delays, particularly in grid-based environments where routing 

complexity increases with package variability and layout 

density. This research addresses these challenges by introducing 

Q-RCR, a modular Q-Learning-based framework with Rule-

Based Conflict Resolution (RCR) for intelligent path planning 

and collision handling in Four-Wheeled Omnidirectional 

Cellular Conveyor (FOCC) systems. The research contribution 

is decoupling path learning and collision handling, enabling 

independent agent training while minimizing computational 

burden and improving convergence in multi-agent scenarios. 

The proposed Q-RCR framework integrates Q-Learning for 

route optimization with a rule-based conflict resolution module, 

applying four adaptive strategies: Sequential Transfer, Insert 

Path, Reroute, and Hybrid. The method is implemented in a 

grid-based FOCC environment, supporting eight-directional 

movement and handling various package sizes. Experiments 

were conducted in four scenarios with grid dimensions ranging 

from 8×11 to 12×12 and involving up to four simultaneous 

packages. Results show that Q-RCR consistently outperforms 

Double Q-Learning, RRT, and A* regarding delivery time, path 

smoothness, and the number of activated cells. The hybrid mode 

demonstrated the most effectiveness in handling frequent 

collisions and maintaining operational flow continuity. The 

proposed framework demonstrates strong adaptability, 

scalability, and responsiveness, offering a practical and 

intelligent solution for real-time multi-package coordination in 

flexible manufacturing and warehouse automation 

environments. 

Keywords—Q-Learning; Adaptive Path Planning; Collision 

Avoidance; Omnidirectional Cellular Conveyor; Simultaneous 

Transfer; Logistics Optimization; Flexible Manufacturing. 

I. INTRODUCTION  

The Omnidirectional Cellular Conveyor (OCC) is an 

innovative conveyor system that utilizes omnidirectional 

wheels to facilitate the flexible movement of packages in 

various directions [1], [2], [3]. Each cell comprises several 

drive motors with omni wheels [4], [5], [6], [7]. These 

modules operate integrated, utilizing centralized or 

decentralized control to strategize routes, manage velocities, 

and prevent collisions among various packages. 

Omnidirectional conveyors are designed to overcome the 

constraints of traditional static conveyor systems[8], [9], [10] 

by providing enhanced maneuverability, route flexibility, and 

energy economy. The system supports simultaneous 

movement and sorting of multiple packages with high 

precision, making it highly suitable for modern logistics 

applications that demand adaptability to dynamic 

requirements [11], [12], [13].  

An intelligent and adaptive path planning mechanism is 

essential to fully realize the potential of OCC systems, 

particularly under conditions involving multi-package 

coordination, dynamic routing, and limited space, 

Conventional rule-based routing or static scheduling 

techniques often lack the flexibility to respond to real-time 

layout changes, congestion, or the presence of varied package 

sizes. In this context, Reinforcement Learning (RL) [14], 

[15], [16], [17] presents a compelling solution, as it allows 

autonomous agents to learn navigation strategies directly 

from interaction with the environment, without requiring 

predefined models or explicit programming. 

Among various Reinforcement Learning (RL) 

techniques, Q-Learning (QL) stands out due to its simplicity 

and proven effectiveness in discrete environments. Q-

Learning enables agents to iteratively improve their decision-

making policies based on reward feedback, making it 

especially suitable for systems with non-fixed or dynamic 

configurations such as Omnidirectional Cellular Conveyors 

(OCC) [18], [19], [20], [21], [22], [23]. Previous research, 

including the development of the Action Restrictions Q-

Learning (ARQL) algorithm [24], has applied RL for route 

optimization in Four-Wheeled Omnidirectional Conveyor 

(FOCC) systems. However, this approach mainly focuses on 

single packet transfer with a uniform package size. 

Consequently, it fails to address the complex challenges of 

simultaneous multi-package transfer, variable object 

dimensions, and real-time conflict resolution in dense 

conveyor layouts. 

To bridge this gap, this study introduces a hybrid 

framework, Q-RCR, combining the path planning and 

management conflict resolution in the FOCC system. Path 

planning is carried out through independent single-agent Q-

Learning, where each package learns its optimal route 
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individually. This decoupling of agents during training 

reduces computational overhead and mitigates convergence 

issues commonly associated with multi-agent RL setups. 

Meanwhile, collision handling is managed through a 

modular, deterministic Rule-Based Conflict Resolution 

(RCR) layer operating outside the learning process. This rule-

based mechanism detects and resolves potential collisions in 

real time using predefined strategies, including Sequential 

Transfer, Insert Path, Rerouting, and hybrid combinations. 

Such separation streamlines the training phase and enhances 

the system's flexibility and adaptability to varying operational 

scenarios. 

The Q-RCR framework is applied to a four-wheeled 

omnidirectional conveyor platform that provides eight 

directional movement possibilities, improving the six-

directional configurations utilized in [25]. Moreover, the 

system is designed to handle packages of different sizes, thus 

accommodating more realistic and practical logistics 

scenarios. This aspect addresses a significant limitation in 

prior work [26], which often assumes static trajectories and 

uniform object dimensions. The key contributions of this 

research lie in creating a scalable and efficient framework for 

time-efficient multi-packet transfer on FOCC systems. By 

adopting a Q-Learning-based path planning approach with 

independent agent training, Q-RCR achieves reduced 

computational complexity and faster convergence. The 

deterministic rule-based conflict resolution ensures smooth 

and collision-free operation during runtime without 

impacting the learning process. Comparative experiments 

demonstrate that Q-RCR outperforms other baseline 

methods, including Tabular Q-Learning (TQL) [25], Double 

Q-Learning (DoQL), Rapidly-exploring Random Trees 

(RRT), and A*, regarding computational efficiency and 

success rate in complex, high-density environments. Overall, 

Q-RCR offers a flexible and practical solution for intelligent 

multi-package transfer in dynamic industrial conveyor 

systems. 

II. RELATED WORKS 

Automatic sorting systems (ASS) have evolved through 

various technological advancements to meet the increasing 

demands of the logistics sector[27], [28]. In ASS, path 

planning plays an important role in the smooth running of the 

package distribution process[29]. Complex material handling 

systems often encounter deadlock, livelock, or starvation 

problems, which can disrupt the operating system[30]. 

According to [31], bottlenecks in the distribution chain can 

be cut down by using the right scheduling algorithms, picking 

the correct sorting system layout, and innovative control 

methods. The GridSorter system with FlexConveyor was 

proposed by [32] as a solution to overcome the deadlock 

problem. A distributed control strategy utilizing negotiation 

across modules can prevent deadlocks using the concept of 

logical time. The GridSorter system is asserted to be more 

secure than the Automatic Guide Vehicle (AGV) system [33], 

[34], [35], [36], which is prone to deadlock issues, 

particularly when routes overlap and are inadequately 

managed. The combination of a manipulator in a conveyor-

based sorting system was proposed by [37]. The operational 

process of the 5-DOF robotic arm manipulator in conjunction 

with the conveyor in this material sorting system, as 

described in this paper, operates automatically based on 

sensor detection and microcontroller-based control. The 

robotic arm features five degrees of freedom (DOF), allowing 

for flexibility in grasping and placing objects with high 

precision. However, the addition of a manipulator may 

increase production costs.   

Furthermore, the development of mechanical wheel 

types, including omni wheels and mechanical wheels, led to 

the creation of an omnidirectional conveyor system. The 

three-wheeled omnidirectional cellular conveyor (TOCC) is 

a conveyor system consisting of hexagonal cells equipped 

with omnidirectional wheels [1].  Each cell consists of three 

omniwheels, forming a 120-degree angle. The OCC system 

can be arranged with various cell size configurations 

according to user needs. By utilizing the holonomic 

properties of the omnidirectional wheel drive [38], [39], [40], 

[41], package distribution can be carried out in multiple 

directions like a swiveling roller conveyor but with fewer 

actuators. In addition, using OCC allows rotational 

movements with a minimum radius compared to swivel 

conveyors.  

The OCC system is designed to accommodate dynamic 

variations in entry (inbound) and exit (outbound) gate 

positions, reflecting real-world logistics operations where 

goods flow between warehouses and loading areas through 

interconnected conveyor belts. To address the path planning 

needs within this flexible architecture, [25] investigated the 

use of RL in a TOCC. Their research evaluated various 

reinforcement learning algorithms, including TQL, DoQL, 

Deep Q-Learning, and Double Deep Q-Learning, in the 

context of multi-package sorting scenarios. The results 

demonstrated that TQL and DQL achieved faster 

convergence and more stable collision management 

compared to their deep-learning counterparts. However, 

these approaches still rely on multi-agent training in a shared 

environment, significantly increasing the computational time 

and complexity as the number of agents (packets) increases. 

Furthermore, conflict resolution is embedded directly in the 

RL process, which makes the learning phase very sensitive to 

collision scenarios and does not accommodate handling 

packets of different sizes. 

In contrast, [26] proposed a robust motion control 

framework for omnidirectional conveyors by integrating 

Fuzzy Sliding-Mode Tracking Control (FSTC) with a Fuzzy 

Inter-package Collision Avoidance (FICA) scheme. This 

hybrid control method provided real-time collision handling 

by generating deflection angles and force amplification to 

reroute packages away from potential collisions. Even under 

disturbances, the approach demonstrated strong trajectory 

tracking performance, offering fast convergence and smooth 

movement. However, the method relied heavily on 

predefined fourth-order Bézier curves to generate motion 

trajectories. This dependence limited the system’s ability to 

dynamically adjust to varying gate positions or object sizes, 

as each planned path was fixed in both shape and length. 

Additionally, while FICA offers real-time adjustments, the 

system lacks an autonomous path learning mechanism that 

can be generalized to different environments with limited 

routes. 
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In the case of path planning, RL provides high flexibility 

for path determination in varying environments. In the 

domain of mobile robotics, Q-learning is capable of 

managing several mobile robots within a single operational 

environment [42], [43], [44], [45]. In this step, a modular 

architecture is used. This architecture has separate learning 

modules for each agent and a mediator module that uses the 

Q value and state information to decide the final action. 

Experiments on soccer mobile robots prove that this method 

can determine the robot's fastest time to kick the ball to 

optimize overall team performance.   

The Q-learning strategy for multi-agent system 

navigation in complex environments is also proposed by [46], 

[47], [48]. Applying the Compressed State Space (CCSS) 

approach with the controller effectively decreases memory 

requirements by as much as 70% relative to traditional 

methods [48]. It is achieved by compressing the state space 

through non-overlapping features and diminishing the degree 

of discretization. In order to improve the performance, a 

modification of Q-Learning for mobile robot path planning is 

proposed by [49]. Improved Q-Learning (IQL) algorithm 

combined with enhanced Ant Colony Optimization algorithm 

(IAC-IQL) for global path planning of search and rescue 

(SAR) robots using Bessel curves. Simulation experiments 

were conducted in three scenarios: a traditional grid 

environment, a complex grid environment, and a real-world 

image-based environment. The results demonstrate that the 

IAC-IQL algorithm significantly improves search efficiency, 

produces smoother paths, and outperforms other path-

planning methods such as ACO, Q-Learning, and the 

Sparrow Search Algorithm. Therefore, this method has great 

potential for real-world SAR robot applications.  

A modification of QL is also proposed according to 

similar environmental conditions, as discussed in [50]. The 

grid method is used to simulate the environment and 

represent obstacles. The IQL algorithm incorporates a 

priority weight to address the issue of action selection. Based 

on the test results, the IQL algorithm can find the shortest 

path in the shortest time compared to the A* algorithm, the 

Probabilistic Roadmap Algorithm (PRM), the Bidirectional 

Rapidly Exploring Random Tree Algorithm (BRRT), and 

RRT. To further improve the performance of training results, 

the combination of Q-learning with the Artificial Potential 

Field (APF) method is proposed by [18]. The QAPF 

algorithm is used for path planning on mobile robots in 

offline and online obstacle environments. QAPF consists of 

three primary operations: exploration, exploitation, and APF 

weighting. The offline testing phase demonstrated notable 

improvements in path length, path smoothness, and 

computation time compared to CQL. Similarly, during the 

online testing phase, the QAPF algorithm outperformed CQL 

regarding path efficiency, smoothness, and overall work 

time.  

III. METHOD 

This section outlines the systematic approach used in 

implementing the Q-RCR framework to ensure collision-free, 

simultaneous package delivery in the Four-Wheeled 

Omnidirectional Cellular Conveyor (FOCC) system. By 

combining Q-Learning-based artificial intelligence with rule-

based conflict management. The framework offers an 

effective path-planning solution, enabling adaptive and 

efficient collision avoidance strategies. This section 

comprehensively explains the FOCC environment 

initialization, the selection and application of path planning 

algorithms, the rule-based conflict detection and resolution 

mechanisms, and the testing scenarios designed to evaluate 

the framework’s performance under various operational 

configurations. The modular approach optimizes the 

efficiency of delivery time and navigation accuracy in 

complex and dynamic environments.  

A. FOCC Environment 

This study develops the Omniconveyor, which utilizes a 

four-wheel omnidirectional drive system [51], [52]. The 

initialization of the FOCC environment is similar to previous 

research [24]. FOCC accommodates eight transfer directions 

used as actions in path planning. The FOCC environment 

consists of the OCC size, the inbound station, the outbound 

station, and obstacles. For RL training, the cell configuration 

on the FOCC is depicted as a grid map.  

This study uses a cube-shaped package. 𝛿 is the size of 

the cube side, 𝑑 is the diagonal distance between wheels, and 

𝑙 is the size of the cell side. In FOCC, the diagonal distance 

between wheels in one cell is the same as that between 

adjacent wheels in the cell. The depiction of the FOCC 

environment is shown in Fig. 1. The cell numbering is 

determined based on the positive axis position in Cartesian 

coordinates (x, y). The cell numbering (1, 1) starts from the 

bottom left point. The FOCC shown in Fig. 4 is 5×4 in size 

with an entry coordinate (2, 5) and an exit coordinate (0, 3). 

Next, path planning will be used to determine the most 

efficient route to transport the package from the entry gate to 

the exit gate. The algorithm will assess the surrounding 

environment, considering obstacles and potential paths. 

 

Fig. 1. FOCC environment 

B. Path Planning Algorithm 

In this study, five types of path planning algorithms are 

used, specifically: Q-Learning (QL), Tabular Q-Learning 

(TQL), Double Q-Learning (DoQL), RRT, and A*. All path 

planning uses eight possible delivery directions in the Moor 

Neighborhood configuration.  
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1) Q-Learning  

Q-learning is a reinforcement learning algorithm utilized 

to determine the optimal policy in scenarios characterized by 

the Markov Decision Process (MDP) [53]. The QL algorithm 

employs an off-policy method to differentiate between the 

action and learning policies. As a result, when the action 

selected in the next state is suboptimal, the corresponding 

information is excluded from the Q-function update of the 

current state. Q-learning enables agents to acquire the ability 

to select actions that maximize the total future rewards [54]. 

Agents can learn without needing a model from the 

environment.  

The first step in Q-learning is the initialization of the Q-

table, which connects the state and action. The action is 

subsequently chosen at random based on the epsilon value. 

The Q-table is updated following the chosen activities and 

received rewards [55]. The pattern repeats itself based on the 

number of episodes used. Equation (1) is the Classic Q-

Learning (CQL) algorithm. 𝛼 is a parameter that controls how 

much the value of 𝑄(𝑠, 𝑎) is updated when a new experience 

occurs [56], [57], [58], [59]. If the value of 𝛼 is high, the 

algorithm learns faster from new experiences. On the other 

hand, low alpha values make learning slower. The discount 

factor 𝛾 quantifies how much future reward values impact 

present decisions. This value reflects the preference for long-

term rewards over short-term rewards. Epsilon is a parameter 

utilized in the 𝜖-greedy exploration strategy, determining the 

proportion between exploration and exploitation during 

training. 

𝑄new(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 &𝑟 + 𝛾 𝑚𝑎𝑥 𝑎′ 𝑄(𝑠′, 𝑎′)

− [𝑄(𝑠, 𝑎)] 
(1) 

2) Double Q-Learning  

This study also assesses Double Q-Learning as a path-

planning method. DoQL  [60], [61], [62], [63], [64], attempts 

to reduce the overestimation bias inherent to Q-learning by 

utilizing two distinct sets of 𝑄 values that are independently 

updated. DoQL uses two distinct value functions: (2) and  (3). 

𝑄1 and 𝑄2 denote distinct collections of 𝑄 values. The action 

𝑎′ that optimizes the value of 𝑄1(𝑠`, 𝑎′) is employed to 

update 𝑄2, and vice versa. 

𝑄1(𝑠, 𝑎) ← 𝑄1(𝑠, 𝑎)+. . . 
𝛼[𝑟 + 𝛾𝑄2(𝑠′,argmax𝑎′𝑄1(𝑠′, 𝑎′)) − 𝑄1(𝑠, 𝑎)] 

(2) 

𝑄2(𝑠, 𝑎) ← 𝑄2(𝑠, 𝑎)+. . . 
𝛼[𝑟 + 𝛾𝑄1(𝑠′,argmax𝑎′𝑄2(𝑠′, 𝑎′)) − 𝑄2(𝑠, 𝑎)] 

(3) 

3) Tabular Q-Learning  

Tabular Q-Learning is a basic RL method used by [25] for 

path planning and sorting packages in a three-wheeled 

omnidirectional conveyor system. This method stores the Q 

value (action quality) in a discrete table for each pair of states 

and actions. Collision avoidance is handled implicitly 

through the design of a reward function in the training 

process. The TQL approach uses QL development with 

multi-agent learning [37], [38] which is carried out in the 

same environment. Rewarding for two types of collisions is 

also applied in this training. 

4) RRT 

RRT, or Rapidly-exploring Random Tree, is a widely 

used probabilistic technique for solving motion planning 

problems [65], [66], [67], [68], [69], [70]. The basic process 

of the RRT algorithm is carried out iteratively through the 

following steps: a) Selecting a random point in space, which 

is then referred to as a sample point 𝑥𝑟𝑎𝑛𝑑, b) determining the 

closest point, namely 𝑥𝑛𝑒𝑎𝑟 , the node closest to 𝑥𝑟𝑎𝑛𝑑 in the 

tree, c) determining a new point based on a step size ℎ, using 

(4). This equation shows how to create a new point 𝑥𝑛𝑒𝑤  that 

is closer to 𝑥𝑟𝑎𝑛𝑑  based on 𝑥𝑛𝑒𝑎𝑟  using a step size ℎ. 

𝒙new = 𝒙near + ℎ ⋅
𝒙rand − 𝒙near

‖𝒙rand − 𝒙near‖
 (4) 

5) A* 

A* represents an algorithm in the field of path planning, 

applicable to both metric and topological configuration 

spaces. This algorithm combines heuristic search with 

shortest path search [3], [71], [72], [73], [74], [75], [76]. A* 

is categorized as a best-first search algorithm due to the 

evaluation of each cell in the configuration space using (5). 

Each neighboring cell of the cell being evaluated will have its 

𝑓(𝑣) value calculated. The cell with the smallest 𝑓(𝑣) value 

is selected as the next step in the sequence. 

𝑓(𝑣) = 𝑔(𝑣) + ℎ(𝑣) (5) 

Where,  ℎ(𝑣) is the heuristic distance from the cell to the 

goal, and 𝑔(𝑣) is the path length from the starting point to the 

cell. 

C. Collision Detection Algorithm 

Collision detection [77], [78], [79] is performed by 

determining the position of each package within the global 

frame over the delivery time span t = 0:𝑡𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑. During the 

initial stage, the Q-Learning algorithm will sequentially 

generate packet pathways based on the inbound and outbound 

coordinates inside the same FOCC environment. The 

trajectory produced by Q-Learning is interpolated to acquire 

points within a narrower range [80] through (6)-(9). This aims 

to enhance the precision of collision detection. 

𝑑𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 (6) 

𝑁𝑖 = ⌈
𝑑𝑖

Δ𝑠
⌉ (7) 

𝑥interp(𝑘) = 𝑥𝑖 − 0.5 + 𝑘 ⋅
(𝑥𝑖+1 − 𝑥𝑖)

𝑁𝑖 − 1
,  𝑘

= 0,1, … , 𝑁𝑖 − 1 

(8) 

𝑦interp(𝑘) = 𝑦𝑖 − 0.5 + 𝑘 ⋅
(𝑦𝑖+1 − 𝑦𝑖)

𝑁𝑖 − 1
,  𝑘

= 0,1, … , 𝑁𝑖 − 1 

(9) 

Where, 𝑑𝑖 is the distance between lines, Ds is desired 

interpolation distance, 𝑘 is the interpolation step and 𝑥𝑖𝑛𝑡𝑒𝑟  

and 𝑦𝑖𝑛𝑡𝑒𝑟  is the X & Y values from interpolation.  

At each positional change, the function utilizes Algorithm 

I to verify the intersection of the (𝑥𝑖𝑛𝑡𝑒𝑟𝑝 , 𝑦𝑖𝑛𝑡𝑒𝑟𝑝) packages. 

If the function detects a collision, it will return a value of 1, 

and if it doesn't, it will return a value of 0. Additionally, the 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1652 

 

Syamsiar Kautsar, Q-RCR: A Modular Framework for Collision-Free Multi-Package Transfer on Four-Wheeled 

Omnidirectional Conveyor Systems 

coordinates of the cell identified as the collision location will 

be designated as the collision coordinate C (𝑥𝑐 , 𝑦𝑐). 

Algorithm I: Collision Detection 

Function st_collision = c_overlap(x1, y1, x2, y2, s1, s2) 

   If:    s1==1 

      w1 = 1;  h1 = 1;  

   else: s2 = 2; 

      w1 = 2;  h1 = 2; 

     

   x_overlap_start = max(x1, x2);  

   y_overlap_start = max(y1, y2);    

   x_overlap_end = min(x1 + w1, x2 + w2);  

   y_overlap_end = min(y1 + h1, y2 + h2);  

     

   overlap_width = x_overlap_end - x_overlap_start; 

   overlap_height = y_overlap_end - y_overlap_start; 

     

    If: overlap_width >= 0 && overlap_height >= 0 

        st_collision = 1; 

    Else: 

        st_collision = 0; 

End 

D. Rule-based Conflict Resolution 

Rule-based Conflict Resolution (RCR) is a collision 

avoidance rule for simultaneous multi-package transfer. The 

scheme adopts the Modular Q-learning in the study [81], [82], 

[83]. In this paper, four approaches are used for collision 

conflict management. This aims to analyze the most 

appropriate technique for the case of multi-package transfer 

in FOCC. The conflict management modes used are 

Sequential (Sq-mode), Insert Path (IP-mode), Reroute (Rr-

mode), and Hybrid (Hb-mode).  The packet handling order 

for collision avoidance is based on the number of possible 

collisions, the path length, and the initialization order. The 

packet that will be handled first is the packet with the highest 

number of possible collisions. If the number of possible 

collisions is the same, then the packet with the shorter path 

will be handled. If the paths are the same, the path initialized 

last is handled in the order D-C-B-A.  

1) Sequential Mode (Sq-Mode) 

 In the sequential process, if a collision is detected, the first 

package is sent first. Then, the second package is sent when 

the first packet has reached the goal. This approach is the 

most straightforward technique to avoid collisions because it 

does not require additional algorithms for path modification. 

Fig. 2 illustrates the sequential transfer process flow. 

 

Fig. 2. Sequential Mode 

2) Insert Path Mode (IP-mode) 

During the IP-mode procedure, an insert path will be 

executed if a collision occurs. Pathi+1 will be appended to the 

identical cell position as pathi The processed path is the one 

with the minimum distance. The package containing the 

subsequent initialization sequence will be handled if the 

distance is identical. After the execution of the insert delay, a 

collision potential assessment will be conducted once more. 

Upon detecting a collision, the algorithm will execute an 

insert delay repeatedly until the collision ceases to be 

detected. Fig. 3 depicts the flow of path addition in IP-mode. 

 

Fig. 3. Insert-path mode 

3) Reroute Mode (Rr-Mode) 

 Once the collision coordinate C is determined, the reward 

value is changed at that point. The value of 𝑟 determines the 

number of neighboring cells that are considered obstacles. 

The collision point and neighboring cells with a radius of 𝑟 

will be considered obstacles. Suppose 𝑟 = 1, then one 

neighboring cell will be considered an obstacle, as shown in 

Fig. 4. Determining the cells that are considered obstacles is 

explained in Algorithm II. The algorithm will retrain the i+1 

package and find the optimal route by considering the 

updated obstacles. 

Algorithm II: Generate Radius Obstacles 

Function  obstacles = add_obs(xc, yc, r) 

    obstacles=[]; 

    For dx = -r:r 

        For dy = -r:r 

            new_point = [xc + dx, yc + dy]; 

            obstacles = [obstacels; new_point]; 

        End For 

    End For 

End Function 

 

 

Fig. 4. Illustration of cell-radius obstacles 

4) Hybrid Mode (Hb-M) 

 The 'hybrid' mode combines delay and obstacles. If the 

number of paths added to IP mode exceeds 2 times, a reroute 

process will occur with a value of r = 1 at the collision point. 
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Fig. 5 is a flowchart for the combination transfer process. A 

rule-based system [84], [85], [86] is established to determine 

whether the agent must regenerate pathways for multi-

package delivery. 

Generate Paths

START

Read the number 

of packages (nP)

Y

N

Collisions detection 

Collision?

Finish

Sent all packagesN

Y

Insert Path(i)

Read FOCC Size, 

inbound&outbound 

point for each package

N

Y

Re-reoute

add r-obstacles

c++

c>=3 & collision 

in the middle? 

Collision?

Check next packet 

 

Fig. 5. Hybrid-mode flowchart 

E. Testing Scenarios 

 In actual implementation, OCC can be configured with 

different cell sizes and gate numbers as shown in Fig. 6. 

Packets can be sent to different exit points randomly, 

according to the sorting data stored in the database. In this 

study, four test scenarios are created in scenarios I and II, 

FOCC with size 8×11 is used, and scenarios III and IV with 

size 12×12. In scenarios I and II, there are two entry points 

with coordinates (2,0) and (7,0), and four exit points are 

located at coordinates (0,8), (2,12), (7,12), and (8,10). In 

scenarios III and IV, there are four inbound points with 

coordinates (4,0), (9,0), (0,4), and (0,9), and four outbound 

points are located at coordinates (4,12), (9,12), (12,4), and 

(12,9), respectively. The four scenarios are created to 

accommodate several possible collisions in the FOCC 

system. There are two types of packet sizes used in this study, 

namely packet types S and M. Type S has a size of δ = l or 

equal to one cell. In contrast, type M has a size of δ = 2.l, 

which is equal to the size of 4 cells. 

 Learning algorithm for path planning, each packet is 

considered a different agent in the same environment. The 

entry point is highlighted in green, the exit point in blue, and 

the gray line indicates the boundary of the omnidirectional 

cellular conveyor, as shown in Fig. 7. This experimental setup 

is designed to evaluate the flexibility and efficiency of the Q-

Learning algorithm in various package sizes, entry and exit 

configurations, and multi-packet transfer scenarios. 

The scenarios are created with several conditions not found 

in the collision case [25]. Collision is considered to occur if: 

I, there is the same destination status, and II, there is the next 

status A = status B and the next status B = status A. 

Meanwhile, in the FOCC system, collision can also occur on 

intersecting paths without associated cells, as in case I. In 

case II, TQL will change the direction of the packet, but it 

does not accommodate the difference in packet size. 

Furthermore, this study also addresses collision handling for 

transfers directed to the same outbound point, ensuring 

reliable multi-package coordination even under identical 

destination conditions. 

 

 

Fig. 6. FOCC configuration for testing 

IV. SIMULATION AND ANALYSIS 

The simulation utilized MATLAB software on a 

computer with a Core i5 processor operating at 2.4 GHz and 

16GB of RAM. Several parameters are used in the path 

planning algorithm according to the data in Table I. For the 

RL method, five types of parameter pairs α, γ, and € are used 

for testing. In QL, TQL, and DoQL, each parameter is tested 

with four types of episodes to determine the effect of each 

parameter on RL training. QL and DoQL training is carried 

out with each agent alternately, while in TQL, all agents learn 

in the same cycle. In RRT, 2000 maxNodes are used with a 

step value = 1 and a goal threshold of 0.5. 

 Meanwhile, in the A* algorithm, the Euclidean distance 

calculation is used for the heuristic function. The 

performance of the path planning algorithm is analyzed based 

on the computation time (tc), path smoothness (Ps), and the 

number of activated cells (ac). tc is calculated from the 

program's initialization until the path is generated. Ps is 

calculated based on the number of changes in direction on the 

generated path. The smaller the Ps value, the smoother the 

resulting path. ac is the number of cells used on the path. The 

path planning algorithm uses the midpoint reference of the 
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cell as a reference for movement. The fewer cells are 

activated, the smaller the energy consumption used to move 

the actuator. 

TABLE I.  PARAMETERS FOR THE PATH PLANNING ALGORITHM 

Algorithm Indeks Parameters 

QL, DoQL, 

TQL 

I 
α = 0.3, β0.7 =, € = 0.3, 

episode: a) 500, b) 1000, c) 2000, d) 3000 

II 
α = 0.5, β0.7 =, € = 0.5, 

episode: a) 500, b) 1000, c) 2000, d) 3000 

III 
α = 0.8, β0.7 =, € = 0.5, 

episode: a) 500, b) 1000, c) 2000, d) 3000 

IV 
α = 0.5, β0.7 =, € = 0.8, 

episode: a) 500, b) 1000, c) 2000, d) 3000 

V 
α = 0.8, β0.8 =, € = 0.8, 

episode: a) 500, b) 1000, c) 2000, d) 3000 

RRT maxNodes = 20000; step = 1; goalThreshold = 0.5; 

A* Heuristic Function → Euclidean distance 

 

A. Path Planning Result 

Based on the test results, all algorithms can reach the goal 

point. However, there are differences in the path patterns 

produced by each method. Fig. 7 to Fig. 10 is the path 

planning results for scenarios I, II, III, and IV. The inbound 

point is indicated in green, while the outbound point is 

indicated in blue. The path produced for package A is 

indicated in red. The path produced for package B is indicated 

in blue. The path produced for package C is indicated in 

magenta. The path produced for package D is indicated in 

orange. Furthermore, the performance of the path planning 

algorithm is analyzed based on three criteria, namely, ac, Ps, 

and tc values. 

  
(a) (b) 

  
(c) (d) 

Fig. 7. Path planning results using (a) QL&DoQL-Vb, (b) TQL-Vd, (c) A*, 

and (d) RRT for scenario I 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Path planning results (a) QL&DoQL-Vb, (b) TQL-Vd, (c) A*, and 

(d) RRT for scenario II 

1) Number of activated cells 

In the scenario I, QL, DoQL, and A* produce paths with 

consistent and relatively the same ac values, specifically 11 

cells for packages A and B, as shown in Fig. 7(a) and Fig. 

7(c). This indicates that learning-based algorithms converge 

to efficient paths with limited search space after training. 

Concurrently, the RRT algorithm exhibits the most 

suboptimal performance in path planning, as shown in Fig. 

7(d). The random nature of RRT often activates more cells, 

especially when it does not directly obtain an optimal 

solution. 

In the scenario II, QL, DoQL, and A* yield pathways with 

consistent and comparable ac values, specifically 11 cells for 

package A and eight cells for package B, as illustrated in Fig. 

8(a) and Fig. 8(c). Concurrently, TQL yields an increased ac 

value for package B, specifically 11 cells, as illustrated in Fig. 

8(b). The RRT algorithm again shows a higher ac value, as 

shown in Fig. 8(d). In scenarios III & IV, RRT also shows a 

higher ac value, as shown in Fig. 9 and Fig. 10. Learning QL 

& DoQL with low α, γ values and number of episodes can 

cause less than optimal ac values in package B, as shown in 

the graphs in Fig. 11 and Fig. 15.   

2) Path Smoothness 

Although A* has relatively the same ac performance as 

DQL and DoQL, A* has a high value in path smoothness (Ps). 

In scenario I, A* produces a high Ps value for both packages 

A & B, which is 8x the change in direction as shown in Fig. 

7(c). In scenario II, A* produces a smoother path for package 

B, as shown in Fig. 8(c). Because it uses deterministic 

calculations, A* will produce a path that always remains the 
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same for each training session. Unlike the QL algorithm, 

DoQL and TQL show performance that tends to improve as 

the number of training episodes increases. Initially, in lower 

episodes, Ps for packages A and B varied (above 5), reflecting 

the presence of sharp maneuvers or non-smooth routes as 

shown in Fig. 12. However, in higher episodes (2000–3000), 

QL and DoQL produced the best Ps values as shown in Fig. 

7(a). 

The epsilon values α and γ also affect the smoothness of 

the path. Even with fewer episodes, the higher the epsilon 

value, the smoother the resulting path. With an epsilon value 

approaching 1, the opportunity for the exploration process 

occurs more often, so the Q-Table has an optimal value when 

the exploitation process is carried out. The α parameter will 

accelerate the process of updating the Q-table value during 

learning, so the resulting path tends to be smoother even with 

fewer episodes. Based on the simulations that have been 

carried out, a γ value below 0.7 causes failure in the learning 

process because a small γ value makes the agent prioritize 

immediate rewards and ignore long-term results. So that it 

fails to find the optimal path. A comparison of Ps' 

performance against various learning parameter variations is 

shown in Fig. 12 and Fig. 16. 

In TQL, the resulting Ps value remains high even though 

the learning parameters (α, γ, and number of episodes) are 

significant, as shown in the graphs in Fig. 12 and Fig. 16. This 

may be due to the collision avoidance algorithm on the multi-

agent system finding suboptimal paths during the learning 

phase. Meanwhile, RRT produces the highest and most 

inconsistent Ps values (up to 10 in all scenarios) due to its 

random nature and lack of emphasis on path smoothness. The 

resulting paths are often snaky with sharp changes in 

direction, as shown in Fig. 7(d), Fig. 8(d), Fig. 9(d), and Fig. 

10(d). 

3) Computation Time 

Generally, A* and RRT exhibit minimal computation 

times, remaining below 0.05 seconds across all scenarios. In 

contrast, the computation time for RL is significantly higher, 

with a tc value exceeding 0.1 seconds at 500 episodes. Unlike 

A* and RRT, the iterative learning process in RL causes a 

significant computational burden. The number of episodes 

also significantly affects the computation time. The greater 

the number of episodes, the greater the tc value as shown in 

Fig. 13 and Fig. 17. The epsilon value also affects the 

computation time. Based on the test results, the greater the 

epsilon value, the higher the computation time. 

TQL has the highest computation time compared to all 

algorithms, as shown in Fig. 14 and Fig. 18. In scenarios I 

and II, the total learning time tc for packages A and B in QL 

and DoQL is still lower than TQL. For instance, in the V-d 

parameter, the tc  value for QL is 0.6883 seconds, three times 

lower than that observed for TQL at 1.675 seconds. The result 

indicates that the computation time of individual inter-agent 

learning remains lower than that of simultaneous multi-agent 

learning. Based on the overall test, DoQL gives the same path 

results as QL but with larger learning parameters. A* can be 

used for path planning in the FOCC system with reduced 

computational needs, but at the expense of path smoothness. 

   
(a) (b) (c) 

Fig. 9. Path planning results using (a) QL&DoQL-Vb, (b) A*, and (c) RRT for scenario III 

   

(a) (b) (c) 

Fig. 10. Path planning results using (a) QL&DoQL-Vb, (b) A*, and (c) RRT for scenario IV 
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Fig. 11. Number of activated cell for packages A and B in scenario I 

 

Fig. 12. Path smoothness values for packages A and B in scenario I 

 

Fig. 13. Computation time for packages A and B in the scenario I 

 

Fig. 14. Total computation time for packages A and B in scenario I 
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Fig. 15. Number of activated cell for packages A and B in scenario II 

 

Fig. 16. Path smoothness values for packages A and B in scenario II 

 

Fig. 17. Computation time for packages A and B in scenario II  

 

Fig. 18. Total computation time for packages A and B in scenario II
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B. Rule-Based Conflict Resolution (RCR) Test Result 

At this stage, collision avoidance scenario testing is 

carried out with the following modes: Sq, IP, Rr, and Hb. 

Testing is carried out on all scenarios I, II, III, and IV. When 

all paths have been generated, the algorithm will perform 

collision analysis. If there is more than one packet to be sent, 

the algorithm will calculate all packets' collision probability. 

Furthermore, the program will run the collision avoidance 

algorithm if a collision is detected. Based on the results of the 

performance analysis from the previous test, because DoQL 

gives the same path results as QL, and TQL is not suitable for 

use in this FOCC system, QL with V-b parameters is used for 

the RCR test, and A* and RRT are used as comparison 

methods. Collision avoidance performance is analyzed based 

on computation time (tc), path effectiveness (Ps and ac), and 

total delivery time (tf). Various collision conditions are shown 

in Fig. 10 on the path generated by the QL method. Fig. 20(a) 

is a collision condition for scenario I. Package B will collide 

with package A at points 5,8. For scenario II, if the package 

size is the same (using size S), then no collision occurs. 

Meanwhile, if package B uses size II, a collision will be 

detected at point (4,5) as shown in Fig. 20(b). 

In scenario III, three packets are used for testing. 

Packages A and B are size S, while package C is size M. 

Package B has two possible collisions, specifically at point 

(8,7) with package C and at point (5,11) with package A. Fig. 

20(c) shows the first collision's position for scenario III. In 

scenario IV, there are four packages, where packages A and 

C use size M, and packages B and D use size S. In this 

scenario, all four packets have more than one possible 

collision. Package A can collide with package C at point 

(4,3), with package B at point (4,7). Package B has the 

possibility of colliding with package A at point (7,9) and 

package D at point (8,7) as shown in Fig. 20(d). Packages B 

and D have three cells that overlap during the delivery 

process at the same time. Package C has a potential collision 

with package A at point (2,4) and package D at point (8,6).    

1) Sq-Mode 

The sequential transfer technique does not require 

additional computing time because it utilizes existing paths. 

Fig. 21 is an example of delivery with Sq-mode in scenario I. 

Package A will move first, followed by package B after 

package A has finished arriving at the goal point. The 

sequential flow was successfully implemented for packet 

delivery in all scenarios. 

2) IP-Mode 

In IP mode, the path pattern does not change. The number 

of points at the beginning of the path increases so that the 

packet will remain still for some time. Fig. 22 is an example 

of sending with IP mode in scenario II. Packet A will move 

first, followed by packet B after packet A passes point (2,2), 

indicating 1x additional paths to avoid collisions in scenario 

II. Based on the experiment, the average time for the 

execution time of IP-mode is 5.5mS.  

3) Rr-Mode 

In reroute mode, there is a change in the path pattern due 

to the addition of obstacles with r = 1, as shown in Fig. 19. In 

scenario III, there is a change in the path of packet B due to 

the obstacle at point (8,7), compared to the initial route in Fig. 

9 (a). All packets can move simultaneously in Rr mode since 

t = 1 from the entry point, as shown in Fig. 23. Because of re-

planning the path, the execution time of the IP mode is the 

same as the time of 1x training on each algorithm. 

4) Hb-Mode 

The hybrid mode is tested in scenario IV. Because three 

cells intersect between packages B and D, using IP-mode will 

cause a delivery delay that is too long. Combining IP-mode 

and Rr-Mode for several transfer conditions can save the total 

transfer time. Fig. 24 is an example of the results of using Hb-

mode. Package B experiences a route change compared to the 

initial route. Packages A and C get delayed, while packages 

B and D move simultaneously. Package A only moves after 

packages B and D have passed four cells. Finally, package C 

moves after package A has passed five cells. It is different 

from IP-mode, which causes all packages to experience 

delays. In the case of a collision between C&A packets, 

rerouting is impossible because the collision point is too close 

to the inbound point, and the packet size is large. 

  

(a) (b) 

Fig. 19. QL reroute obstacles (a) scenario I, (b) scenario II 

  
(a) (b) 

  
(c) (d) 

Fig. 20. Crash point in scenario (a) I, (b) II, (c) III, (d) IV 
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(a) (b) 

  
(c) (d) 

Fig. 21. Packages transfer simulation using QL Sq-mode at t: (a) 3.45s, (b) 

5.8s, (c) 9s, (d) 11.6s 

  
(a) (b) 

  
(c) (d) 

Fig. 22. Packages transfer simulation using QL IP-mode at t:  (a) 0.5s, (b) 

2.5s, (c) 3.5s, (d) 4.25s 

  
(a) (b) 

  
(c) (d) 

Fig. 23. Package transfer simulation using QL Rr-mode at t (a) 0.75s, (b) 1.5s, (c) 3s, (d) 5s 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1660 

 

Syamsiar Kautsar, Q-RCR: A Modular Framework for Collision-Free Multi-Package Transfer on Four-Wheeled 

Omnidirectional Conveyor Systems 

  
(a) (b) 

  

(c) (d) 

Fig. 24. Package transfer simulation using QL Hb-mode at t: (a) 2.2s, (b) 3.7s, (c) 4.95s, (d) 7.45s 

C. Multi-Package Transfer Analysis  

The package transfer rate during the transfer process is 

assumed to be constant, namely v = 2.l / second. Based on the 

simulation results, the QL algorithm achieves the fastest 

transfer time in scenario I in Rr-mode with a time of 5.8 

seconds. In terms of path smoothness, A* provides the same 

value as QL for path changes in packet B, as shown in Fig. 

26. However, there are two additional activated cells in the 

A* algorithm, as shown in Fig. 25. To avoid collisions in Rr-

mode, a value of r = 2 is required in the A* algorithm. This 

has implications for increasing the path length to reach the 

outbound point. RRT shows the lowest performance for the 

three modes tested. The path generated by RRT has high ac 

and Ps values, as shown in Fig. 25 and Fig. 26. Paths with 

many changes in direction can increase the risk of delivery 

errors in real implementations. The number of cells used also 

affects the path length so that the transfer time increases in all 

modes, as shown in Table II. 

In scenario II, QL also performs well in Rr and IP-mode, 

with the best package transfer time of 5.8 seconds for both 

modes. Based on the experiment, the path generated in Rr-

mode with r = 1 has the same total delivery time as IP-mode 

with 1x additional path, as shown in Table II. In the case of 

ac, QL with Rr-mode adds one activated cell compared to the 

original path, as shown in Fig. 25. In terms of path 

smoothness, even though there is an increase in the Ps value 

compared to the original path, QL still shows the best 

performance, as shown in Fig. 26. In this case, A* in Rr mode 

fails to reach its destination. The observation results indicate 

that a collision point near the inbound point will terminate the 

search path, preventing the algorithm from achieving the final 

result. RRT again shows the lowest performance in this 

scenario for the three modes tested, as shown in Fig. 25 and 

Fig. 26.  

 

Fig. 25. Activated cell data for QL, RRT, A* algorithms in scenario I&II 

 

Fig. 26. Path smoothness data for QL, RRT, A* algorithms in scenario I&II 
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TABLE II.  COMPARISON OF TRANSFER TIMES BASED ON PATH PLANNING 

ALGORITHMS  

Algorithm Mode 
Packages Transfer Time (s) 

I II III IV 

QL 

Seq 11.6 10.5 16.25 25 

IP 6.7 5.8 7.6 12.1 

Rr/Hb 5.8 5.8 6.25 10.75 

RRT 

Seq 12.7 11.3 20.15 27.9 

IP 8.05 7.1 12.25 11.45 

Rr/Hb 7.3 6.4 - 11.45 

A* 

Seq 11.6 10.5 16.25 25 

IP 6.7 6.7 6.25 12.1 

Rr/Hb 6.4 - 6.25 10.3 

 

 In scenario III, QL in Rr-mode has the same tf 

performance as A*, which is 6.25 seconds. In Rr-mode, QL 

uses one additional activated cell, as shown in Fig. 27. 

Meanwhile, since A* does not detect collisions in scenario 

III, the generated path remains the same as in Sq-mode. 

Although A* provides more stable ac values, QL is far 

superior in terms of Ps, as shown in Fig. 28. RRT again has 

the weakest performance in terms of delivery time, path 

smoothness, and number of activated cells, as shown in Fig. 

27 and Fig. 28. For package C (which has inbound and 

outbound points aligned with the X axis) and package A 

(which has inbound and outbound points aligned with the Y 

axis), the QL and A* algorithms generate straight paths (Ps = 

0) as shown in Fig. 28. 

 

Fig. 27. Activated cell data for Sq, IP and Rr-mode in scenario III 

 

Fig. 28. Path smoothness data for Sq, IP and Rr-mode in scenario III 

In simulation IV, Hb-mode replaces Rr-mode because 

reroute mode cannot handle high-density collisions. Using 

Hb-mode shortens the delivery time from 6.7 seconds (in IP 

mode) to 5.8 seconds. The path between packets B and D has 

three overlapping cell points. This causes the algorithm to add 

more than 3x insert paths, which has an impact on increasing 

the total delivery time, as shown in Table II. The movement 

time of packet B can be accelerated by changing the route. 

However, it affects increasing the Ps and ac value, as shown 

in Fig. 29 and Fig. 30. In addition to Hb-mode, QL records a 

Ps value = 1, far superior to the A* and RRT algorithms, as 

shown in Fig. 30. From the overall simulation, it can be 

concluded that the RRT algorithm is less suitable for the case 

of path planning in FOCC. A* can be an alternative but with 

the consequence of a sneaky path. Q-learning is the optimal 

approach for path planning in the FOCC scenario, noting that 

the α, γ, € and episode parameters must be considered to 

minimize computational time. 

 

Fig. 29. Activated cell data for Sq, IP and Hb-mode in scenario IV 

 

Fig. 30. Path smoothness data for Sq, IP and Hb-mode in scenario IV 

Based on the applied RCR framework, the sequential 

transfer technique has the longest delivery time, as each 

packet is transmitted individually. Although this method is 

the safest way to send many packets and does not require 

additional computation for path modification, a delivery time 

that is too long can cause packets to pile up on the inbound 

path, which has the potential to cause deadlock. IP mode can 

also be applied to all scenarios to shorten the total transfer 

time. As seen in Table II, IP mode can save the total transfer 

time up to 2x compared to sequential.  

 Based on testing results in scenarios I–III, Rr-mode 

provides an option to increase the efficiency of tf compared 

to the insert path technique, especially if the added delay is 

too much and extends the package waiting time. However, 

the Rr-mode does not work effectively if the collision point 

is too close to the entry or exit point. In addition, Rr-mode 

can also produce non-convergent training results when 

applied to a large number of packets because the added 

obstacle positions are too wide. Rr-mode also has a higher 

computation time because it requires path recalculation. 

Therefore, for sending many packets, such as in scenario IV, 

combining IP and Rr-modes (Hybrid mode) can perform 

better than implementing each mode separately. When the 

Hb-mode algorithm is applied to Scenarios I–III, it produces 

the same output as the IP-mode. This is because, in these 

scenarios, collisions do not require more than two iterations. 
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Integrating Q-Learning with the proposed RCR framework 

may provide a solution for simultaneous package transfer in 

the OCC system. 

V. CONCLUSION 

This study introduces the Q-RCR framework, a modular 

and scalable solution for collision-free multi-package transfer 

on Four-Wheeled Omnidirectional Cellular Conveyor 

(FOCC) systems. The primary theoretical contribution lies in 

decoupling the path learning and collision resolution 

processes by integrating Q-learning with rule-based conflict 

management. This architecture reduces computational 

overhead, accelerates convergence, and enhances 

adaptability in dynamic and high-variability environments. 

Experimental results demonstrate that Q-RCR outperforms 

baseline methods, such as Double Q-Learning, Tabular Q-

Learning, RRT, and A*, regarding path smoothness, 

activated cell count, and total delivery time. The hybrid 

conflict resolution mode (Hb-mode) performs best under 

high-density collision scenarios, effectively balancing 

efficiency and computational cost. These findings affirm Q-

RCR’s potential to improve operational flow and mitigate 

deadlocks in modern logistics systems. 

However, the current study has several limitations. The 

reroute (Rr) mode becomes less effective when collisions 

occur near entry or exit points due to limited space for path 

regeneration. The system also shows sensitivity to obstacle 

density, grid size, and the number of simultaneous packets, 

which may affect scalability and generalization. While the 

Insert Path (IP) mode applies to all scenarios, its repeated 

delays can significantly increase total delivery time in 

densely populated environments. Additionally, the absence 

of speed control mechanisms limits the system’s 

responsiveness in dynamic or unpredictable conditions. To 

address these issues, future research should explore adaptive 

inter-package speed regulation as a more fluid alternative to 

delay-based or reroute strategies, potentially enhancing 

overall transfer performance. Other promising directions 

include learning-based dynamic rerouting, agent 

prioritization schemes, and real-world validation via 

integration with physical control systems and IoT-enabled 

innovative logistics platforms. 
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