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Abstract—The utilization of autonomous agents such as 

multiple UAVs has been continually increasing to recognize spot 

fires and screen out of control fire hazards moving toward a 

structure, fence, forest, or firefighting crew via remote sensing. 

Wildfires have caused catastrophic losses as their economic and 

regional impact were not reduced.  The monitoring and 

suppression of wildfire with drones using the Voronoi 

Partitioning Algorithm is proposed in this report. Robot 

Operating System was used to deploy quadcopters in an area 

using Centroidal Voronoi Tessellation. By the algorithm, a plane 

with n foci is divided into convex polygons such that every 

polygon contains precisely one generating point. In Voronoi 

Partitioning, UAVs are situated in the centroid of the 

partitioned area hence the area covered by each drone is almost 

equal, and an unbiased search is followed through. The 

MATLAB simulation of the Voronoi algorithm was run with ‘n’ 

number of drones to see the configuration firsthand and see how 

every drone occupied an equal area density to carry out the 

specific application, making the detection process smoother and 

more efficient. Hector Quadrotor was simulated in Gazebo 

environment and related packages were configured to emulate 

it. Rviz was used to check the function of the cameras for fire 

detection and was run alongside the Hector Quadrotor. A 

strategy that could be used for forest firefighting by using multi 

drone systems is elaborated in this report. A literary review was 

done to discuss the various available path planning techniques 

and drone systems to detect fires. Using Voronoi-Tessellation in 

MATLAB, the path for the robots’ search was developed. 

Separately, the drone used was simulated in a virtual 

environment called Gazebo. By using combinations of different 

drones and thermal cameras in the simulation, multiple 

alternatives have been recognized. Further, an addition of a 

thermal attribute to the environment to simulate a real-world 

scenario and systemize the communications between various 

instances of the drones were made to detect wildfire affected 

areas accurately. 

Keywords—Wildfire Detection; Thermal Imaging; UAV 

Coordination; Voronoi Partitioning; Multi-Drone Systems; ROS-

Gazebo Simulation; Autonomous Aerial Surveillance; Wildfire 

Modeling. 

I. INTRODUCTION 

Wildfires represent one of the most destructive natural 

disasters globally, intensified by climate anomalies and 

increasingly dry landscapes. Rapid detection and real-time 

monitoring are essential to mitigate the ecological, economic, 

and human losses caused by these events. Unmanned aerial 

vehicles (UAVs) have emerged as a powerful tool in wildfire 

surveillance due to their ability to access remote areas, 

provide aerial situational awareness, and collect data in real-

time without endangering human operators. However, the 

effectiveness of UAVs in operational wildfire scenarios is 

limited by several practical challenges, including short 

battery life, sensitivity to adverse weather conditions, and the 

risk of communication breakdowns in dense forest 

environments. To enhance the reliability and scalability of 

UAV-based systems, researchers have explored various area 

coverage and path planning algorithms. Among these, Ant 

Colony Optimization and Levy Flight offer stochastic and 

adaptive strategies but often suffer from high computational 

complexity or lack of spatial structure. Voronoi Tessellation, 

by contrast, provides a geometrically intuitive method to 

partition the search space into non-overlapping regions 

centered around each UAV, ensuring balanced coverage and 

minimizing redundancy. This approach is particularly suited 

for coordinated multi-drone operations in dynamic 

environments. In recent years, wildfire detection 

technologies have also advanced through the integration of 

deep learning frameworks, multi-modal sensor fusion (e.g., 

RGB and thermal cameras), and AI-enhanced navigation 

systems. Models such as YOLOv5, AF-Net, and 

FCLGYOLO have demonstrated high accuracy in fire 

segmentation, even under occlusions or heavy smoke 

conditions. Simultaneously, UAV swarms guided by 

reinforcement learning and vision-based coordination have 

enabled intelligent decision-making and adaptive flight in 

uncertain terrains. Despite these advancements, there remains 

a need to unify efficient area partitioning with sensor-driven 

detection and practical simulation for deployment-readiness. 

This study proposes a drone-assisted wildfire detection 

system leveraging centroidal Voronoi tessellation for optimal 

area coverage, integrated with thermal imaging and RGB-D 

data for accurate fire localization. The system is validated 

through MATLAB simulations and implemented in the ROS-

Gazebo environment using hector quadrotor UAVs. By 

addressing both algorithmic efficiency and sensor integration 

in a simulated forest fire scenario, the study aims to bridge 

the gap between theoretical models and real-world readiness 

for UAV-based wildfire management. A study and 

simulation of this algorithm will aid us in finding if there is a 

more efficient way to carry out search and rescue/surveillance 

in remote places that are inaccessible or tough to enter by 

human beings by unmanned aerial vehicles like 
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quad/multirotor copters. This will help avail more data for 

disaster management and search and rescue in the foreseeable 

future. 

The research contribution of this work is the development 

and simulation of a multi-UAV system for wildfire 

monitoring using ROS and Gazebo, integrating thermal and 

RGB-D sensors for fire detection. This study addresses the 

coordination of UAVs through Voronoi-based partitioning 

and evaluates the system’s performance in a controlled 

simulation environment. Furthermore, it identifies key 

challenges related to real-time control, sensor limitations, and 

environmental factors, providing a foundation for future 

work on adaptive path planning and multi-modal sensor 

fusion to enhance wildfire detection and response 

capabilities. 

II. MOTIVATION 

The increasing prevalence of unmanned aerial vehicles 

(UAVs) in diverse applications such as wildlife monitoring, 

disaster relief, infrastructure inspection, and surveillance 

highlights their growing significance in autonomous 

operations. UAVs have been widely adopted due to their 

ability to operate in hazardous and inaccessible 

environments, minimizing risks to human operators while 

enhancing efficiency and data accuracy. In particular, their 

use in wildfire monitoring and suppression has gained 

attention, as early detection and rapid response are critical in 

mitigating catastrophic damage. This study aims to harness 

the capabilities of multiple autonomous UAVs to perform 

wildfire surveillance and suppression tasks in a coordinated 

and interference-free manner. One of the primary challenges 

in multi-UAV operations is ensuring efficient area coverage 

while avoiding redundant efforts or gaps in monitoring. By 

employing Voronoi partitioning, the UAVs autonomously 

divide the affected region into distinct zones, each assigned 

to a specific drone. This method ensures that each UAV 

operates within its designated space, reducing uncertainty 

and maximizing coverage efficiency. Such an approach not 

only improves real-time monitoring but also facilitates faster 

decision-making in wildfire suppression. Additionally, 

automation plays a key role in reducing human errors 

associated with traditional wildfire monitoring techniques. 

Manual operations often suffer from delayed response times, 

inconsistent data collection, and increased risks to personnel. 

In contrast, UAV-based autonomous surveillance ensures 

continuous monitoring with minimal latency, allowing for 

quicker identification of fire outbreaks and hotspots. 

Furthermore, real-time data gathered by UAVs can be 

integrated with AI-based analytics to predict fire spread 

patterns, aiding firefighting teams in deploying resources 

more effectively. As industries increasingly shift towards 

automation, the adoption of autonomous UAV networks 

aligns with the broader trend of integrating AI-driven systems 

into emergency response frameworks. This transition enables 

the development of a safer, more scalable, and efficient 

approach to disaster management. By optimizing resource 

allocation, minimizing operational risks, and enhancing 

situational awareness, UAV-based wildfire monitoring and 

suppression contribute to making emergency response 

systems more reliable and effective. 

III. DEVELOPMENTS TILL NOW 

Since Unmanned Aerial Vehicles have, as of late, been 

unveiled as accessible for public use, there has been an 

enormous measure of exploration and experimentation 

concerning their handiness in everyday exercises, mostly to 

automate certain operations and surveillance and get a new 

viewpoint (in a real sense) on old issues. There has been a 

developing need to utilize drones with different abilities for 

various public and military applications, including search and 

salvage missions, ecological security, mailing and 

conveyance, active weapon engagement, space, marine 

robots, etc. The utilization of UAVs in firefighting 

applications is explicitly underlined in this paper. An 

opportunity to stifle a wildfire is essential as it causes 

monetary, ecological, and social misfortunes. Until today, 

UAVs were utilized by a few local groups of firefighters in 

some parts of the world for search and salvage activities, 

identification of fire break-out zones and setting off an alert 

to signal firefighters, determination to decide the fire’s area 

and degree, and keeping tabs on its development, and 

anticipation foreseeing the fate of the fire by using remote-

sensing capabilities via incorporated sensors and processing 

units. There has been a lot of research on utilizing UAVs 

based on technical and non-technical perspectives [3]-[7]. 

The path that covers all the points of a defined area or 

volume while avoiding all the hurdles is determined by 

coverage path planning (CPP). CPP is used in numerous 

robotic applications. Vacuum cleaning robots, painter robots, 

autonomous underwater vehicles that create image mosaics, 

demining robots, lawnmower robots, automated harvesters, 

window cleaning devices, and complex underwater structure 

inspectors are some robot-aided applications that use this 

task. Previous evidence on CPP in the literature defined all 

the requirements a robotic device must meet to perform the 

coverage task [8]-[10]. 

The requirements are as follows:  

• Robots must cover all points in the entire target area.  

• Robots must move through the region without 

overlapping paths.  

• There should be a continuous and sequential operation 

without repeating pathways.  

• Robots should be able to skip all obstacles. 

• Simple motion trajectories like straight lines and circles 

must be used as they simplify control operations.  

• There should be an ‘optimal’ path under available 

conditions. 

Autonomous agents have been employed in specific 

robotics and unmanned aerial vehicle fields. Such tasks as 

land mine spotting and elimination, environmental surveying, 

emergency rescue operations, and many more [11]-[14]. 

In the research article [15], the authors suggested that 

since UAVs have a very restricted flight season of 

approximately only ten minutes and operations like search 

and salvage missions, firefighting, etc., require a large area to 

be covered in the most minimum time, which is not possible 
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with a single drone. They studied the utilization of various 

UAVs instead of one UAV with reliable wireless networking 

between the UAVs and communications to the base [16]. 

Their research focuses on autonomous multi-UAV systems 

that could work with minimum human interaction. Different 

levels of autonomy and different degrees of centralization are 

required for other applications. They depicted and tested a 

framework of UAVs adjusted to the various situations to 

work according to varying levels of autonomy based on the 

operator’s interest. Particular nodes such as a UAV or the 

base could join or leave the network without hampering it or 

influencing the mission’s objective. This prevented 

individual failures and made the system expandable to add 

different types of UAVs if necessary. It also enabled the 

operator to intrude and change the mission plan with GUI at 

the base. [17] conducted controlled experiments to determine 

the efficiency of fire extinguishing balls for firefighting. 

These balls were delivered to the experiment location via 

UASs. The objective of their investigation was to design and 

test the capabilities of a UAV firefighting system. The results 

of their experiments suggested that firefighting balls are a 

better suppressant than water. They also inferred that water 

damage is more devastating to buildings and that using fire 

suppressant balls would assist in sustainable water use. The 

researchers closely worked with firefighters to understand 

how drones drop fire extinguishing balls in different 

situations. They tested the balls in building space and on a 

small patch of grass. They found that the results were 

extremely promising in the latter case. Hence, they concluded 

that extinguishing wildfires with fire extinguishing balls by 

dropping them to optimal points via multiple drones on time 

can be efficient and beneficial [18]. An algorithm to plan the 

path of drones was required to drop the fire extinguishing ball 

at optimal points. There are many algorithms available to plan 

the UAV path. The most common ones are Ant Colony 

Optimization and Voronoi Partition. 

Ant colony optimization is an algorithm for determining 

ideal UAV paths in a similar manner that ants follow when 

they search for food. The ants, at first, start wandering 

randomly to get to the food. When an ant finds a food source, 

it travels back to its colony, leaving “markers” (pheromones), 

implying that the path reaches the food source. When other 

ants find these markers, they start following the trail with a 

certain probability of finding food at the end. This populates 

this path with many markers as other ants return the food. As 

more and more ants find food sources, a couple of streams of 

ants travelling to various food sources are formed in the 

colony. As insects leave pheromones every time they carry 

food, shorter paths are more robust because pheromones tend 

to evaporate with time. If the course is longer, the 

pheromones disappear before other ants take that path. The 

smell is thus more pungent in the shorter routes, hence 

optimizing the “solution”. Along with this, some ants still 

randomly keep looking for closer food sources. Once one 

food source is consumed, its route becomes less populated 

with pheromones and eventually decays. The ant colony uses 

an extremely dynamic system, and its algorithm works 

perfectly with landscapes and maps with different topologies. 

Some of these systems are computer networks and artificial 

intelligence simulations of UAVs. [19] To keep away from 

the hazardous regions and save fuel and time, it is imperative 

to determine an optimal way from the base to the target area. 

The Voronoi Partition algorithm is implemented for path 

planning for numerous applications as it is conveniently built 

to fit constant time computing processes and get some 

optimal drone paths. [20] This paper requires the assistance 

of multiple drone systems to detect the fire-affected area 

accurately. Three quadcopters - the Asctec Hummingbird, 

Asctec Pelican, and the Hector Quadrotor were considered 

potential robots for the operation. The Asctec Hummingbird 

is a nifty little quadcopter generally utilized for vision-based 

applications. It has a small body, is lightweight, and has a 

flight time of 20 minutes per charge. A few additional 

quadcopter features include automatic landing and GPS [21]. 

The Asctec Pelican is a quadcopter with a 1.6 GHz Intel Atom 

processor and works seamlessly with the Ubuntu-operated 

ROS. The quadcopter enables real-time processing of visuals 

captured from the camera for their analysis, eliminating the 

requirement of an external computer for computation [22]. 

The authors chose the hector quadrotor from a list of 

numerous other ROS UAVs as it is an open-source package 

with numerous advanced features. The requirements of this 

work make Hector the most optimal choice. The Hector 

Quadrotor was simulated by a team at the Technical 

University of Darmstadt. The quadrotor is enclosed in the 

hector quadrotor meta package. It contains the URDF 

description for the quadrotor UAV, its flight controllers, and 

launch files for running the quadrotor simulation in Gazebo. 

In order to further speed up the process, the authors of [23] 

suggest a method for implementing multi-robot coordination 

between the vehicles while also simulating the detection of 

life during sudden onset of disasters with the aid of a deep 

learning model and a suitable region-partitioning technique. 

With its advanced use, the user of the Hector can record 

sensor data like Lidar, depth Camera, etc. The simulation of 

this quadrotor is also used to test flight algorithms and control 

approaches in simulations.  Aerial manipulation has been 

developed thus far and categorized based on workspace 

arrangement and function. Two independent CNNs are able 

to be employed to determine the worker's image aspects 

relying on the AlexNet model, and the degree of feature 

abstraction enables it to reflect the key image features more 

accurately. 

The multi-UAV systems of the Hector Quadrotors are 

equipped with thermographic cameras that use infrared 

radiations to create electronic images that identify the areas 

with high surface temperature, i.e., the areas affected by the 

fire. Numerous infrared cameras like the FLIR A35 and FLIR 

A65 are studied to determine the best ones with the Hector 

Quadrotor. The FLIR A35, a thermal imaging temperature 

sensor, is often used for conditions monitoring, quality 

assurance, process controls and sometimes even for fire 

prevention applications. The FLIR A35 offers visual 

temperature monitoring and can easily integrate into existing 

systems. The A35 is a small device with dimensions of 4.1 × 

1.9 × 1.8 inches, making it compatible with small areas like 

drone systems [24], [25]. The FLIR A65 is very similar to the 

FLIR A35. However, it offers a larger lens of 13mm within 

the small dimensions of 4.1 × 1.9 × 1.8 inches. This thermal 

imaging temperature sensor is helpful for quality assurance 

and process control. It works best for fire detection and 

prevention with drones [21]. The most valuable feature of the 
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FLIR A65 is the condition monitoring technology that offers 

comprehensive visual temperature monitoring, perfect for 

disaster management [26], [27]. This paper aims to take 

inspiration and implement the learnings from the above 

studies and research to design and optimize a drone-assisted 

wildfire-fighting system in a robot operating system. This 

study outlines a technique to develop a heat map for safety 

assessment from images captured by a single on-board 

camera. 

The research [28] focuses on utilizing drones and artificial 

intelligence, specifically reinforcement learning algorithms, 

to combat wildfires. The study compares the performance of 

DQN, Rainbow DQN, and FQF algorithms in controlling 

swarms of two and four drones in simulated and realistic 

wildfire scenarios. Results show that DQN and FQF 

outperform Rainbow DQN, with FQF facing challenges in 

certain scenarios. The study emphasizes the importance of 

testing algorithms with larger swarm sizes for scalability. 

[29] proposes a solution to track dynamic wildfire boundaries 

using UAVs. The wildfire boundary is modeled as the zero-

level set curve of an implicit function and approximated with 

radial basis functions. The propagation of the wildfire 

boundary is modeled using the Hamilton-Jacobi equation. To 

navigate UAVs to the wildfire boundary, an analytical 

velocity vector field is constructed using radial basis function 

thin-plate spline. Computer simulations with a single UAV 

and multiple UAVs have been conducted, and the results 

show that the proposed algorithm can successfully track an 

arbitrarily shaped wildfire boundary. The article [30] presents 

a fire warning and suppression system using reinforcement 

learning (RL), comprising an energy-harvesting SUAV for 

fire detection and multiple ground-based FUAVs for fire 

extinguishing. The proposed DQL-based trajectory design 

problem optimizes FUAV deployment, enhancing 

firefighting efficiency and speed, ultimately protecting lives 

and properties. The paper [31] introduces a cooperative 

navigation strategy for networked UAVs, featuring an 

adaptive circular formation control protocol, task 

reassignment algorithm, formation reconfiguration method, 

and collision avoidance algorithm. It addresses unknown 

disturbances and actuator faults, with a forest fire monitoring 

simulation case study demonstrating its application potential. 

[32] Introduces a cooperative navigation strategy for 

networked UAVs, featuring an adaptive circular formation 

control protocol, task reassignment algorithm, formation 

reconfiguration method, and collision avoidance algorithm. 

Validation was done through a forest fire monitoring 

simulation and outdoor/indoor flight experiments. A self-

sufficient, low-cost wildfire mitigation model (SL-PWR) 

optimized UAV monitoring using predicted spatio-temporal 

wildfire probability maps, improving situational awareness 

and detection speed [33]-[36]. To address the limitations of 

traditional fire detection methods, a UAV-assisted mobile 

edge computing system was proposed, featuring a 

lightweight fire target detection model for real-time 

segmentation and rapid-fire location estimation [37]. 

Additionally, UAV-IoT networks have been explored for 

optimizing fire detection probability while balancing system 

costs [38], and a surface flame detection model based on 

ATSS has been developed to enhance real-time wildfire 

assessment using edge computing, achieving state-of-the-art 

performance in flame extent evaluation [39].  

Recent advancements in wildfire detection utilize UAV-

based deep learning frameworks to enhance early fire 

identification and situational awareness. A novel ORB-

SLAM-feature filtering framework integrates aerial onboard 

visual-infrared sensor processing and UAV navigation to 

estimate wildfire distance and improve geo-location accuracy 

[40]. The AF-Net model addresses class imbalance in UAV 

imagery using object-contextual representations, achieving 

high segmentation accuracy for active fire detection [41], 

while a Bayesian inference-based path-planning approach 

with ResNet-based detection optimizes UAV search 

efficiency for locating fire spots [42]. Additionally, an 

Adaptive Hierarchical Multi-Headed CNN with an attention 

mechanism improves wildfire classification accuracy [43], 

and a multi-modal UAV-collected dataset combining RGB 

and thermal imaging enhances fire detection and 

segmentation methodologies [44]. Unmanned aerial vehicles 

(UAVs) play a crucial role in forest fire detection and 

mitigation, leveraging deep learning (DL) and swarm 

intelligence for enhanced accuracy and response time. 

YOLOv5-s, with an improved CSP module and PAN layers, 

achieves 97.4% accuracy in differentiating fire and non-fire 

regions, reducing false positives and processing time [45]. 

DPMNet integrates a dual-path backbone with MiFPN and 

CEAFM for precise remote sensing fire detection, enhancing 

feature fusion and spatial perception [46]. Additionally, a 

regular virtual tube approach ensures safe UAV navigation in 

dynamic fire scenarios [47], while the MSCIDC approach 

accelerates fire detection and suppression using cooperative 

multi-UAV swarms, reducing burned area by 65% [48]. 

Lastly, FCLGYOLO improves UAV-based fire detection by 

constraining positive sample features and enhancing object 

positioning, performing well even in heavy smoke or 

occlusions [49]. In dynamic UAV networks for wildfire 

detection and monitoring, bio-inspired localization (BIL) and 

clustering (BIC) schemes using a hybrid gray wolf 

optimization (HGWO) method are proposed to enhance 

localization accuracy and energy efficiency [50]. A 

cooperative UAV-based target search strategy leveraging 

particle swarm optimization (LoPSO) improves detection 

efficiency and reduces search time in unknown environments 

[51]. Visibility-based path planning (VPP) is introduced to 

maximize terrain coverage during UAV flights, achieving 

high visibility in real-world tests [52]. UAV-based fire 

detection methods integrating machine learning, IoT, and 

WSN technologies enhance real-time detection and reduce 

false alarms, while a reinforcement learning-based approach 

optimizes UAV trajectories for fire suppression [29], [53]. 

Additionally, UAVs equipped with advanced sensors enable 

real-time air quality monitoring, efficient data collection 

planning for forest fire monitoring, and improved urban 

building segmentation using deep learning models [54]-[57]. 

The increasing frequency of wildfires due to climate 

anomalies has led to significant advancements in UAV-based 

wildfire detection and analysis. Recent studies have enhanced 

deep learning models, such as YOLOv7-tiny with CBAM, to 

improve fire segmentation and fire front interpretation, 

achieving a 3.8% improvement in detection precision and a 

segmentation frame rate of 64.72 Hz [58]. Additionally, 
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synthetic wildfire datasets like MSFWD have been developed 

to address challenges in varying terrain, lighting, and weather 

conditions, aiding fire detection algorithms [59]. AI-enabled 

UAV systems now support wildfire management across pre-

fire, active-fire, and post-fire stages, integrating ML, RL, and 

DL techniques for monitoring and response planning [60]. 

Novel approaches, such as SegNet-based image classification 

and wireless sensor nodes with AI classifiers, have further 

enhanced early wildfire detection capabilities [61], [62]. 

Moreover, high-resolution wildfire models, including FDS-

LS, have demonstrated the impact of wind dynamics on fire 

spread, and UAV-based wind field measurements have been 

proposed to refine fire propagation models [63]-[65]. Real-

time geospatial mapping using deep CNNs and LSTMs has 

significantly improved the prediction accuracy of fire spread 

patterns, assisting emergency response teams [66]. 

Furthermore, UAV-based LiDAR and thermal imaging have 

been integrated with deep learning frameworks to detect fire 

hotspots with higher precision and reduced false positives 

[67]. These advancements collectively contribute to real-time 

wildfire detection, improved modeling accuracy, and 

enhanced disaster management strategies [68]. 

The deployment of UAV-mounted base stations (BSs) has 

gained traction due to their ability to extend cellular network 

coverage efficiently, offering cost-effective solutions in areas 

with coverage gaps [69]. Similarly, UAV-IoT systems are 

being explored for wildfire detection and management, 

leveraging LoRaWAN-based architectures for real-time fire 

classification and tracking, achieving an accuracy of 99.46% 

[70]. In wildfire emergency response, a novel cooperative 

search and coverage (CSC) strategy using near non-

dominated solutions has been introduced, optimizing UAV-

based fire hotspot detection through probability pattern 

matching [71]. Additionally, UAV-based remote sensing is 

proving effective in monitoring agricultural practices, 

particularly in detecting rice straw burning through 

multisensory fusion techniques, improving YOLOv5 

detection accuracy by up to 5% [72]. Wildfire smoke 

detection (WFSD) is crucial for environmental safety, and 

recent research explores deep learning models for enhanced 

detection accuracy. Attention-based YOLOv5 models 

incorporating efficient channel attention (ECA), Global 

attention module (GAM), and coordinate attention (CA) have 

demonstrated improved robustness, with GAM achieving a 

95% F1 score [73]. Computer vision-based wildfire detection 

methods, particularly CNNs like YOLOv5, Inception v3, and 

Faster R-CNN, are widely used, but challenges remain in 

deploying satellite systems for real-time monitoring [74]. 

UAV-based detection using YOLOv7-MS integrates a 3FIoU 

loss function and FasterNet, achieving a mAP of 79.3% at 

175 fps [75]. Remote sensing approaches, leveraging Sentinel 

and PlanetScope imagery, effectively assess post-wildfire 

severity, correlating vegetation loss with carbon monoxide 

levels [76]. FireXnet, a lightweight deep learning model, 

enhances wildfire detection efficiency, outperforming 

VGG16 and InceptionV3 while integrating SHAP for 

explainability [77]. Vision Transformer-based FWSRNet 

improves wildfire recognition, achieving 94.89% accuracy, 

demonstrating its effectiveness in IoT-enhanced monitoring 

[78]. UAS-based real-time path planning optimizes wildfire 

perimeter monitoring, addressing the dynamic nature of fire 

spread [79]. Adaptive multi-sensor fusion techniques, 

integrating LiDAR and thermal imaging, enhance early 

wildfire detection accuracy [80]. Advanced deep 

reinforcement learning methods improve UAV-based 

surveillance efficiency, enabling autonomous navigation in 

wildfire-prone areas [81]. Hybrid models combining CNN 

and LSTM architectures enhance smoke detection by 

capturing spatial and temporal features [82]. Transformer-

based models such as Swin Transformer outperform 

traditional CNNs in wildfire detection tasks, achieving higher 

precision and recall Edge computing-enabled WFSD 

frameworks reduce latency and improve real-time decision-

making in remote wildfire-prone regions [83]. 

IV. METHODOLOGY 

A. ROS-Based Deployment of Quadcopters Using 

Centroidal Voronoi Tessellation 

Centroidal Voronoi Tessellation (CVT) was employed for 

optimal positioning of UAVs to ensure equal-area 

distribution for wildfire surveillance. The algorithm 

iteratively places each UAV at the centroid of its 

corresponding Voronoi cell to minimize overlap and 

redundancy. This deployment strategy was simulated in 

MATLAB and implemented in ROS-Gazebo using Hector 

Quadrotors. However, it is important to note that the CVT-

based optimization currently assumes a static or quasi-static 

environment. In real-world wildfire scenarios, the dynamic 

nature of fire spread—driven by factors such as wind speed, 

humidity, and terrain variability—may render static Voronoi 

partitions suboptimal over time. A critical limitation of the 

current approach is its inability to adapt autonomously to 

rapidly changing spatial conditions. To address this, future 

work will explore dynamic Voronoi partitioning with real-

time updates triggered by thermal feedback and 

environmental sensors. 

Voronoi partitioning plays a crucial role in the optimal 

deployment of UAVs for wildfire detection. The centroidal 

Voronoi tessellation (CVT) method ensures that UAVs are 

positioned at the centroid of their respective Voronoi cells, 

resulting in an unbiased search distribution. Each partitioned 

region is associated with a single UAV, ensuring uniform 

coverage. This configuration inherently encodes proximity 

information, allowing efficient decision-making regarding 

spatial relationships, such as determining the nearest object 

or estimating inter-agent distances. The UAV deployment 

process is initiated with an arbitrary distribution, followed by 

an iterative optimization process that adjusts UAV positions 

to their respective Voronoi centroids. This ensures equitable 

area coverage and minimizes redundant overlap. The 

implementation involves a simulation of 50 UAVs, with 

scalability to various fleet sizes (e.g., 5, 10, 15, 25, 30). The 

importance of Voronoi-based coverage lies in its ability to 

reduce computational complexity, as it eliminates the need 

for continuous distance queries, optimizing response time for 

fire detection. 

Algorithm 1: Voronoi-Based UAV Deployment 

Input: UAVs' initial positions P= {p1, p2, ..., pn} P = \{p_1, 

p_2, ..., p_n\}P={p1,p2,...,pn} 

Output: Optimized UAV positions 
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Initialize UAV positions randomly within the region of 

interest. 

Compute Voronoi partitioning for given UAV positions. 

For each UAV iii do:a. Compute its centroid CiC_iCi of the 

Voronoi region.b. Move UAV to CiC_iCi. 

Repeat steps 2–3 until convergence. 

Return final UAV positions. 

Here from Fig. 1 and Fig. 2 (a) the initial configuration of 

multiple UAV’s, we scatter into a proper (i) Voronoi 

configuration. This simulation consists of 50 drones, but a 

simulation of the ‘n’ number of drones, be it 5, 10,15, 25, 30, 

and many more, is possible. The sole reason for using 

Voronoi is that this type of configuration encodes proximity 

information that helps answer questions like “Which object 

is closer to X?” “How far is X from Y.” 

Thus, this will aid in performing an equal search to detect 

the fire using the hector quadcopter. Without the Voronoi, the 

concerned application will fail to work in the real world 

because there will be an increase in difficulty. After all, 

distance queries will have to be computed every time, wasting 

precious time and consequences that must be prevented most 

of the time. 

n sites = n faces 

2n-5 = vertices 

3n-6 = edges 

 
Fig. 1.  Initial configuration of multiple UAVs 

 
Fig. 2.  Configuration of n drones after applying Voronoi tessellation 

B. Data Collection from the Sensors using Pyroelectric 

Sensors 

Fire detection in UAV-based surveillance systems relies 

on pyroelectric infrared (PIR) sensors, which are well-suited 

for non-contact temperature monitoring. These sensors detect 

infrared radiation emitted by fire and can estimate 

temperature variations over large areas. The advantages of 

PIR sensors include rapid response times, durability, and 

suitability for harsh environmental conditions. Additionally, 

they can detect fires in obstructed areas, such as dense forests, 

where visibility is limited. To ensure accurate data collection, 

the UAVs continuously monitor temperature variations, 

differentiating fire-induced infrared signatures from 

background noise. This is achieved through adaptive 

thresholding techniques and machine learning-based 

anomaly detection. 

C. MATLAB and ROS Interface 

The integration of MATLAB with the Robot Operating 

System (ROS) facilitates real-time control and simulation of 

UAVs in the wildfire detection system. The MATLAB-ROS 

interface enables UAVs to receive positional updates, 

compute Voronoi-based movement trajectories, and execute 

flight commands based on predefined waypoints. The 

integration process involves several trials to refine the control 

strategy: 

• Trial 1: Direct Velocity Commands via MATLAB-ROS 

Initially, UAVs were controlled by sending velocity 

commands directly from MATLAB to ROS. However, this 

approach led to inaccuracies due to incorrect time estimations 

in Voronoi calculations. The velocity computation was 

defined as: 

𝑣 = (𝑥2 − 𝑥1)/𝑡 (1) 

where x1 and x2 represent initial and final UAV positions, 

respectively. This method failed due to inconsistent time 

intervals, leading to erroneous movement predictions. 

• Trial 2: Desired Position Commands via MATLAB 

To address the inaccuracies in velocity control, the next 

trial involved sending desired goal positions instead of 

velocity commands. The UAVs were instructed to move to 

specified coordinates, improving control precision. However, 

MATLAB's ROS action client presented compatibility 

issues, limiting its effectiveness. 

• Trial 3: MATLAB to Python Node Communication 

A Python ROS node was introduced as an intermediary to 

overcome MATLAB's ROS action client issues. Instead of 

sending positions directly, MATLAB published goal 

configurations to a custom ROS topic, which was then 

processed by the Python node. The Python node relayed these 

commands to the UAVs, improving communication 

reliability. However, tracking errors and ensuring seamless 

goal execution remained challenging. 

• Final Trial: Offline Path Planning and Execution 

The final approach involved precomputing UAV 

trajectories offline. MATLAB generated goal configurations 
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stored in a CSV file, which was later read by the Python node. 

The Python script then executed UAV movements based on 

these precomputed paths. While this method successfully 

improved UAV control, it introduced latency due to 

sequential movement execution. To enhance efficiency, an 

asynchronous execution strategy was adopted. 

Algorithm 2: Offline UAV Path Planning 

Input: Initial UAV positions, target coverage area 

Output: Optimized UAV paths 

Generate Voronoi-based goal configurations in MATLAB. 

Store the goal positions in a CSV file. 

Initialize the Python ROS node. 

Read the CSV file in the Python node. 

For each UAV iii: a. Send goal position to ROS action client. 

b. Execute motion command asynchronously. 

Monitor UAV positions until all reach their goal. 

This methodology ensures efficient UAV deployment, 

real-time fire detection, and robust communication between 

MATLAB and ROS, optimizing wildfire monitoring using 

UAV-based surveillance. 

The integration of MATLAB and ROS in the proposed 

UAV wildfire monitoring system offers an innovative 

approach to leveraging advanced control algorithms within a 

robotics middleware framework. However, this integration 

currently faces several unresolved challenges that affect 

system reliability and real-time performance. Initial attempts 

to control UAV motion using velocity-based commands 

exhibited significant tracking inaccuracies, prompting a shift 

towards position-based goal commands via MATLAB’s ROS 

action client. Although this transition reduced some timing 

errors, fundamental compatibility issues within MATLAB’s 

ROS interface persisted, resulting in sporadic communication 

failures and delayed command execution. To mitigate these 

problems, a Python intermediary node was introduced to 

handle ROS communication, thereby improving message 

handling and reducing direct dependency on MATLAB’s 

ROS client. While this solution enhanced communication 

robustness, it increased system architectural complexity, 

introducing an additional layer that may contribute to latency 

and potential points of failure during live deployment 

scenarios. Furthermore, the current reliance on precomputed 

UAV trajectories stored in CSV files imposes significant 

constraints on operational flexibility. The asynchronous 

execution of these trajectories limits the system’s ability to 

dynamically adapt to evolving wildfire conditions, 

potentially degrading coordination efficiency during critical 

monitoring tasks. This static approach lacks the 

responsiveness necessary for real-time path planning and 

adaptive re-tasking, which are essential for effective wildfire 

surveillance and rapid response. In terms of sensing, the 

utilization of pyroelectric infrared (PIR) sensors for fire 

detection presents inherent limitations. PIR sensors are prone 

to reduced sensitivity when detecting low-intensity fires and 

are susceptible to false positives triggered by environmental 

heat sources such as sunlight reflections or heated terrain.  

This compromises detection accuracy and reduces overall 

system reliability in diverse field conditions. Recognizing 

these limitations, the methodology now underscores the 

importance of integrating multi-modal sensing approaches. 

Specifically, the fusion of thermal imaging, RGB visual data, 

and contextual environmental analysis, enhanced by AI-

driven filtering algorithms, shows promise for improving 

detection precision and minimizing false alarms. In summary, 

while the current MATLAB-ROS integration and sensing 

framework demonstrate proof-of-concept viability, several 

critical limitations remain. The revised approach advocates 

for a transition toward fully ROS-native or Python-centric 

control frameworks to simplify architecture and improve 

responsiveness. Additionally, the adoption of adaptive online 

trajectory planning and multi-sensor data fusion is essential 

to address the dynamic, uncertain nature of wildfire 

environments. These enhancements are vital for advancing 

the practical applicability and robustness of UAV-based 

wildfire monitoring systems in real-world deployments. 

D. Limitations of Offline Path Planning 

Initial trials involved direct velocity control and real-time 

position updates through MATLAB-ROS integration. Due to 

timing inconsistencies and communication issues, the final 

methodology relied on offline precomputed goal 

configurations, which were executed sequentially by a 

Python ROS node. While this improved control accuracy, it 

introduced a significant limitation—latency. In wildfire 

response, early detection and immediate reallocation of 

resources are critical. Offline planning restricts the system’s 

responsiveness to new fire outbreaks or environmental 

disturbances. To mitigate this, future implementations will 

focus on online, asynchronous path planning coupled with 

onboard decision-making. 

E. Scalability and Sensitivity to UAV Density 

Scalability was explored by simulating deployments with 

varying UAV fleet sizes (e.g., 5, 10, 25, 50 units). While these 

simulations showed promising coverage performance, no 

formal sensitivity analysis was conducted to quantify the 

impact of increasing drone density on system robustness, 

communication bandwidth, or processing latency. 

Additionally, inter-drone coordination complexity and 

collision avoidance were not modelled. In large-scale real-

world deployments, these factors may introduce bottlenecks 

that compromise both safety and efficiency. Future studies 

will include systematic scalability analyses and adaptive 

swarm coordination strategies. 

F. Environmental and Operational Constraints 

Although thermal imaging sensors and simulated wildfire 

conditions were tested in ROS-Gazebo, the system's 

performance under real environmental conditions such as 

heavy smoke, wind turbulence, GPS signal loss, and sensor 

degradation was not evaluated. Communication delays in 

forested or mountainous terrains can further reduce system 

reliability. These factors need to be addressed through 

hardware-in-the-loop testing, real-time sensor fusion, and 

redundancy in communication protocols to ensure practical 

robustness. 
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V. RESULTS 

A. MATLAB Simulation of Voronoi 

The central control is being implemented in MATLAB. 

The MATLAB program running in ‘Machine2’ speaks with 

the ROS climate in ‘Machine1’ to acquire the current position 

and directions of the quadcopters and the current uncertainty 

by every one of the quadcopters. Voronoi cells are computed 

on the current arrangement of the multi-quadcopter 

framework, which is read through the topics. The MATLAB 

simulation with ‘n’ number of drones falling into Voronoi 

tessellation and acquiring equal-area like the areas are cells 

and then figuring out the certainty density of the quadcopter 

in an environment trying to detect a spot fire and take 

immediate action. 

B. Hector Quadcopter Simulation in ROS 

A simulated quadrotor in the ROS Gazebo environment 

is developed to get closer to the objective. This approach 

utilizes a simulated hector quadrotor in a Gazebo 

environment. The most challenging piece of unravelling 

about flying robots is the congruous pummeling. The 

subsequent disappointments can incur a considerable expense 

from broken equipment parts, from learning flight control 

interestingly to testing new equipment or flight calculations. 

A recreated air vehicle planned and created for ROS is ideal 

to answer this trouble. Because the noetic distribution of ROS 

was released recently, most packages and meta-packages are 

not supported yet. To overcome this, the Hector Quadcopter 

is built from the source while solving the errors and problems 

that arose from a lack of updated support. Fig. 3 shows hector 

Quadrotor Package's RQT graph depicting each node and 

topics for ROS Simulation. 

The simulation closely represents the real-world flight of 

the quadrotor. The simulated quadcopter could be controlled 

by both the keyboard and directly sending commands to the 

nodes through the topic. Fig. 4 shows the /cmd_vel topic to 

broadcast the drone for control. The most efficient way to 

detect a fire is to use a thermal sensor. Attaching and testing 

various thermal sensors, including a generic thermal sensor, 

seek thermal compact, FLIR a35 and FLIR boson 640. 

Connecting different thermal sensors lets us compare the 

performance of the drone and camera combinations in various 

scenarios and gives more flexibility and options. Pictures of 

the drone attached with a thermal compact camera and FLIR 

A35 are shown below. Fig. 5 shows the Hector quadrotor 

connected to a FLIR 35. 

Thermal imaging temperature sensor: The FLIR A35 

produces high-quality, 81,920-pixel thermal images showing 

temperature differences as small as 50 mK. This allows easy 

tracking of temperature changes, whether your application is 

process control/quality assurance, condition monitoring, or 

fire prevention. At just 4.1 × 1.9 × 1.8 in, the A35 brings 

thermal imaging to your smallest spaces. It is possible to add 

the sensor by editing the quadrotor's launch file.  

The image from the thermal sensor can be visualized in Rviz. 

The camera's output is live and can be viewed, as shown in 

the Fig. 6. 

 
Fig. 3.  RQT graph of hector quadrotor package showing all the nodes and 

topics 

 

Fig. 4.  Controlling the drone by publishing it into the /cmd_vel topic 

 
Fig. 5.  Hector Quadrotor attached with FLIR a 35 

 
Fig. 6.  Output of the camera and the gazebo view of the drone 
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C. Creating a Thermal Environment for Fire Detection 

The aim is to create a forest environment with thermal 

attributes (Forest Fires) in Gazebo. Replacing the FLIR A35 

with the FLIR A65 offers a larger lens of 13 mm within the 

small dimensions of 4.1 × 1.9 × 1.8 inches. Furthermore, by 

adding a depth sensor, the ASUS RGB-D Camera 

supplements the conventional images' depth and texture 

information on a per-pixel basis. On running simulations with 

the Hector Quadcopter and the cameras and sensors, the UAV 

could detect the fire-affected areas in the simulated 

environment. To get a more authentic result, simulating the 

forest with different types of trees and including trees of 

different shapes and sizes. 

Simulating Different fire-affected areas in the forest 

environment in Gazebo. The green color represents the 

unaffected areas, whereas the red color attributes to high 

temperature, i.e. fire. Forest simulation employing multiple 

models for trees is seen in Fig. 7. The Red Trees represent the 

areas of the forest ruined by the fire is represented in Fig. 8. 

 
Fig. 7.  Simulation of forest with different models of trees 

 
Fig. 8.  The Red Trees are the fire-affected parts of the forest 

VI. CONCLUSION 

Drone technology offers promising advancements for 

wildfire monitoring and management. This study presented a 

simulation framework using ROS and Gazebo to deploy a 

multi-UAV system based on Hector Quadrotors equipped 

with thermal sensors such as the FLIR A65 and ASUS RGB-

D cameras. The simulation results demonstrated the system’s 

capability for fire detection and thermal imaging within a 

controlled environment. However, the performance 

limitations of these sensors—such as false-positive rates and 

sensitivity to varying thermal signatures—require careful 

consideration and further empirical validation. Our current 

work serves as a foundational step rather than a definitive 

solution, as sensor reliability in complex, dynamic wildfire 

conditions remain an open challenge. Moreover, while the 

simulation successfully demonstrates UAV coordination and 

environment interaction, transitioning from simulation to 

real-world deployment involves addressing several critical 

complexities. These include overcoming ROS compatibility 

issues, reducing latency introduced by offline path planning, 

and ensuring robustness under adverse environmental factors 

such as smoke, occlusions, and rapidly evolving fire 

behavior. 

To advance towards practical application, future work 

will focus on hardware-in-the-loop testing, real-time adaptive 

control strategies, multi-sensor fusion for improved detection 

accuracy, and extensive field trials in diverse wildfire 

scenarios. This phased roadmap aims to bridge the gap 

between simulation and operational systems, facilitating 

effective and reliable UAV-assisted wildfire management. 
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