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Abstract—In this paper, a comparative study of nonlinear 

control and passivity-based control using neural networks for a 

bicycle robot is proposed. Bicycle robot is a nonlinear, multi-

input multi-output system. Two inputs of a bicycle robot are the 

steering torque and kinetic energy. Its two outputs are the 

steering angle and the rolling angle. The control problem is that 

the steering angle and the rolling angle track a value of zero, and 

the velocity of the steering angle and velocity of the rolling angle 

track a value of zero to make a bicycle robot stabilize at its 

vertical balance. Firstly, an input-output linearization control 

law decouples the bicycle robot into single-input single-output 

systems. This plant is passive and zero-state observable. 

Secondly, the passivity-based control law is applied to each 

single-input single-output system.  Finally, the neural network, 

which performs the passivity-based control, is applied to each 

single-input single-output system in order that the bicycle robot 

keeps its vertical balance. A training algorithm using the 

steepest descend method is proposed. The simulation results of 

the passivity-based control and the results of the passivity-based 

control using neural networks show that the bicycle robot keeps 

its vertical balance. The settling time of the steering angle and 

the rolling angle of the passivity-based control using a neural 

network, 1.8s, is shorter than that of the passivity-based control. 

There is a comparison with the passivity-based control 

combined with sliding mode control for a bicycle robot. 

Keywords—Bicycle Robot; Input-Output Linearization; 

Passivity-Based Control; Neural Network; Training Algorithm. 

I. INTRODUCTION  

The bicycle robot is a nonlinear, multi-input, multi-output 

(MIMO) system that presents significant stability challenges. 

Due to its instability, controlling the bicycle robot to maintain 

vertical balance has been a subject of extensive research. The 

challenge of controlling the bicycle robot to remain balanced 

vertically has led to various approaches. For instance, [1] 

utilized the steering angle as the primary control input 

maintain vertical balance. Bicycle robot has the rolling angle 

as the output signal. In [2] presented the dynamical model of 

bicycle robot, input-output linearization, and feedback 

control using the pole placement. In [3] presented the 

dynamical model of bicycle robot and the exact linearization 

feedback control around the operating point. The sliding 

mode control and the passivity-based control of nonlinear 

systems were presented in [4]. Ref. [5] presented the 

Lyapunov stable theory, a passivation and the passivity-based 

control of a two-degree of freedom robot. The control of 

bicycle robot using input-output linearization was presented 

in [6]. The proportional derivative (PD) controller and the 

first-order compensator were applied to these single-input 

single-output systems. In [7] presented the passivity-based 

trajectory tracking control for autonomous bicycle. The 

passivity-based proportional integral (PI) control for bicycle 

robot was presented in [8]. Some control approaches were 

presented in [9]-[19]. In [9] described a combined control 

algorithm based on synchronous reinforcement learning to 

regulate a self-balancing bicycle robot. An learning-machine-

based robust sliding mode control of bicycle robot was 

presented in [11]. In [13] presented the semi-empirical 

dynamics modeling of a bicycle robot based on feature 

selection and neural network. In [19] presented the 

mathematical model of the dynamic multi-rigid-body 

mechanical system of unmanned bicycle using the Kane 

method and the full state feedback control was described.   

The passivation methods were presented in [20]-[22]. 

[20] described a passivation method of a plant using input-

output matrix transformation. In Ref. [21] presented a 

passivation approach to the control design of non-passive 

nonlinear systems. Ref. [22] presented the cascade and 

passivity-based control designs for TORA example. The 

second order sliding mode control with disturbance observer 

was presented in [23] to stabilize the bicycle. In [24] 

presented the structure-mixed 𝐻2/𝐻∞ control using the 

particle swarm optimization for the bicycle robot.  

Some adaptive control and backstepping control 

approaches were presented in [25]-[34]. In [25] presented the 

passive backstepping control of dual active bridge converter 

in the modular three-port DC converter. In [29] presented the 

neural network integrated adaptive backstepping control of 

DC-DC boost converter. In [30] presented the combining of 

the passivity-based control and the quadratic regulator for a 

rotary inverted pendulum. A multikernel passive stochastic 

gradient algorithms and transfer learning was presented in 

[33]. In [34] presented an adaptive backstepping terminal 

sliding mode control which leverages a physics-informed 

neural network to control a DC-DC buck converter for a 

proton exchange membrane (PEM).  
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The passivity-based and its variations were presented in 

[35]-[45]. In [35] presented the passivity-based control, the 

sliding mode control and its applications to the 

electromechanical applications. In [36] presented a passivity-

based control using genetic algorithm for a DC-DC boost 

power converter. In [37] presented the passivity-based 

control combined with sliding mode control for a DC-DC 

boost power converter. In [40] presented the passivity-based 

control of robots with theory and examples. In [45] presented 

the hybrid passivity-based control for stability and robustness 

enhancement in DC microgrid.  

The neural network was presented in [46]-[56]. The fixed-

time neural control for robot manipulator with global stability 

and guaranteed transient performance was presented in [46]. 

Ref. [47] presented the neural adaptive control of time-

continuous systems. In [50] presented the passivity and 

passification of fuzzy memristive inertial neural networks on 

time scales. Ref. [52] presented an adaptive neural network 

control for narrowband active noise control systems. In [54] 

described the deep neural data-driven Koopman fractional 

control for a worm robot. In [55] presented the model 

predictive control using a varying parameter neural network 

for multi-robot tracking and formation. Some other neural 

control and robust control approaches were presented in [57]–

[68]. A neural networks-based composite learning control for 

robotic systems [59]. A a robust two-stage active disturbance 

rejection control for the stabilization of a riderless bicycle 

[61]. A review on robust control of robot manipulators for 

future manufacturing was presented in [62]. In [63] presented 

the passivity-based swing-up control and sliding mode 

technique combined energy-based method for a rotary 

inverted pendulum. In [67] presented multilayer perceptron 

neural networks, modelling and control of dynamic systems. 

In [68] presented the holistic real-time model-based control 

for highly flexible robotic manufacturing cell.  

Other control approaches for robot were presented in 

[69]-[78]. A passivity-based adaptive fuzzy control was 

presented in [69] for stochastic nonlinear switched systems 

via T-S fuzzy modeling. Ref. [70] presented the 

semipassivity-based fuzzy tracking control for switched 

nonlinear systems. In [73] presented the robotic arms for 

telemedicine system using smart sensors and ultrasound 

robots. The intelligent control with adaptive system for 

electrically assisted bicycle was presented in [75]. The 

cooperative control of electrical bicycles [76]. The simulation 

study of evaluating performance of shared autonomous 

bicycles [77]. Self-learning mechanism for the output 

regulation of second-order affine nonlinear systems [78]. 

In this paper, a comparative study of nonlinear control and 

passivity-based control using neural networks for a bicycle 

robot is proposed. A training algorithm is constructed. 

Simulation results are done with MATLAB/Simulink. Our 

control problem is that the steering angle and the rolling angle 

track a value of zero, and the velocity of steering angle and 

the velocity of rolling angle track a value of zero, and the 

control signals come to zero in order that the bicycle keeps its 

vertical balance.  

 

 

The contribution is 

• This paper applies input-output linearization to decouple 

the bicycle robot’s dynamics into single- input, single-

output (SISO) systems. Unlike previous studies, such as 

[8], which use passivity-based PI control, our method 

applies the passivity-based control law to these decoupled 

systems. 

• Subsequently, we apply two the neural network-based 

controllers to the SISO systems. A novel training 

algorithm is proposed to optimize the passivity-based 

control using neural networks for improved stabilization 

of the bicycle robot. Then we compare with the passivity-

based control combined with sliding mode control of [37] 

which is applied to a bicycle robot. 

The remainder of the paper is organized as follows:  

Section 2 presents the dynamical model of a bicycle robot and 

explores its passivity-based properties. Section 3 discusses 

the proposed passivity-based control using neural networks, 

along with the training algorithm. The simulation results and 

discussions are presented in section 4. Finally, conclusions 

are presented in section 5. 

II. PRELIMINARY AND RESEARCH METHOD  

A. Dynamical Model of a Bicycle Robot 

The parameters of a bicycle robot are described in Fig. 1 

and Table I. 

 
Fig. 1. The parameters of bicycle robot, A) side view; B) front view; C) top 

view 

When the slipping of the wheels is omitted, the 

mathematical model of the bicycle robot in [2] is as follows 

{
 
 
 
 

 
 
 
 

𝑥̇1 = 𝑥2

𝑥̇2 =
𝑐2 𝑠𝑖𝑛( 𝑥3)𝑥4

2 + 𝑐3𝑢1 + 𝑑2𝑑3𝑐1 𝑡𝑎𝑛( 𝑥1) 𝑐𝑜𝑠
2( 𝑥3)𝑢2

1 − 𝑑1𝑐1 𝑐𝑜𝑠
2( 𝑥3)

𝑥̇3 = 𝑥4

𝑥̇4 =
0.5𝑑1𝑐2 𝑠𝑖𝑛( 2𝑥3)𝑥4

2 + 𝑑1𝑐3 𝑐𝑜𝑠( 𝑥3)𝑢1 + 𝑑2𝑑3 𝑡𝑎𝑛( 𝑥1) 𝑐𝑜𝑠( 𝑥3)𝑢2
1 − 𝑑1𝑐1 𝑐𝑜𝑠

2( 𝑥3)
𝑦1 = 𝑥1
𝑦2 = 𝑥3

 

 (1) 

The bicycle robot is actuated by two motors. The first 

motor is placed at the axis of rear wheel so that the bicycle 

robot moves forward with the velocity, V. The second motor 

is placed at the axis of the steering device to control the 

steering angle. 
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TABLE I.  THE PARAMETERS OF BICYCLE ROBOT 

Name Physical Meanings Value 

COG Center of gravity  

𝑚1 Mass of each wheel 2.5 kg 

𝑚2 Mass of the triangle frame 18 kg 

𝑟 Radius of the wheel 0.33 m 

𝜆 
Distance between the axis of the front fork and the 

front wheel 
0.04 m 

ℎ The height of COG 0.92 m 

𝐿1 
The distance between the projection of the axis of 

the front wheel and COG 
0.7 m 

𝐿2 
The distance between the axis of the front wheel 

and the axis of the rear wheel 
1.1 m 

𝑝 (L2-L1)/L2 0.36 

𝑉 Forward moving velocity of bicycle  

𝛼 The steering angle  

𝛽 The rolling angle  

 

where 𝑥1 = 𝛼, 𝑥2 = 𝛼̇, 𝑥3 = 𝛽, 𝑥4 = 𝛽̇. 𝛼 is the steering 

angle. 𝛼̇ is the angle velocity of the steering angle.𝛽 is the 

rolling angle. 𝛽̇ is the angle velocity of the rolling angle. 𝑥 =
[𝑥1 𝑥2 𝑥3 𝑥4]

𝑇 . The outputs are the steering angle and 

the rolling angle. 𝑦 = [𝑦1 𝑦2]
𝑇. The inputs are the steering 

torque of the second motor, 𝑢1 (Nm) and the kinetic energy, 

𝑢2 (J). 𝑢 = [𝑢1 𝑢2]
𝑇. 

𝑢2 =
(2𝑚1 +𝑚2)𝑉

2

2
 (2) 

where 

𝑐1 =
−(𝑚1𝑟+𝑚2ℎ𝑝)𝜆

𝑚1𝑟
2/2+𝑚1𝜆

2+𝑚2𝑝
2𝜆2

, 

𝑐2 =
(𝑚1𝑟+𝑚2ℎ𝑝)𝜆

𝑚1𝑟
2/2+𝑚1𝜆

2+𝑚2𝑝
2𝜆2

, 

𝑐3 =
1

𝑚1𝑟
2/2+𝑚1𝜆

2+𝑚2𝑝
2𝜆2

, 

𝑑1 =
−(𝑚1𝑟+𝑚2ℎ𝑝)𝜆

3𝑚1𝑟
2+2𝑚2ℎ

2 , 

𝑑2 =
2(2𝑚1𝑟+𝑚2ℎ)

(2𝑚1+𝑚2)𝐿2
, 

𝑑3 =
1

3𝑚1𝑟
2+2𝑚2ℎ

2                                                    

Our goal is to stabilize the bicycle at its vertical balance. 

B. Passivity-based Property of Bicycle Robot  

1) Input-Output Linearization of bicycle robot 

From (1), we have 

{
 
 

 
 𝑦̈1 =

𝑐2 𝑠𝑖𝑛( 𝑥3)𝑥4
2 + 𝑐3𝑢1 + 𝑑2𝑑3𝑐1 𝑡𝑎𝑛( 𝑥1) 𝑐𝑜𝑠

2( 𝑥3)𝑢2
1 − 𝑑1𝑐1 𝑐𝑜𝑠

2( 𝑥3)

𝑦̈2 =
0.5𝑑1𝑐2 𝑠𝑖𝑛( 2𝑥3)𝑥4

2 + 𝑑1𝑐3 𝑐𝑜𝑠( 𝑥3)𝑢1 + 𝑑2𝑑3 𝑡𝑎𝑛( 𝑥1) 𝑐𝑜𝑠( 𝑥3)𝑢2
1 − 𝑑1𝑐1 𝑐𝑜𝑠

2( 𝑥3)

 

 (3) 

Or we have in the matrix form 

𝑦̈ = 𝑓(𝑥) + 𝐺(𝑥)𝑢 (4) 

𝑓(𝑥) =
𝑐2𝑥4

2

1 − 𝑑1𝑐1 𝑐𝑜𝑠
2( 𝑥3)

[
𝑠𝑖𝑛( 𝑥3)

0.5𝑑1 𝑠𝑖𝑛( 2𝑥3)
] (5) 

𝐺(𝑥)

=
1

1 − 𝑑1𝑐1 𝑐𝑜𝑠
2( 𝑥3)

× [
𝑐3 𝑑2𝑑3𝑐1 𝑡𝑎𝑛( 𝑥1) 𝑐𝑜𝑠

2( 𝑥3)

𝑑1𝑐3 𝑐𝑜𝑠( 𝑥3) 𝑑2𝑑3 𝑡𝑎𝑛( 𝑥1) 𝑐𝑜𝑠( 𝑥3)
] 

(6) 

with condition: 1 − 𝑑1𝑐1 𝑐𝑜𝑠
2( 𝑥3) ≠ 0. 

From (4), input – output linearization control law is as (7). 

𝑦̈ = 𝑣 (7) 

𝑣 is a control variable of (7). 

From (4) and (7), the control law 𝑢 is 

𝑢 = 𝐺(𝑥)−1[𝑣 − 𝑓(𝑥)] (8) 

𝑢 =

[
 
 
 
 

1

𝑐3

−𝑐1 𝑐𝑜𝑠( 𝑥3)

𝑐3
−𝑑1

𝑑2𝑑3 𝑡𝑎𝑛( 𝑥1)

1

𝑑2𝑑3 𝑐𝑜𝑠( 𝑥3) 𝑡𝑎𝑛( 𝑥1)]
 
 
 
 

[𝑣 − 𝑓(𝑥)] (9) 

with condition:𝑡𝑎𝑛( 𝑥1) ≠ 0. 

Eq. (7) can be presented for each SISO system 

𝑦̈ = 𝑣 ⇒ [
𝑦̈1
𝑦̈2
] = [

𝑣1
𝑣2
] (10) 

Or we rewrite as follows 

𝑦̈1 = 𝑣1 (11) 

𝑦̈2 = 𝑣2 (12) 

2) Passivity-based Property of bicycle robot 

Eq. (7) is rewritten as follows 

𝑧̇1 = 𝑧2 
𝑧̇2 = 𝑣 
ℎ = 𝑧2 

(13) 

We choose the storage function 𝑉𝑎𝑉1 as follows 

𝑉𝑎 =
1

2
𝑥2
2 +

1

2
𝑥4
2 (14) 

𝑉𝑎 is positive definite. 

The derivative of 𝑉𝑎 is as follows 

𝑉̇𝑎 = 𝑥2𝑥̇2 + 𝑥4𝑥̇4 (15) 

We have 

𝑦̇𝑇𝑣 = 𝑦̇1𝑣1 + 𝑦̇2𝑣2 = 𝑥2𝑥̇2 + 𝑥4𝑥̇4 = 𝑉̇𝑎 (16) 

The plant (7), which has the input v and the output 𝑦̇, is 

passive because of 𝑦̇𝑇𝑣 ≥ 𝑉̇𝑎 

The plant (7) is zero-state observable because 𝑣 = 0, 𝑧2 =

𝑦̇ = [
𝑥2
𝑥4
] = [

0
0
] ⇒ 𝑥̇2 = 0, 𝑥̇4 = 0𝑧1 = [

𝑥1
𝑥3
] = [

0
0
] 

The plant (7) is separated into two SISO systems. The 

passivity-based control law is applied to each SISO system.  

According to (7) and the property [5], the passivity-based 

control law for each SISO system is as (17). 
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𝑣 = −𝜙(𝑦̇) with 𝜙(0) = 0; 𝑦̇𝑇𝜙(𝑦̇) > 0∀𝑦̇ ≠ 0            

𝜙(𝑦̇) = 𝑎1𝑦̇ + 𝑎3𝑦̇
3 + 𝑎5𝑦̇

5 

𝑣1 = −𝜙1(𝑦̇1) with 𝜙1(0) = 0; 𝑦̇1𝜙1(𝑦̇1) >
0∀𝑦̇1 ≠ 0 

(17) 

We can choose 

𝜙1(𝑦̇1) = 𝑎1𝑦̇1 + 𝑎3𝑦̇1
3 + 𝑎5𝑦̇1

5 (18) 

𝑣1 = −𝑎1𝑦̇1 − 𝑎3𝑦̇1
3 − 𝑎5𝑦̇1

5 (19) 

𝑣2 = −𝜙2(𝑦̇2) with 𝜙2(0) = 0; 𝑦̇2𝜙2(𝑦̇2) >
0∀𝑦̇2 ≠ 0 

(20) 

We can choose 

𝜙2(𝑦̇2) = 𝑎1𝑦̇2 + 𝑎3𝑦̇2
3 + 𝑎5𝑦̇2

5 (21) 

𝑣2 = −𝑎1𝑦̇2 − 𝑎3𝑦̇2
3 − 𝑎5𝑦̇2

5 (22) 

We have 

𝑉̇𝑎 ≤ 𝑦̇𝑇𝑣 ⇒ 𝑉̇𝑎 ≤ −𝑦̇
𝑇𝜙(𝑦̇) ≤ 0∀𝑦̇ ≠ 0 

So 𝑉̇𝑎 is negative semidefinite.  

The passivity-based control diagram for bicycle robot is 

described in Fig. 2. 

 
Fig. 2. The structure of the passivity-based control for bicycle robot 

III. THE  PASSIVITY-BASED CONTROL USING NEURAL 

NETWORKS 

A. Passivity-based Control using Neural Networks 

The structure of the Adaline neural network is illustrated 

in Fig. 3. 

 
Fig. 3. The structure of the Adaline neural network 

The neural network control diagram is described in Fig. 

4. 

 
Fig. 4. The diagram of the neural network control 

Now we construct the neural networks which perform the 

passivity-based control law (19), (22). We use two neural 

networks. The first neural network performs the control law 

(19).  The neural network has two layers. The input layer has 

three inputs: −𝑦̇1, −𝑦̇1
3, −𝑦̇1

5. The output layer has one 

outputs v1 and its activation function is linear. The second 

neural network performs the control law (22).  The neural 

network has two layers. The input layer has three inputs: −𝑦̇2, 

−𝑦̇2
3, −𝑦̇2

5. The output layer has one outputs 𝑣2 and its 

activation function is linear. The weights 𝑎1, 𝑎2, and 𝑎3 of 

the neural network are adjusted in the online manner. 

B. A Training Algorithm of Neural Network 

A training algorithm is as follows: 

Eq. (13) is rewritten as (23). 

𝑧̇ = 𝑓(𝑧) + 𝑔(𝑧)𝑣 
ℎ = 𝑧2 

(23) 

Where 

𝑓(𝑧) = [
𝑧2
0
] (24) 

𝑔(𝑧) = [
0
1
] (25) 

The plant (7) is passive and zero-state observable. 

According to (17) and (20), we have, 

𝑣 = −𝜙(𝑦̇) with 𝜙(0) = 0; 𝑦̇𝜙(𝑦̇) > 0∀𝑦̇ ≠ 0 

We can choose, 

𝜙(𝑦̇) = ∑𝑎2𝑖−1𝑦̇
2𝑖−1

𝑚

𝑖=1

 (26) 

The passivity-based control law 𝑣 is (27) 

𝑣 = −∑𝑎2𝑖−1𝑦̇
2𝑖−1

𝑚

𝑖=1

= −𝛷𝑇𝜃 (27) 

Where 

𝛷 = [𝑦̇ 𝑦̇3 𝑦̇5 . . . 𝑦̇2𝑚−1]𝑇 and  

𝜃 = [𝑎1 𝑎3 𝑎5 . . . 𝑎2𝑚−1] 
(28) 

The performance criterion is (29). 

𝐽 =
𝑞

2
𝑦̇2 +

𝑟1
2
𝑣2 (29) 

Where 𝑞 ≥ 0; 𝑟1 ≥ 0. Using the steepest descend method, 

𝜃(𝑘 + 1) = 𝜃(𝑘) − 𝜂 (
𝜕𝐽

𝜕𝜃
)
𝑇

 (30) 

Where 𝜂 > 0 is the learning constant and, 

𝜕𝐽

𝜕𝜃
= [

𝜕𝐽

𝜕𝑎1

𝜕𝐽

𝜕𝑎3

𝜕𝐽

𝜕𝑎5
. . .

𝜕𝐽

𝜕𝑎2𝑚−1
] (31) 

We have 

𝜕𝐽

𝜕𝜃
=
𝜕𝐽

𝜕𝑦̇

𝜕𝑦̇

𝜕𝑧

𝜕𝑧

𝜕𝜃
+
𝜕𝐽

𝜕𝑣

𝑑𝑣

𝑑𝜃
= 𝑞𝑦̇

𝜕ℎ

𝜕𝑧

𝑑𝑧

𝑑𝜃
+ 𝑟1𝑣

𝑑𝑣

𝑑𝜃
 (32) 

The operating point of the plant (33). 
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𝑓(𝑧) + 𝑔(𝑧)𝑣 = 0 (33) 

Taking the derivative of (33) with respect to 𝜃 yields 

𝜕𝑓

𝜕𝑧

𝑑𝑧

𝑑𝜃
+
𝜕𝑔

𝜕𝑧

𝑑𝑧

𝑑𝜃
𝑣 + 𝑔

𝑑𝑣

𝑑𝜃
= 0 (34) 

⇒ (
𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)
𝑑𝑧

𝑑𝜃
= −𝑔

𝑑𝑣

𝑑𝜃
 (35) 

⇒
𝑑𝑧

𝑑𝜃
= −(

𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)

−1

𝑔
𝑑𝑣

𝑑𝜃
 (36) 

Insert (36) into (32) yields 

𝑑𝐽

𝑑𝜃
= (−𝑞𝑦̇

𝜕ℎ

𝜕𝑧
(
𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)

−1

𝑔 + 𝑟1𝑣)
𝑑𝑣

𝑑𝜃
 (37) 

Where 

𝑑𝑣

𝑑𝜃
= [

𝑑𝑣

𝑑𝑎1

𝑑𝑣

𝑑𝑎3

𝑑𝑣

𝑑𝑎5
. . .

𝑑𝑣

𝑑𝑎2𝑚−1
] (38) 

Taking derivative of (27) with respect to 𝑎𝑘 yields 

𝑑𝑣

𝑑𝑎𝑘
= −𝑦̇𝑘 −∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇

2𝑖−2 𝑑𝑦̇

𝑑𝑎𝑘

𝑚
𝑘=1   (39) 

For 𝑘=1, 3, 5, …, 2m-1. Thus 

𝑑𝑣

𝑑𝜃
= [−𝑦̇ − ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇

2𝑖−2 𝑑𝑦̇

𝑑𝑎1

𝑚
𝑘=1 ,  

−𝑦̇3 −∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝑑𝑦̇

𝑑𝑎3
,𝑚

𝑘=1   

−𝑦̇5 −∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝑑𝑦̇

𝑑𝑎5
, . . . ,𝑚

𝑘=1   

−𝑦̇2𝑚−1 − ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝑑𝑦̇

𝑑𝑎2𝑚−1

𝑚
𝑘=1 ]  

= −𝛷𝑇 −∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝑑𝑦̇

𝑑𝜃

𝑚
𝑘=1   

(40) 

On the other hand 

𝑑𝑦̇

𝑑𝜃
=
𝜕ℎ

𝜕𝑧

𝑑𝑧

𝑑𝜃
 (41) 

Insert (36) into (41) yields 

𝑑𝑦̇

𝑑𝜃
= −

𝜕ℎ

𝜕𝑧
(
𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)

−1

𝑔
𝑑𝑣

𝑑𝜃
 (42) 

Insert (42) into (40) yields 

𝑑𝑣

𝑑𝜃
= −𝛷𝑇 + ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇

2𝑖−2 𝜕ℎ

𝜕𝑧
(
𝜕𝑓

𝜕𝑧
+𝑚

𝑘=1

𝜕𝑔

𝜕𝑧
𝑣)

−1

𝑔
𝑑𝑣

𝑑𝜃
  

(43) 

(1 − ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝜕ℎ

𝜕𝑧
(
𝜕𝑓

𝜕𝑧
+𝑚

𝑘=1

𝜕𝑔

𝜕𝑧
𝑣)

−1

𝑔)
𝑑𝑣

𝑑𝜃
= −𝛷𝑇  

(44) 

⇒
𝑑𝑣

𝑑𝜃

=
−𝛷𝑇

1 − ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝜕ℎ

𝜕𝑧
(
𝜕𝑓
𝜕𝑧
+
𝜕𝑔
𝜕𝑧
𝑣)

−1

𝑔𝑚
𝑘=1

 
(45) 

Insert (45) into (37) yields 

𝑑𝐽

𝑑𝜃
=

−(−𝑞𝑦̇
𝜕ℎ
𝜕𝑧
(
𝜕𝑓
𝜕𝑧
+
𝜕𝑔
𝜕𝑧
𝑣)

−1

𝑔 + 𝑟1𝑣)𝛷
𝑇

1 − ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝜕ℎ

𝜕𝑧
(
𝜕𝑓
𝜕𝑧
+
𝜕𝑔
𝜕𝑧
𝑣)

−1

𝑔𝑚
𝑘=1

 (46) 

The training algorithm is obtained by inserting (46) into (30). 

𝜃(𝑘 + 1)
= 𝜃(𝑘)

+

𝜂 (−𝑞𝑦̇
𝜕ℎ
𝜕𝑧
(
𝜕𝑓
𝜕𝑧
+
𝜕𝑔
𝜕𝑧
𝑣)

−1

𝑔 + 𝑟1𝑣)𝛷

1 − ∑ (2𝑖 − 1)𝑎2𝑖−1𝑦̇
2𝑖−2 𝜕ℎ

𝜕𝑧
(
𝜕𝑓
𝜕𝑧
+
𝜕𝑔
𝜕𝑧
𝑣)

−1

𝑔𝑚
𝑘=1

 

(47) 

𝑞 influences 𝑦̇ and 𝑟1 influences 𝑣. 

Note that if we choose 𝑚=3, 𝑞=1, 𝑟1=1, then we obtain 

𝜕𝑓

𝜕𝑧
= [

0 1
0 0

] ;
𝜕𝑔

𝜕𝑧
= [

0 0
0 0

] 

(
𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)

−1

= [
0 1
0 0

] 

𝜕ℎ

𝜕𝑧
(
𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)

−1

= [0 0] 

𝜕ℎ

𝜕𝑧
(
𝜕𝑓

𝜕𝑧
+
𝜕𝑔

𝜕𝑧
𝑣)

−1

𝑔 = 0 

Then 

𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝜂𝑟1𝑣𝛷  

𝜃̇ =
𝜃(𝑘 + 1) − 𝜃(𝑘)

𝑇
=
𝜂𝑟1𝑣𝛷

𝑇
 (48) 

Now 𝜃 = [𝑎1 𝑎3 𝑎5], 𝛷 = [𝑦̇ 𝑦̇3 𝑦̇5]𝑇. 𝑇 is a sample 

time. In this paper, the authors want to choose 𝑞=1, 𝑟1=1. 𝜃 

is the parameters of the passivity-based control which is 

optimized by the training algorithm. 

C. Comparison with Passivity-based Control combined 

with Sliding Mode Control 

We compare the passivity-based control using a neural 

network (PBC-NC) and the passivity-based control combined 

with sliding mode control (PBC-SMC) of [37] which is 

applied to the bicycle robot. The control law is as follows 

𝑣𝑃𝐵𝐶−𝑆𝑀𝐶 = −𝑎1𝑦̇ − 𝑎3𝑦̇
3 − 𝑎5𝑦̇

5 − 𝐾𝑠𝑖𝑔𝑛(𝑦̇) (49) 

𝑣1𝑃𝐵𝐶−𝑆𝑀𝐶 = −𝑎1𝑦̇1 − 𝑎3𝑦̇1
3 − 𝑎5𝑦̇1

5

− 𝑘1𝑠𝑖𝑔𝑛(𝑦̇1) 
(50) 

𝑣2𝑃𝐵𝐶−𝑆𝑀𝐶 = −𝑎1𝑦̇2 − 𝑎3𝑦̇2
3 − 𝑎5𝑦̇2

5

− 𝑘2𝑠𝑖𝑔𝑛(𝑦̇2) 
(51) 

𝐾 is a positive definite matrix. 𝑘1 > 0, 𝑘2 > 0 

IV. SIMULATION AND DISCUSSION 

The system is described in (1). Replace the value in Table 

I, we obtain: 𝑐1=1.90, 𝑐2=1.90, 𝑐3=6.95, 𝑑1=-0.0088, 

𝑑2=1.44, 𝑑3=0.032, 𝑑4=0.582. Choose 𝑞=1, 𝑟1=1, 𝜂 =
0.001. Initially, 𝑥10=0.01, 𝑥20=-0.01, 𝑥30=0.01, 𝑥40=-0.02, 

𝑎1=2, 𝑎3=1.5, 𝑎5=1.5, 𝑘1=4, 𝑘2=4. The simulation time is 10 

s. 𝑇=0.001 s. 
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A. Passivity-based Control 

Fig. 5 shows the angle velocity of the steering angle and 

the angle velocity of the rolling angle. Fig. 6 shows the output 

signals 𝑦1, 𝑦2 and the control signals 𝑢1, 𝑢2of the passivity-

based control for bicycle robot. 

The angle velocity of the steering angle 𝛼̇ and the angle 

velocity of the rolling angle 𝛽̇ come to 0 (rad/s) and the 

settling time, 𝑡𝑠, is 2.4 s. The output 𝑦1 is equal to 0.005 (rad) 

and 𝑡𝑠 is 2 s. The output 𝑦2 is equal to 0 (rad) and 𝑡𝑠 is 2 s. 

The control signal 𝑢1and the control signal 𝑢2are equal to 0, 

and the settling time is 2 s. The bicycle robot is stabilized at 

the balance position vertically. 

 
Fig. 5. The PBC results for bicycle robot: the angle velocity of the steering 

angle and the angle velocity of the rolling angle 

  
Fig. 6. The PBC results for bicycle robot: the output signals 𝑦1, 𝑦2 and the 

control signal 𝑢1, 𝑢2 

B. Passivity-based Control using Neural Networks 

Fig. 7  shows the angle velocity of the steering angle and 

the angle velocity of the rolling angle. Fig. 8 shows the output 

signals 𝑦1, 𝑦2 and the control signals 𝑢1, 𝑢2of the passivity-

based control using a neural network (PBC-NC) for bicycle 

robot. 

 
Fig. 7. The PBC-NC results for bicycle robot: the angle velocity of the 

steering angle and the angle velocity of the rolling angle 

 
Fig. 8. The PBC-NC results for bicycle robot: the output signals y1, y2 and 

the control signal u1, u2 

The angle velocity of the steering angle 𝛼̇ and the angle 

velocity of the rolling angle 𝛽̇ come to 0 (rad/s) and the 

settling time, 𝑡𝑠, is 2.3 s. The output 𝑦1is equal to 0.005 (rad) 
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and the settling time is 1.8 s. The output 𝑦2is equal to 0 (rad) 

and the settling time is 1.8 s. The control signal 𝑢1is equal to 

0 and 𝑡𝑠 is 1.9 s.  The control signal 𝑢2is equal to 0 and 𝑡𝑠 is 
2 s. Simulation results of the passivity-based control using 

neural network show that the bicycle robot is stabilized at the 

balance position vertically. 

We compare the passivity-based control and the 

passivity-based control using a neural network. The 

comparison results are described in Table II.  

TABLE II.  THE RESULTS OF THE PBC-NC, PBC, AND PBC-SMC FOR 

BICYCLE ROBOT 

Controller 
𝛼 and 𝛽 𝛼̇ and 𝛽̇ 

Error 𝑡𝑠  (s) Error 𝑡𝑠  (s) 

PBC-NC with 

𝜂=0.001 

𝛼 →  0.005 and 

𝛽 → 0 
1.8 

𝛼̇→  0 

and 𝛽̇→ 0 
2.3 

PBC 
𝛼 →  0.005 and 

𝛽 → 0 
2 

𝛼̇→  0 

and 𝛽̇→ 0 
2.4 

PBC-SMC of 
[37] applied to 

bicycle robot 

𝛼 →  0.011585 

and 𝛽 → 0.005 
1.5 

𝛼̇→  0 

and 𝛽̇→ 0 
1.5 

 

The passivity-based control using a neural network (PBC-

NC), with 𝜂 =0.001, demonstrates a shorter settling time for 

both the steering angle and rolling angle when compared to 

the traditional passivity-based control (PBC). The settling 

times of  𝛼̇ and the 𝛽̇ of the PBC-NC, 2.3s, are shorter than 

that of the PBC, 2.4s. 

We compare the PBC-NC with 𝜂 =0.001 and the PBC-

SMC of [37] which is applied to the bicycle robot. The 

comparison results are described in Table II. 

Fig. 9 shows the angle velocity of the steering angle and 

the angle velocity of the rolling angle. Fig. 10 shows the 

output signals 𝑦1, 𝑦2 and the control signals 𝑢1, 𝑢2of the 

passivity-based control combined with sliding mode control 

(PBC-SMC) for bicycle robot. 

 
Fig. 9. The PBC-SMC results for bicycle robot: the angle velocity of the 

steering angle and the angle velocity of the rolling angle 

The angle velocity of the steering angle 𝛼̇ and the angle 

velocity of the rolling angle 𝛽̇ come to 0 (rad/s) and the 

settling time, 𝑡𝑠, is 1.5 s. The output 𝑦1is equal to 0.011585 

(rad) and 𝑡𝑠 is 1.5 s. The output 𝑦2is equal to 0.005 (rad) and 

𝑡𝑠 is 1.5 s. The control signal 𝑢1 and the control signal 𝑢2 are  

equal to 0 and 𝑡𝑠 is 1.8 s.  The bicycle robot is stabilized at 

the balance position vertically. We can see that the PBC-SMC 

has shorter settling time than the PBC-NC. However, the 

output 𝑦2 of PBC-SMC is equal to 0.005 and the output 𝑦2of 

PBC-NC is equal to 0.    

 
Fig. 10. The PBC-SMC results for bicycle robot: the output signals y1, y2 and 

the control signal u1, u2 

We define the tracking error 

𝑒 = 𝑦 − 𝑦𝑑 = [
𝛼
𝛽] − [

0
0
] = [

𝛼
𝛽] ; 𝑒̇ = [

𝛼̇
𝛽̇
] 

Where 𝑦𝑑  = [0; 0]. The goal is that the steering angle tracks 

to zero and the rolling angle tracks to zero, the 𝛼̇ and 𝛽̇ track 

to zero, and the control signals 𝑢1and 𝑢2come to zero. 

The Fig. 11 shows the error of steering angle of the PBC-

NC and the PBC. The Fig. 12 shows the error of rolling angle 

of the PBC-NC and the PBC. The results show that the error 

of steering angle of the PBC-NC and the PBC comes to 0.005 

(rad), and the settling time of the PBC-NC, 1.8s is shorter 

than that of the PBC, 2 s. The results show that the error of 

rolling angle of the PBC-NC and the PBC comes to 0. The 

settling time of the PBC-NC, 1.8s is shorter than that of the 

PBC, 2s. 
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Fig. 11. The error of steering angle of the PBC-NC and the PBC for bicycle 

robot 

 
Fig. 12. The error of rolling angle of the PBC-NC and the PBC for bicycle 

robot 

Let the learning constant, 𝜂, be 0.1. Fig. 13 shows the 

angle velocity of the steering angle and the angle velocity of 

the rolling angle of the PBC-NC when 𝜂 is increased to 0.1. 

Fig. 14 shows the output signals 𝑦1, 𝑦2 and the control signals 

𝑢1, 𝑢2 of the passivity-based control using neural network for 

bicycle robot when 𝜂 is increased to 0.1. 

The angle velocity of the steering angle 𝛼̇ comes to 0 at 

the settling time, 𝑡𝑠, 1.6 s. The angle velocity of the rolling 

angle 𝛽̇ comes to 0 (rad/s) and the settling time, 𝑡𝑠 is 1.6 s. 

The output 𝑦1is equal to 0.005 (rad) and 𝑡𝑠 is 1.5 s. The output 

𝑦2 is equal to 0 (rad) and 𝑡𝑠 is 1.5 s. The control signal 𝑢1 and 

the control signal 𝑢2are equal to 0 and the settling time is 1.5 

s. Simulation results of the passivity-based control using 

neural networks show that the bicycle robot is stabilized at 

the balance position vertically. 

The results show that the settling time of the 𝛼 and the 𝛽 

of the passivity-based control using neural networks (PBC-

NC) is shorter than that of the PBC when 𝜂 is increased to 

0.1. The results show that the settling time of the 𝛼̇ and the 𝛽̇ 

of the PBC-NC is shorter than that of the PBC when 𝜂 is 

increased to 0.1. 

 
Fig. 13. The PBC-NC results for bicycle robot: the angle velocity of the 

steering angle and the angle velocity of the rolling angle with  =0.1 

 
Fig. 14. The PBC-NC results for bicycle robot: the output signals y1, y2 and 

the control signal u1, u2 with  =0.1 

V. CONCLUSION 

 In this paper, a comparative study of nonlinear control and 

passivity-based control using neural networks (PBC-NC) for 

a bicycle robot is proposed. The plant (7) is passive and the 

equilibrium point at origin is asymptotically stable. The 

variables [𝑥1; 𝑥2; 𝑥3; 𝑥4] and [𝑢1; 𝑢2] converge to [0; 0; 0; 0] 
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and [0; 0] respectively. A training algorithm of neural 

network using the steepest descend method is proposed. 

Simulation results are done with Simulink in MATLAB. 

Simulation results show that the passivity-based control 

(PBC) and the passivity-based control using neural networks 

successfully maintain the vertical balance of the bicycle 

robot. However, the PBC-NC achieves a faster stabilization, 

with shorter settling times for both the steering angle and the 

rolling angle compared to the PBC.  The settling time of the  

𝛼̇ and the 𝛽̇ of the PBC-NC is shorter than that of the PBC. 

Notably, when the learning constant 𝜂 is increased, the PBC-

NC shows further improvements in settling time, suggesting 

its superior performance over the traditional PBC in terms of 

responsiveness. The simulation results show that the settling 

time of the 𝛼̇ and the 𝛽̇ of the passivity-based control using 

neural network is shorter when 𝜂 is increased. The 

improvement in settling time when the learning constant is 

increased suggests that PBC-NC can adapt more efficiently 

to dynamic changes in the system, potentially leading to 

better real-time performance in real world applications. This 

makes PBC-NC an attractive option for enhancing the 

stability and responsiveness of robotic systems such as the 

bicycle robot.   We compare the PBC-NC, with 𝜂 =0.001, and 

the PBC-SMC of [37] which is applied to the bicycle robot. 

We can see that the PBC-SMC has shorter settling time than 

the PBC-NC with 𝜂 =0.001. However, the output 𝑦2 of PBC-

SMC is equal to 0.005 (rad) and the output 𝑦2 of PBC-NC is 

equal to 0 (rad). The results of this study contribute to the 

advancement of robotic control strategies by demonstrating 

the potential of neural network-based approaches in 

enhancing the performance of the passivity-based control 

systems. This work paves the way for more efficient 

algorithms that can be applied to other types of robotic 

systems requiring dynamic stability and balance control. 

Future work could explore the application of PBC-NC to 

more complex robotic systems and real-time environments, 

with an emphasis on overcoming computational limitations 

and ensuring robustness in the face of external disturbances. 

Additionally, the impact of different learning algorithms and 

parameter tuning on system performance could be 

investigated to optimize control strategies further.  
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