
Journal of Robotics and Control (JRC) 

Volume 6, Issue 4, 2025 

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i4.26222 1872 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

Ensemble Voting Regressor for Enhanced 

Prediction in EMG-Based Prosthetic Wrist Control 

Mohd Safirin Karis 1*, Hyreil Anuar Kasdirin 2, Norafizah Abas 3, Muhammad Noorazlan Shah Zainudin 4,  

Nursabilillah Mohd Ali 5, Wira Hidayat Mohd Saad 6, Zarina Razlan 7 
1, 4, 6 Faculty Technology and Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, 

Melaka, Malaysia 
2, 3, 5 Faculty Technology and Electrical Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, 

Malaysia 
7 Language Academy Studies, Universiti Teknologi Mara, Shah Alam, Selangor, Malaysia 

Email: 1 safirin@utem.edu.my, 2 hyreil@utem.edu.my, 3 norafizahabas@utem.edu.my,  
4 noorazlan@utem.edu.my, 5 nursabillilah@utem.edu.my, 6 wira_yugi@utem.edu.my, 7 zarina1260@uitm.edu.my 

*Corresponding Author 

 
Abstract—Accurately capturing user motion intention is 

crucial for effective wrist control in myelectronic prosthetic 

hands. While various regression models have been explored to 

improve prediction performance, each presents specific 

limitations when used independently. This study proposes a 

novel ensemble learning approach that utilizes a Voting 

Regressor to combine the strengths of several regression models 

ANN, ANFIS, fuzzy logic, and their combinations (ANN-ANFIS, 

ANN-Fuzzy, ANFIS-Fuzzy, and ANN-ANFIS-Fuzzy) to 

improve predictive performance. Surface EMG signals were 

collected from the FCR and ECRL muscles at five contraction 

levels: 20%, 40%, 60%, 80%, and 100% MVC. These signals 

were used to predict wrist velocity, which was then validated 

using a SimMechanics based prosthetic hand model in 

MATLAB 2017a. The ensemble model outperformed all 

individual and combination models at four MVC levels; 20%, 

40%, 60%, and 100%. However, at 80% MVC, a single model 

achieved superior performance. Based on the average 

performance gain at the four winning MVC levels, the ensemble 

method achieved an overall improvement of 11.38%. When 

applied to the prosthetic hand simulation, the ensemble model 

showed slight additional improvements in RMSE at each MVC 

level, highlighting the practical applicability of the approach. To 

assign optimal and objective weights to the contributing models, 

MCDM-WSM approach was applied. This method combined 

multiple evaluation metrics (RMSE, %NRMSE, MAE, R², and 

p-value) into a single composite score, leading to the final 

weighted regression equation: YVR-HG-wrist = (0.5163)YANN 

+ (0.2367)YANFIS + (0.2470)YFuzzy. Furthermore, the 

ensemble model reduced reliance on additional control 

strategies such as PID tuning, as its improvements in RMSE 

were comparable to those typically achieved through PID-based 

compensation. These findings highlight the potential of a 

performance-weighted ensemble approach to provide more 

accurate, robust, and practical EMG-based prosthetic wrist 

control especially in real-time applications. 

Keywords—Ensemble Learning; Voting Regressor; EMG 

Signal Processing; Wrist Velocity Prediction; ANN-ANFIS-Fuzzy 

Ensemble Model; Simmechanics Prosthetic Simulation; PID 

Controller Reduction. 

I. INTRODUCTION 

Losing a hand due to injury, illness, or congenital 

conditions can have a profound impact on a person’s daily 

life and emotional well-being. To help restore lost 

functionality, prosthetic hands have been developed to mimic 

natural hand movements. Among these, myoelectronic 

prosthetic systems which controlled by surface 

electromyography (EMG) signals generated by muscle 

contractions represent a major advancement, enabling users 

to operate the prosthesis based on their motion intentions [1]. 

However, interpreting EMG signals accurately remains a 

major challenge. These signals are inherently nonlinear, 

variable, and often affected by noise. To model such 

complexity, researchers have applied various regression 

methods like artificial neural networks (ANN), adaptive 

neuro-fuzzy inference systems (ANFIS), and fuzzy logic 

systems. Each of these models has its strengths as ANN is 

inspired by how the brain works using layers of connected 

"neurons" to learn patterns from data. The model adjusts the 

strength of these connections during training to improve its 

predictions while learning nonlinear patterns from data [2]. 

ANFIS combines the learning ability of neural networks with 

the Sugeno rule-based thinking of fuzzy logic. It uses a 

layered structure to adjust fuzzy rules and membership 

functions based on training data [3], [4]. Fuzzy Logic, on the 

other hand, works with Mamdani rules and human-like 

reasoning. Instead of learning from data, it uses predefined 

rules and membership functions to handle uncertainty and 

vague inputs, producing clear outputs [5]-[7]. 

Despite their benefits, these individual models also come 

with limitations. ANN models typically require large datasets 

and can perform poorly with noisy inputs [8], [9]. ANFIS 

may become inefficient as the number of input variables 

increases due to the complexity of tuning both neural and 

fuzzy parameters [10], [11]. Fuzzy Logic, while intuitive, can 

struggle with complex datasets because of the difficulty in 

defining accurate membership functions and rule sets [12], 

[13]. These challenges limit the overall reliability and 

responsiveness of prosthetic control systems. 

While ensemble learning combining multiple models has 

proven effective in other fields, its potential remains 

underexplored in EMG-based prosthetic applications. This 

study addresses that gap by introducing a voting-based 

ensemble learning approach. The proposed method integrates 

multiple models, including ANN, ANFIS, Fuzzy Logic, and 
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their combinations, to improve the prediction of wrist 

velocity from EMG signals. By aggregating model outputs 

through a voting regressor, the system can produce a more 

stable and accurate control signal, even across varying levels 

of muscle contraction [14]-[16]. This approach offers a well-

rounded solution by improving user experience, enhancing 

functionality, and enabling more natural hand movements to 

better handle the complexity and variability of hand function. 

The aim of this study is to evaluate the performance of 

this ensemble approach in the context of prosthetic wrist 

control. EMG data from key forearm muscles are used to 

predict wrist movement, and the system’s performance is 

measured using metrics such as root mean square error 

(RMSE), percentage of normalized root mean square error 

%NRMSE, mean absolute error (MAE), coefficient of 

determination (R²), and p-value. Additionally, a decision-

making framework based on the multi-criteria decision 

making using weighted sum method (MCDM-WSM) is 

applied to fairly rank and weight the contributing models in 

the ensemble [17], [18]. 

By combining multiple regression techniques and 

optimizing their contributions, this research seeks to improve 

the prediction performance and reliability of myoelectric 

prosthetic wrist control thus ultimately making these devices 

more effective and intuitive for users [19]. 

The structure of this paper is as follows: Section II 

reviews recent developments in ensemble learning models. 

Section III outlines the methodology, including experimental 

setup and evaluation methods. Section IV presents the results 

and discussion, where all proposed methods are analyzed in 

detail. Finally, section V concludes the findings from section 

IV and highlights possible directions for future research. 

II. RECENT DEVELOPMENT OF ENSEMBLE LAEARNING 

MODEL 

Ensemble learning, specifically the voting regressor, has 

evolved as one of the most effective techniques in machine 

learning for improving prediction performance in various 

applications [20]-[23]. The concept of ensemble learning 

involve the need for combining multiple weak learners to 

form a stronger overall model [24]-[26]. In the voting 

regressor approach, multiple models such as linear 

regressors, decision trees, or more complex methods like 

neural networks, are trained independently [27]-[29]. The 

predictions from these models are then combined, either 

through averaging or selecting the majority output, which 

helps reduce the weaknesses of individual models by 

leveraging their collective strengths [30], [31]. This strategy 

enhances the robustness and stability of predictions, 

particularly in handling non-linear or noisy data [32]-[35]. 

Over time, voting regressors have found applications 

across diverse fields. In healthcare, for example, they are 

widely used for predictive analytics in disease diagnosis and 

treatment outcomes by integrating various models trained on 

patient data [24], [36]. In finance, voting regressors are 

employed to improve the predictive performance of stock 

market predictions by combining multiple forecasting models 

[37], [38]. Additionally, in energy and climate forecasting, 

ensemble models help predict demand patterns and 

environmental changes by combining insights from different 

meteorological and economic models [39]-[41]. Each of 

these areas benefit from the voting regressor’s ability to 

reduce errors from different learning methods, and lead to 

more reliable output predictions [42]-[44]. 

The evolution of ensemble learning has also seen progress 

in the combination techniques used within voting regressors 

[45], [46]. Other than majority voting or averaging, more 

complex strategies like weighted voting have emerged, where 

odels contributing to the ensemble are assigned weights 

based on their performance [30], [31]. This ensures that more 

accurate models have a greater influence on the final 

prediction [47]-[49]. Today, with the integration of deep 

learning architectures and complex algorithms like ANNs 

and ANFIS, the voting regressor continues to evolve, making 

it a versatile and essential tool in industries ranging from 

autonomous driving systems to prosthetic hand control, 

where precision and adaptability are dominant [50]-[52]. 

III. METHODOLOGY 

Fig. 1 shows a flowchart used for this experiment 

designed. First, EMG data were collected from the FCR and 

ECRL muscles at various levels from 20%, 40%, 60%, 80% 

and 100% of maximum voluntary contraction (MVC). The 

raw signals were then normalized and filtered to ensure clean 

input for the models. The based models network using ANN, 

ANFIS, fuzzy logic was trained and developed to predict 

wrist velocity from the processed EMG data. To enhance 

prediction performance, an ensemble method using an 

inverse RMSE-weighted average voting regressor was 

applied, combining outputs from all individual and 

combination models. The performance of these models was 

evaluated using performance metrics such as RMSE, 

%NRMSE, MAE, R², and p-values. The selected model 

which poses the lowest RMSE value of predicted wrist 

velocity was then tested on a SimMechanics based prosthetic 

hand model for validation. To further improve the system 

performance, PID-based tuning was used to assess how much 

the ensemble reduced reliance on traditional control methods. 

A slight improvement in RMSE during this simulation 

supported the practical relevance of the approach. Model 

weights were then optimized using MCDM-WSM based on 

metrics performance, and a final regression equation was 

constructed using these weighted outputs to represent the 

ensemble prediction model. 

A. Participants and Setup 

Ten healthy male volunteers aged 21–40 years 

participated in the study. All participants provided informed 

consent prior to data collection. Basic hand dimensions were 

recorded to assist in proper alignment with the prosthetic 

interface. The experiment focused on replicating a single 

degree of freedom wrist flexion and extension across three 

wrist target positions: neutral (0°), flexed (-45°), and 

extended (45°), as illustrated in Fig. 2. 

B. Prosthetic Wrsit Design 

A fully functional prosthetic wrist was designed using 

SolidWorks 2017 and simulated in a virtual environment 

using SimMechanics as shown in Fig. 3. The model was 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1874 

 

Mohd Safirin Karis, Ensemble Voting Regressor for Enhanced Prediction in EMG-Based Prosthetic Wrist Control 

configured to perform natural wrist movements, with 

accurate control. 

 

Fig. 1. Flowchart for the experiment designed 

   
(a) (b) (c) 

Fig. 2. Hand gripping positions for hand dynamometer at various wrist angle 

positions: (a) at -45°, (b) at 0°, and (c) at 45° [53] 

   
(a) (b) (c) 

Fig. 3. Solid work 3D hand designed (a) flexion wrist position, (b) neutral 

wrist position, and (c) extension wrist position [54] 

C. EMG Signal Acquisition 

Surface electromyography (EMG) signals were captured 

using the vernier system at a sampling frequency of 1,000 Hz. 

Electrodes were placed on the top of the muscle belly of two 

primary forearm muscles that response effectively towards 

wrist movement which are flexor carpi radialis (FCR) and 

extensor carpi radialis longus (ECRL) according to the book 

of anatomy [55]. Each electrode was spaced 2 cm apart, and 

skin preparation was performed to reduce impedance and 

electrical noise. 

EMG recordings were taken during hand grip wrist 

movements performed at five effort levels: 20%, 40%, 60%, 

80%, and 100% of each participant’s MVC. The concept of 

MVC has been applied due  to the distribution of the data 

collection [56]. 

D. Signal Processing and Feature Extraction 

Raw EMG signals were pre-processed through second 

order band pass filter (10–350 Hz) [57]. A sliding window 

segmentation technique with a 50% overlap was applied to 

preprocess the EMG signals before feature extraction process 

as this step effective in capturing relevant signal dynamics 

while balancing computational efficiency [58]. The process 

continued as the waveform length (WL) feature was extracted 

from the pre-processed EMG data [59]. This time-domain 

feature captures both amplitude and frequency characteristics 

of the EMG signal, illustrating lower standard deviation 

result preliminary tests compared to other features such as 

RMS, MAV, IEMG and ZC, hence offering higher prediction 

performance [60], [61]. At the end, MVC normalization has 

been selected as one of the commonly used forms of rectified 

EMG signals by dividing the instant amplitude obtained 

value when conducting the experiment [62]. 

E. Model Development 

In ANN and ANFIS development system designed, three 

dataset for hand grip movement with three different wrist 

position (neutral, flexion and extension) and two of them will 

be taken to design a network for the system [63]. In the 

training dataset selected, 70% has been used as training, 15% 

has been used for testing and the other 15% has been used as 

validation. It left one dataset that will be used for cross-

validation in testing environment. For fuzzy logic, the 

Mamdani rules were designed based on testing datasets. 

1) ANN System Development 

In this paper, the ANN architecture was developed using 

MATLAB coding. In this network designed process, the 

neuron must be chosen properly to minimize the number of 

errors produced. In this process, the optimum number of 

neurons was chosen based on training and validation dataset. 

The graph plotting was shown in Fig. 4. The red line graph 

came from the training dataset while the blue line graph came 

from validation dataset as the y axis represents the RMSE 

values and x axis are the number of neurons used to generate 

the RMSE error values. The number of neurons will be 

chosen based on the differences between these two lines 

RMSE error values. The lowest number of RMSE will reflect 

the number of neurons that the system will be chosen to 

design the system. The main objectives of plotting this graph 

were to determine the interaction between these two lines of 

graph plotting. The reason behind using only the training and 

validation datasets during selection of the optimum number 

of neurons is to avoid overfitting the test data by creating the 

best version of the model. The test data separation ensures 

that the performance metrics obtained reflected the model's 

true generalization ability, not just its ability to fit the data it 

has already been optimized against. This result is a significant 

improvement, which determined the optimal number of 

neurons to be 4 with an RMSE = 22.2106. 

2) ANFIS System Development 

For ANFIS, the network was designed using a single 

hidden layer. Each input was optional designed to have 2, 3 

or 4 membership function (mf) with input and output was set 

using “gauss2mf” selected as constant at their mf type [63]. 

At the end, the combination of different mf for each dataset 
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was combined which its performance was measured using the 

training dataset and validation dataset to design a particular 

network. The RMSE value was used as an indicator to select 

which combination gave the best result as lowest value of 

RMSE are preferable. Below shows the Fig. 5 as the value of 

mf is [2 2 2] with the value of RMSE = 19.7332 and Fig. 6 

below shows the combination of mf of [4 4 4] with the value 

of RMSE = 18.9782. 

 

Fig. 4. Graph RMSE Vs number of Neuron for HG experiment 

 

Fig. 5. ANFIS network training output: RMSE = 19.7332 

 

Fig. 6. ANFIS Optimal network training output: RMSE = 18.9782 

3) Fuzzy Logic System Development 

The structure of the FL comprises fuzzification, a rule 

table, a fuzzy inference system, and a defuzzification 

mechanism [64]. Fuzzy logic first fuzzifies the input 

variables before designing the rule table using membership 

functions. A fuzzy inference system of the Mamdani type is 

used to map inputs to outputs by merging all linguistic 

statements in the rule table. The concept of Mamdani is 

applied when fuzzy rules are designed based on the expert 

knowledge of a designer, and the fuzzy output is later 

converted into a crisp value using defuzzification. The 

defuzzification step is completed using a "centroid" 

technique that returns the area's center beneath the curve [65]. 

In this architecture, FCR and ECRL muscle values were 

simultaneously analyzed based on their performance at 

different MVC levels and wrist joint angle positions to 

estimate the wrist's velocity. 

The 9 linguistic claims stated in rule Table I are 

synthesized into a Mamdani-style fuzzy inference system that 

maps inputs to outputs. In these phrases, the conjunction 

AND represents a minimum operator that selects only the 

lowest of the fuzzy inputs. For each IF-THEN rule statement, 

an implication operation is performed using the "minimum" 

method, which directly truncates the fuzzy output sets. 

Instead, a complex-shaped curve has been generated at the 

conclusion by aggregating all fuzzy output sets that have been 

trimmed using the "maximum" method. 

TABLE I.  9 IF – THEN RULE STATEMENTS [53] 

No  FCR 

Muscle 
 ECRL 

Muscle 
 WRIST 

VELOCITY 

1 if S and S then Z 

2 if M and M then Z 

3 if H and H then Z 

4 if M and S then FM 

5 if H and M then FM 

6 if H and S then FH 

7 if S and M then EM 

8 if M and H then EM 

9 if S and H then EH 

F. Ensemble Learning Approach 

Ensemble methods in machine learning are powerful 

techniques designed to improve the predictive performance 

and robustness of predictive models by combining the 

strengths of multiple individual models [66]. These methods 

work on the principle that combining the predictions of 

various models can lead to improve performance than relying 

on a single model [67]. The ensemble base learning algorithm 

are created from each combined method components [68]. 

The list of ensemble methods applicable to regression 

includes Bagging (Bootstrap Aggregating), where multiple 

models are trained on different subsets of the data, allowing 

each model to reduce variance through averaging; Boosting, 

which sequentially trains models to focus on correcting the 

errors of previous models, in that way reducing bias; Stacking 

(Stacked Generalization), a method that involves training a 

meta-model to learn how to best combine the predictions of 

base models coming from each model; and voting regressor, 

where multiple models vote on the final prediction by either 

averaging their outputs or using a weighted average [30], 

[31]. Below are the generalized methods of ensemble 

learning equations (1): 

𝑦̂ = ∑ 𝑦̂𝑖 
𝑛=1
𝑖=1   (1) 

𝑦̂  is the ensemble model, 𝑦̂𝑖  represent a single model and n 

represent total number of models used shown in (1). An 

ensemble learning strategy was employed to combine the 

outputs of the ANN, ANFIS, and Fuzzy Logic models using 

a weighted voting regressor. The ensemble prediction was 

calculated as (2):  
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𝑦̂ = ∑ 𝜔𝑖 ⋅ 𝑦̂𝑖 
𝑛
𝑖=1   (2) 

𝜔𝑖 is the weight of the i-th model, 𝑦̂𝑖 is the prediction from 

the i-th model and n is the total number of models in the 

ensemble shown in (2). However, in this paper the concept of 

RMSE of each model will be used to assign the weight for 

each model. Chen et al, used the concept of inverse RMSE as 

a weight for their use model in boosting ensemble learning 

methods [69]. Mingyuan et al, also use the same concept in 

improved stacking ensemble learning method [70]. In 

general, total weight to be used ∑𝜔𝑖=1. Various 

combinations of models were evaluated, and the best 

performing ensemble was selected based on validation 

performance. This approach using ensemble learning bagging 

concept ensured that models with lower RMSE (i.e., higher 

prediction performance) contributed more significantly to the 

final output [71], [72]. 

𝜔𝑖 =

1

𝑅𝑀𝑆𝐸𝑖

∑
1

𝑅𝑀𝑆𝐸𝑗

𝑛
𝑗=1

  (3) 

𝑅𝑀𝑆𝐸𝑖  is the RMSE of a model 𝑀𝑖 and 𝑅𝑀𝑆𝐸𝑗 is the total 

number of RMSE for each model. n is the total number of 

models in ensemble learning shown in (3). The 

implementation of this learning method shown at Fig. 7 

flowchart below and were listed in the following steps: -  

• The testing model input from each model ANN, ANFIS 

and Fuzzy Logic were generated. 

• The possible combination models of ANN, ANFIS, 

Fuzzy, ANN-ANFIS, ANN-Fuzzy, ANFIS-Fuzzy, ANN-

ANFIS-Fuzzy was applied to the proposed algorithm to 

obtain the lowest number of RMSE. 

• The lowest RMSE from possible model combination was 

selected as the value of weight for this combination was 

calculated for each MVC’s level. 

• The Final selected model was tested to the prosthetic hand 

of the wrist to measure its predictive performance. 

 

Fig. 7. Full system of proposed system for prosthetic hand for wrist 

movement using ensemble learning (Bagging) - inverse RMSE-weighted 

average voting regressor 

Single-model approaches, such as linear discriminant 

analysis (LDA) and support vector machines (SVM), have 

been widely used in prosthetic hand control due to their 

simplicity and easier design. However, these models often 

struggle with adaptability, especially when faced with 

variations in EMG signals caused by factors like electrode 

displacement, muscle fatigue, or changes in limb position 

[73]. Such limitations can lead to decreased performance and 

reliability in real-world applications. 

Peng et al. proposed an ensemble extreme learning 

machine (EELM) for EMG-based gesture recognition. By 

combining multiple ELM classifiers through majority voting, 

their method improved accuracy on the Ninapro DB5 dataset, 

achieving 77.9% and outperforming standard models like 

decision trees and random forests [74]. This highlights the 

value of ensemble techniques in handling EMG signal 

variability and boosting classification performance. 

Proposing this approach for prosthetic hand for wrist 

movement using ensemble learning (Bagging) - inverse 

RMSE-weighted average voting regressor in which will 

combine multiple models to benefit from their individual 

strengths. This design aims to enhance the system's 

adaptability to dynamic conditions and improve the overall 

performance and user experience of myoelectric prosthetic 

control systems. 

Fig. 8 shows the development of the prosthetic hand using 

SimMechanics using MATLAB 2017a version completed 

with proposed system (ensemble learning – inverse RMSE-

weighted average voting regressor) physical modelled for 

output testing.  

 

Fig. 8. Full proposed system of prosthetic hand for wrist movement 

G. Performance Evaluation 

Other than RMSE, %NRMSE, MAE, R², and p-value 

were obtained from the result calculation. %NRMSE scales 

the RMSE to the range of the actual output, expressed as a 

percentage. This enables fair comparison across different 

datasets or signal ranges. The function of MAE is to capture 

the average magnitude of errors without considering their 

direction, providing insight into the typical size of prediction 

errors. R² value indicates the proportion of variance in the 

observed data explained by the model. Values closer to 1 

suggest a better model fit. T-test between each model design 

with actual values was recorded and presented as p-value to 

determine the significant relationship between these two 

groups. 

For each experiment design, each stage requires a 

decision-making process that needs to be analyzed before the 

next step takes place. To guide the selection of the most 

suitable models, a decision-making Table II was used based 

on this five key performance metrics: RMSE, %NRMSE, 

MAE, R², and p-value. This table highlights different 

combinations of these metrics and provides clear suggested 

actions. For example, when a model shows low error values, 

a high R², and a p-value below 0.05, it is considered to have 

excellent performance and is selected as the optimal model. 
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On the other hand, models with high errors or low statistical 

significance are typically rejected. In some cases where only 

one or two metrics are slightly weaker, the model might still 

be accepted if further investigation justifies its performance, 

for example, by checking for outliers or signs of overfitting. 

This guidance helps ensure that the model selection process 

is consistent, transparent, and focused on both predictive 

performance and statistical reliability. “L” refers to Low, “M” 

refers to High and “H” refers to High. 

TABLE II.  DECISION-MAKING TABLE 

C
a

se
 

R
M

S
E

 

N
R

M
S

E
 

M
A

E
 

R
² 

P
-v

a
lu

e 

Action/Decision 

1 L L L H < 0.05 Select as optimal model. 

2 L L M H < 0.05 
Accept if RMSE is 
significantly lower than 

alternatives. 

3 L L H H < 0.05 
Investigate outliers; 
proceed if justified. 

4 L L L H > 0.05 

Accept if model 

outperforms others 

significantly. 

5 L L L M < 0.05 
Accept; consider for further 

refinement. 

6 L L L L < 0.05 
Investigate model structure; 

proceed with caution. 

7 L L H L > 0.05 
Reject unless no better 

alternatives exist. 

8 M M L M < 0.05 
Consider if better models 

are unsuitable. 

9 M M M M > 0.05 Reject. 

10 H H H L > 0.05 Definitely reject. 

11 H H L L < 0.05 
Reject; prioritize models 

with better overall metrics. 

 

Realizing the outcome from each of the experiments 

might be a combination of various models, a statistical 

method called MCDM approach based on the WSM was 

employed. This method combines multiple performance 

indicators into a single composite score for each experiment, 

allowing consistent and explainable comparisons. However, 

this approach needs to be developed by considering and 

analyzing all the obtained performance metrics. RMSE was 

assigned the highest weight due to its sensitivity to large 

errors and its strong relationship with performance reduction 

in real-time systems. NRMSE followed as the second-most 

weighted metric, particularly important for comparing 

models trained on normalized EMG data, where scale 

independent performance is crucial. MAE, which is more 

robust to outliers than RMSE, was weighed moderately to 

complement RMSE without overshadowing it. R² and p-

value were given lesser weights, showing their roles in 

explaining variance and assessing statistical significance, but 

not directly contributing to error reduction. This distribution 

is consistent with the decision-making shown in Table II, 

where models with strong error performance but moderate R² 

or marginal p-values were still considered acceptable. Based 

on this step of decision-making on selecting the best model 

representation, the weight was proposed. The total weight 

sums equal to 1.0. Table III displays the performance metrics, 

its objectives and proposed weights based on the importance 

of this value in final decision making. 

TABLE III.  WEIGHT ASSESSMENT TABLE 

Performance Metric Symbol Objective Weight 

Root Mean Square Error RMSE Minimize 0.35 

Normalized RMSE (%) NRMSE Minimize 0.25 

Mean Absolute Error MAE Minimize 0.15 

Coefficient of Determination R² Maximize 0.15 

p-value p Neutral 0.1 

 

Since these metrics were measured on different scales, 

each value was normalized using Min-Max normalization 

method. Throughout this process, all the listed metrics use 

can be analyzed using the same scale. The normalized metrics 

were then multiplied by their respective weights,  

and a composite score for each experiment was calculated 

using (4): 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑖 = ∑ 𝑤𝑗  . 𝑥𝑖𝑗
,𝑛

𝑗=1   (4) 

Where 𝑤𝑗 is weight for performance metric, 𝑥𝑖𝑗
′  is the 

normalized value of performance metric 𝑗 for experiment 𝑖 
and 𝑛 is the total number of performance metric. This 

composite score ranges from 0 to 1 as this value get higher, 

the better the overall performance across the define 

performance metric. As this composite score were obtained, 

the experiment will be ranked in descending order. This 

ranking will be used to compare the effectiveness of the 

selected model for each experiment. 

IV. RESULT AND DISCUSSION 

The experiment of hand grip was done with a different 

variation of wrist position (neutral, flexion and extension) at 

20%,40%, 60%, 80% and 100% MVC level. Recent study 

Salatiello et. al shown that incorporating dynamic movement 

data using LSTM networks during activities of daily living 

significantly improves the generalization and performance of 

myoelectric control systems [75]. 

The RMSE of output from ANN, ANFIS, fuzzy logic, 

ANN-ANFIS, ANN-fuzzy logic, ANFIS-fuzzy logic and 

ANN-ANFIS-fuzzy logic combination have been used to 

analyze the performance of each combination offering a new 

level of adaptability in EMG-based wrist velocity prediction. 

Unlike traditional single model approaches, this proposed 

approach captures nonlinearities and uncertainty in EMG 

signals more effectively. Recent works such as Li et al. have 

employed SVM classifiers experience a decline in accuracy 

over repeated sessions due to factors like electrode 

displacement and muscle fatigue [76]. Similarly, Diu et al. 

used deep learning architectures but required large datasets 

and lacked interpretability [77]. The selection of the chosen 

model was done after considering all the performance metric 

as shown in Table II. 

In addition to model performance, a PID controller was 

employed to smooth out signal fluctuations from the output 

mapping process, providing a more stable and continuous 

control signal to become an input for prosthetic hand. Recent 

advancements, stated by Won et al., have demonstrated that 

incorporating a ZPETC+PID controller into myoelectric 

prosthesis systems can significantly enhance real-time 

responsiveness, reducing actuation delay by approximately 

0.240 seconds [78]. This PID-based approach improves 
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system accuracy while minimizing the calibration burden 

typically associated with user specific EMG variability, 

thereby enhancing practical usability for end users in 

dynamic environments. In this paper, metaheuristic algorithm 

has been applied to obtain the value for 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 and 

were fixed for all experiments with parameters: 𝐾𝑝 = 

3.97×10−9, 𝐾𝑖 = 0.47, 𝐾𝑑 = 1.44×10−6 [79]. An improvement 

in RMSE value is getting slightly better as PID has been 

applied before the signal supplied to the prosthetic hand. 

All figures and tables present a detailed comparison of 

each method based on RMSE, %NRMSE, MAE, R², and p-

value. Additionally, the figures illustrate the effect of model 

weighting on prediction performance for wrist movement 

estimation. From all output figures below the red line graph 

represents the estimated chosen combination method. The 

blue line graph shows the prosthetic hand output wrist 

velocity tuned by PID, and the black line graph showed the 

actual wrist velocity output recorded during the experimental 

procedure.  

A. Hand Grip Wrist at 20% of MVC Level 

Fig. 9 shows an output from selected model voting 

regressor complemented with an output from PID tuning 

prosthetic hand wrist movement at 20% MVC level. Table IV 

shows a prediction input form by combination of ANN-Fuzzy 

model was selected as it gave the lowest RMSE value equal 

to 20.82 and %NRMSE value achieves 23.13%. Moreover, 

the MAE gave the lowest value of 18.0044 among all its 

MAE members. This model again manages to give the 

highest R2; 0.6782 as possible as compared to all other 

models. The p-value from all the models illustrates a value 

<0.05 (highly significant) which concludes that the bias may 

be negligible and the decision making still acceptable to 

follow decision on lowest RMSE value obtained. By having 

said that, the ANN-Fuzzy model has been selected as a model 

to represent the input for prosthetic wrist velocity for 

20%MVC level. The regression model analysis reveals the 

following weights: ANN = 0.4734, ANFIS = 0, and Fuzzy = 

0.5256, as detailed in Table V to fulfil this condition. 

Moreover, by choosing ANN-Fuzzy as a selected model, it 

shows the highest percentage of predictive performance of 

6.72%. The RMSE value was slightly reduced to 19.3 on the 

prosthetic hand movement while PID was used. 

 

Fig. 9. Voting regressor output for 20% MVC state 

In this experiment, classified as low intensity level, the 

ANN-Fuzzy model outperformed others due to its ability to 

manage the noisy, low amplitude EMG signals common at 

minimal muscle activation. Its highest predictive 

performance, even without contribution from ANFIS, 

suggests that rule-based inference (Fuzzy) combined with 

data-driven learning (ANN) provided a better balance of 

generalization and specificity. The Inverse RMSE-weighted 

average voting regressor required minimal PID correction, 

highlighting its stability under these conditions. 

TABLE IV.  WRIST MOVEMENT FOR HG AT 20% MVC LEVEL 

Hand Part Wrist 
           Analysis 
Model 

RMSE 

(°/s) 
% 

NRMSE 

MAE 

(°/s) 
(R2) P-value 

ANN 23.16 25.73 19.1101 0.6018 0 

ANFIS 22.97 25.52 20.0001 0.6084 0 

Fuzzy 
20.83 23.14 18.1084 0.6781 6.47E-

241 

ANN-ANFIS 22.09 25.45 19.1066 0.6379 0 

ANN-Fuzzy 20.82 23.13 18.0044 0.6782 0 

ANFIS-Fuzzy 21.31 23.68 18.6291 0.6630 0 

ANN-ANFIS-
Fuzzy 

21.15 23.50 18.3939 0.6680 0 

TABLE V.  WEIGHT DISTRIBUTION FOR HG AT 20% MVC LEVEL 

Chosen Method Model Weight Value 

ANN-Fuzzy 

ANN 0.4734 

ANFIS 0 

Fuzzy 0.5266 
 

B. Hand Grip Wrist at 40% of MVC Level 

Fig. 10 shows an output from selected model voting 

regressor complemented with an output from PID tuning 

prosthetic hand wrist movement at 40% MVC level. Table VI 

shows a prediction input form by combination of ANN-

ANFIS model was selected as it gave the lowest RMSE value 

equal to 23.64 and %NRMSE value achieves 26.27%. 

Moreover, the MAE gave the lowest value of 20.0854 among 

all its MAE members. This model manages to give the 

highest R2; 0.5848 as possible as compared to all other 

models. The p-value from all the models illustrates a value 

<0.05 (highly significant) which concludes that the bias may 

be negligible and the decision making still acceptable to 

follow decision on lowest RMSE value obtained. By having 

said that, ANN-ANFIS model has been selected as a model 

to represent the input for prosthetic wrist velocity for 40% 

MVC level. The regression model analysis reveals the 

following weights: ANN = 0.4986, ANFIS = 0.5014, and 

Fuzzy = 0, as detailed in Table VII to fulfil this condition. 

Moreover, by choosing ANN-ANFIS as a selected model, it 

shows the highest percentage of predictive performance of 

8.84%. The RMSE value was slightly reduced to 21.94 on the 

prosthetic hand movement while PID was used. 

 

Fig. 10. Voting regressor output for 40% MVC state 
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In this second experiment, the EMG signals became 

clearer and slightly more complex, the ANN-fuzzy model 

continued to lead, confirming its robustness. The inverse 

RMSE-weighted average voting regressor remained reliable, 

suggesting the ensemble had not yet fully distributed among 

all models. Physiologically, this level reflects increased 

motor unit recruitment, and the combination model appeared 

better adaptation to capture the associated signal dynamics. 

TABLE VI.  WRIST MOVEMENT FOR HG AT 40% MVC LEVEL 

Hand Part Wrist 
           Analysis 
Model 

RMSE  

(°/s) 

% 

NRMSE 

MAE 

(°/s) 
(R2) P-value 

ANN 24.07 26.74 20.5273 0.5697 0 

ANFIS 
23.93 26.59 20.2311 0.5746 1.46E-

43 

Fuzzy 29.80 33.11 24.1278 0.3405 0 

ANN-ANFIS 
23.64 26.27 20.0854 0.5848 1.32E-

225 

ANN-Fuzzy 25.87 28.74 21.6508 0.5030 0 

ANFIS-Fuzzy 25.97 28.86 21.5487 0.4990 2.24E-

229 

ANN-ANFIS-

Fuzzy 

24.89 27.65 20.9298 0.5400 0 

TABLE VII.  WEIGHT DISTRIBUTION FOR HG AT 40% MVC LEVEL 

Chosen Method Model Weight Value 

ANN-ANFIS 

ANN 0.4986 

ANFIS 0.5014 

Fuzzy 0 
 

C. Hand Grip Wrist at 60% of MVC Level 

Fig. 11 shows an output from selected model voting 

regressor complemented with an output from PID tuning 

prosthetic hand wrist movement at 60% MVC level. Table 

VIII shows a prediction input form by combination of ANN-

ANFIS-Fuzzy model, which was selected as given the lowest 

RMSE value equal to 13.32 and %NRMSE value achieves 

14.80%. However, the MAE gave the value of 11.5898 which 

still belongs to the lowest group among all its MAE members. 

This model again manages to give the highest R2; 0.8681 as 

possible as compared to all other models. The p-value from 

all the models illustrates a value <0.05 (highly significant) 

including ANN-ANFIS-fuzzy which concludes that the bias 

may be negligible and the decision making still acceptable to 

follow decision on lowest RMSE. The ANFIS-Fuzzy gave a 

p-value value of 0.2357 thus explaining this result there is a 

23.57% chance that this result is due to random variation or 

not a meaningful pattern (not reliable). By having said that, 

ANN-ANFIS-fuzzy model has been selected as a model to 

represent the input for prosthetic wrist velocity for 60% MVC 

level. The regression model analysis reveals the following 

weights: ANN = 0.3706, ANFIS = 0.4060, and Fuzzy = 

0.2232, as detailed in Table IX to fulfil this condition. 

Moreover, by choosing ANN-ANFIS-Fuzzy as a selected 

model, it shows the highest percentage of predictive 

performance of 23.76%. The RMSE value slightly reduced to 

12.79 on the prosthetic hand movement while PID was used. 

At 60%MVC experiment, the ANN-ANFIS-Fuzzy 

combination was selected, indicating that mid-range 

combining benefited the most from all usable based models. 

The ensemble showed stronger performance than at lower 

MVCs, especially when guided by inverse RMSE-weighted 

average voting regressor, suggesting its suitability for tasks 

involving moderate complexity. 

 

Fig. 11. Voting regressor output for 60% MVC state 

TABLE VIII.  WRIST MOVEMENT FOR HG AT 60% MVC LEVEL 

Hand Part Wrist 
           Analysis 
Model 

RMSE  

(°/s) 

% 

NRMSE 

MAE 

(°/s) 
(R2) P-value 

ANN 
14.66 16.29 11.5840 0.8402 1.97E-

18 

ANFIS 
13.39 14.88 11.2864 0.8667 3.39E-

104 

Fuzzy 
24.36 27.07 20.3262 0.5593 3.62E-

215 

ANN-ANFIS 
13.65 15.17 11.0901 0.8616 1.25E-

56 

ANN-Fuzzy 14.94 16.60 13.3699 0.8343 2.53E-
25 

ANFIS-Fuzzy 13.42 14.91 11.9240 0.8663 0.2357 

ANN-ANFIS-

Fuzzy 

13.32 14.80 11.5898 0.8681 0.0058 

TABLE IX.  WEIGHT DISTRIBUTION FOR HG AT 60% MVC LEVEL 

Chosen Method Model Weight Value 

ANN-ANFIS-Fuzzy 

ANN 0.3706 

ANFIS 0.4060 

Fuzzy 0.2232 

D. Hand Grip Wrist at 80% of MVC Level 

Fig. 12 shows an output from selected model voting 

regressor complemented with an output from PID tuning 

prosthetic hand wrist movement at 80% MVC level. Table X 

shows a prediction input form by single combination of ANN 

model was selected as it gave the lowest RMSE value equal 

to 21.02 and % NRMSE value achieves 23.35%. Moreover, 

the MAE gave the value of 19.6474 was the lowest value 

group among all its MAE members. This model manages to 

give the highest R2; 0.6719 as possible as compared to all 

other models. The p-value from all the models illustrates a 

value <0.05 (highly significant) including ANN which 

concludes that the bias may be negligible and the decision 

making still acceptable to follow decision on lowest RMSE 

obtained. By having said that, the ANN model has been 

selected as a model to represent the input for prosthetic wrist 

velocity for 80% MVC level. The regression model analysis 

reveals the following weights: ANN = 1.0, ANFIS = 0, and 

Fuzzy = 0, as detailed in Table XI to fulfil this condition. 

Moreover, by choosing ANN as a selected model, it shows 

the improvement on predictive performance of 8.45%. The 

RMSE value was slightly reduced to 20.51 on the prosthetic 

hand movement while PID was used. 

For this experiment, the overall performance of all models 

began to decrease, as seen through higher RMSE values. This 
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reduction in predictive performance caused by the increasing 

complexity of the EMG signals at higher contraction levels, 

possibly due to muscle fatigue and overlapping motor unit 

activity. This suggests that fixed weight ensemble approaches 

may have difficulty adapting to rapidly changing muscle 

conditions. 

 

Fig. 12. Voting regressor output for 80% MVC state 

TABLE X.  WRIST MOVEMENT FOR HG AT 80% MVC LEVEL 

Hand Part Wrist 
            Analysis 
Model 

RMSE  

(°/s) 

% 

NRMSE 

MAE 

(°/s) 
(R2) P-value 

ANN 21.02 23.35 19.6474 0.6719 1.06E-

109 

ANFIS 22.43 24.92 20.1984 0.6266 2.79E-

60 

Fuzzy 25.43 28.25 21.4856 0.5200 0 

ANN-ANFIS 21.53 23.92 19.8803 0.6560 6.14E-

83 

ANN-Fuzzy 21.76 24.17 19.3574 0.6484 1.55E-
69 

ANFIS-Fuzzy 22.79 25.32 19.8892 0.6143 1.82E-

78 

ANN-ANFIS-
Fuzzy 

21.65 24.05 19.4145 0.6519 2.21E-
12 

TABLE XI.  WEIGHT DISTRIBUTION FOR HG AT 80% MVC LEVEL 

Chosen Method Model Weight Value 

ANN-ANFIS-Fuzzy 

ANN 1.0000 

ANFIS 0 

Fuzzy 0 

E. Hand Grip Wrist at 100% of MVC Level 

Fig. 13 shows an output from selected model voting 

regressor complemented with an output from PID tuning 

prosthetic hand wrist movement at 20% MVC level. Table 

XII shows a prediction input form by combination of ANFIS-

Fuzzy model was selected as it gave the lowest RMSE value 

equal to 33.69 and %NRMSE value achieves 37.43%. 

However, the MAE gave the value of 29.8800 was the second 

lowest value among all its MAE members. This model again 

manages to give the highest R2; 0.1574 as possible as 

compared to all other models. The p-value from all the 

models illustrates a value <0.05 (highly significant) including 

ANFIS-Fuzzy which concludes that the bias may be 

negligible and the decision making still acceptable to follow 

decision on lowest RMSE obtained. By having said that, 

ANFIS-Fuzzy model has been selected as a model to 

represent the input for prosthetic wrist velocity. The 

regression model analysis reveals the following weights: 

ANN = 0, ANFIS = 0.5177, and Fuzzy = 0.4823, as detailed 

in Table XIII to fulfil this condition. Moreover, by choosing 

ANFIS-Fuzzy as a selected model, it shows the highest 

percentage of predictive performance of 6.19%. The RMSE 

value was slightly reduced to 33.15 on the prosthetic hand 

movement while PID was used. 

At full muscle contraction (100% MVC), prediction 

errors increased further, reflecting the increment of the 

complexity of EMG signals under maximal effort. The ANN-

Fuzzy model continued to deliver the most accurate results, 

while the Inverse RMSE-Weighted Average Voting 

Regressor model remained reliable but showed signs of 

reduced adaptability. The relatively poor performance of the 

standalone Fuzzy Logic model suggests it lacks the flexibility 

required to respond to the rapidly changing dynamics of high-

intensity muscle signals. These findings highlight the need 

for more adaptive or context-sensitive ensemble strategies to 

maintain its prediction performance under extreme 

conditions. 

 

Fig. 13. Voting regressor output for 100% MVC state 

TABLE XII.  WRIST MOVEMENT FOR HG AT 100% MVC LEVEL 

Hand Part Wrist 
            Analysis 
Model 

RMSE  

(°/s) 

% 

NRMSE 

MAE 

(°/s) 
(R2) P-value 

ANN 36.56 40.62 31.2604 0.0075 0 

ANFIS 34.33 38.14 29.2178 0.1252 0 

Fuzzy 36.85 40.94 32.6359 0.0082 
6.36E-

29 

ANN-ANFIS 35.22 39.13 30.1718 0.0790 0 

ANN-Fuzzy 
34.87 38.74 30.8971 0.0974 

3.67E-

104 

ANFIS-Fuzzy 
33.69 37.43 29.8800 0.1574 

1.97E-

122 

ANN-ANFIS-

Fuzzy 
34.06 37.84 29.9516 0.1386 

1.16E-

278 

TABLE XIII.  WEIGHT DISTRIBUTION FOR HG AT 100% MVC LEVEL 

Chosen Method Model Weight Value 

ANFIS-Fuzzy 

ANN 0 

ANFIS 0.5177 

Fuzzy 0.4823 

 

Through observation from all the experiments conducted, 

the ensemble learning approach using voting regressor 

demonstrated an average improvement of 11.38% in 

predictive performance across all cases. Huo et al. utilized 

wavelet packet transform (WPT) for decomposing sEMG 

signals and applied principal component analysis (PCA) for 

feature dimensionality reduction and manage to obtain 

96.03% for hand movement recognition, however they 

focused on a classification task [80]. 

As this method was implemented in a system, it not only 

improves in terms of predictive performance, moreover it 
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helps to improve prosthetic hand user experience, enhancing 

prosthetic hand functionality and enabling more natural hand 

movements. 

F. Overall Weightage Score and Ensemble Configuration 

To further evaluate the overall performance of these 

experiments a composite score was calculated for each trial 

using the MCDM-WSM as described in the methodology 

section. Most recent ensemble strategies shown by Nidal et 

al. assign equal weights or optimize based on a single error 

metric [81]. This approach combined five best experiment 

performance characteristics (RMSE, %NRMSE, MAE, R², 

and p-value) into a single weighted score after normalization 

and applying importance weights. This structured and 

objective weighting mechanism enhances model fairness and 

reliability, addressing known limitations in performance 

metric interpretation and benchmarking [81], [82].  

Table XIV shows the ranking of all experiments based on 

their composite score along with their selected models. The 

experiment with the highest composite score was ranked first, 

indicating the best overall performance across all selected 

characteristics. In this analysis, experiment 60% MVC 

achieved the top rank, reflecting strong performance in their 

RMSE, %NRMSE, MAE, R² and p-value. This experiment 

selected ANN-ANFIS-fuzzy as their model representation. 

On the other hand, experiment 100%MVC which selected 

ANFIS-Fuzzy model received the lowest composite score 

representing a weaker performance compared to others.  

This ranking structure allows a clear and measurable 

comparison of model effectiveness, helping identify which 

modeling approaches yield the most reliable outcomes in 

terms of predictive performance and statistical fit.  

TABLE XIV.  RANK AND COMPOSITE SCORE TABLE 

Rank Experiment Composite Score Selected Models 

1 60% MVC 1 ANN-ANFIS-Fuzzy 

2 20% MVC 0.6864 ANN-Fuzzy 

3 80% MVC 0.6657 ANN 

4 40% MVC 0.5665 ANN-ANFIS 

5 100% MVC 0.1 ANFIS-Fuzzy 

 

In the final MCDM evaluation illustrated in Fig. 14 the 

individual models (ANN, ANFIS, and fuzzy logic) were 

assessed using five performance metrics: RMSE, NRMSE, 

MAE, R², and p-value. Among them, ANN achieved the 

highest normalized composite score (0.5163), followed by 

Fuzzy Logic (0.2470) and ANFIS (0.2367). These scores 

were derived using WSM, which aggregates multi-criteria 

performance into a single understandable value. 

Rather than selecting a single best model, these results 

were used to formulate a proposed new weightage scheme for 

the ensemble model. The ensemble was first constructed 

using inverse RMSE-weighted average voting regressor 

method, in which the aggregation is biased toward the model 

with the lowest RMSE, thus prioritizing predictive 

performance in the final output. However, through the 

MCDM-WSM approach, derived weights indicate the 

relative strengths of each base model, assigning more 

influence on ANN, followed by fuzzy and then ANFIS. 

This structure allows the ensemble model to benefit from 

ANN’s strong predictive capability while also utilizing the 

explainability and domain adaptability offered by Fuzzy and 

ANFIS models. As a result, the proposed ensemble 

configuration is expected to offer improved generalization 

and robustness, outperforming any individual model when 

evaluated from a whole system performance. 

 

Fig. 14. Weightage tabulation for HG based models used 

The final proposed ensemble model for wrist prediction 

is expressed as voting regressor equation where each base 

model contributes to the final prediction according to its 

performance derived weight. The equation is given by: - 

𝑌𝑉𝑅 − 𝐻𝐺 − 𝑤𝑟𝑖𝑠𝑡 =  (0.5163)𝑌𝐴𝑁𝑁 +  (0.2367)𝑌𝐴𝑁𝐹𝐼𝑆 
+  (0.2470)𝑌𝐹𝑢𝑧𝑧𝑦 

Where 𝑌𝑉𝑅 − 𝐻𝐺 − 𝑤𝑟𝑖𝑠𝑡 is the predicted output from voting 

regressor for wrist estimation, 𝑌𝐴𝑁𝑁 is the prediction from 

ANN model, 𝑌𝐴𝑁𝐹𝐼𝑆 is the prediction from ANFIS model and 

𝑌𝐹𝑢𝑧𝑧𝑦 is the prediction from fuzzy logic model. 

V. CONCLUSION 

This study investigated EMG-based prosthetic wrist 

control using an ensemble learning approach that combines 

ANN, ANFIS, and Fuzzy Logic models. A voting regressor 

was employed to integrate predictions, with weightings 

guided by model prediction performance which favors the 

base model with the lowest RMSE to enhance its reliability. 

Model performance was assessed using multiple metrics, 

including RMSE, %NRMSE, MAE, R², and p-values, 

providing a comprehensive evaluation across five contraction 

levels (20%, 40%, 60%, 80%, and 100% MVC). 

The ensemble method outperformed individual models at 

most MVC levels particularly 20%, 40%, 60%, and 100% 

offering improved predictive performance and more stable 

outputs. Only 80% of the MVC level favored a single model 

(ANN) over the ensemble, likely due to signal fluctuations. 

To ensure fair model comparison and derive the final weight 

configuration, the WSM from the MCDM framework was 

applied, enabling balanced evaluation across all performance 

criteria. 

Despite these strengths, the limitations are also being 

considered. Prediction performance decreased at higher 

contraction levels (80% and 100% MVC), due to muscle 

fatigue, increased signal noise, and overlapping motor unit 

activations. These factors pose a significant challenge for 

EMG-based control systems in high MVC cases. 

Additionally, while the ensemble model reduced the need for 
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PID tuning by achieving slight improvements in their RMSE 

value, the system’s robustness under dynamic real-world 

conditions remains to be validated. 

Practically, this study highlights the potential of weighted 

ensemble learning to improve EMG driven prosthetic control 

by adapting predictions to the physiological variability of 

users. However, future work should explore adaptive or 

context aware ensemble strategies capable of responding to 

changes in signal quality, particularly at higher MVC levels. 

Further investigations using real-time datasets, more diverse 

user groups, and comparisons with commercial prosthetic 

systems are recommended to strengthen the clinical relevance 

and applicability of the proposed approach. 
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