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Abstract—The integration of eye-gaze technology into 

robotic control systems has shown considerable promise in 

enhancing human–robot interaction, particularly for 

individuals with physical disabilities. This study investigates the 

influence of eye morphology and the use of corrective eyewear 

on the spatial accuracy of gaze-based robot control under static 

head pose conditions. Experiments were conducted using 

advanced eye-tracking systems and multiple machine learning 

algorithms—decision tree, support vector machine, 

discriminant analysis, naïve bayes, and K-nearest neighbor—on 

a participant pool with varied eye shapes and eyewear usage. 

The experimental design accounted for potential sources of bias, 

including lighting variability, participant fatigue, and 

calibration procedures. Statistical analyses revealed no 

significant differences in gaze estimation accuracy across eye 

shapes or eyewear status. However, a consistent pattern 

emerged: participants with non-monolid eye shapes achieved, 

on average, approximately 1% higher accuracy than those with 

monolid eye shapes—a difference that, while statistically 

insignificant, warrants further exploration. The findings suggest 

that gaze-based robotic control systems can operate reliably 

across diverse user groups and hold strong potential for use in 

assistive technologies targeting individuals with limited 

mobility, including those with severe motor impairments such 

as head paralysis. To further enhance the inclusiveness and 

robustness of such systems, future research should explore 

additional anatomical variations and environmental conditions 

that may influence gaze estimation accuracy. 

Keywords—Eye Shape; Static Head Pose; Gaze Estimation 

Algorithms; Robot Control; Human-Robot Interaction; Inclusive 

Design. 

I. INTRODUCTION 

The rapid advancement of robotic technology has 

significantly transformed various sectors, including 

healthcare, manufacturing, and education [1]–[4]. Robotics 

has become an integral part of modern industry, driving 

automation, efficiency, and precision in diverse  

applications [5]–[10]. One of the most promising innovations 

in this field is the integration of eye-gaze technology, which 

allows users to control robotic systems through their eye 

movements [11]–[16].  

The integration of eye-gaze technology into robotic 

control systems represents a transformative advancement in 

human-robot interaction, with significant implications for 

assistive technologies [17]–[22]. For individuals with severe 

physical disabilities, such as tetraplegia, amyotrophic lateral 

sclerosis (ALS), or cerebral palsy, conventional interaction 

modalities, such as joystick-based or speech-based control, 

are often infeasible or inadequate [23]–[27]. In such contexts, 

eye-gaze control offers a direct, intuitive, and non-invasive 

alternative that enables users to manipulate robotic devices 

and digital interfaces using only their eye movements. This 

capability not only promotes greater autonomy and quality of 

life but also holds potential for expanding access to 

education, employment, and social participation for 

individuals with mobility impairments. 

Eye gaze estimation, a core component of gaze-based 

robotic control, has garnered increasing attention in recent 

years [28]–[32]. This technology relies on sophisticated 

computer vision techniques and machine learning algorithms 

to track and interpret eye movements with high precision 

[33]–[35]. Over time, researchers have focused on refining 

gaze estimation techniques to overcome challenges such as 

variations in lighting conditions, head movements, and 

anatomical differences among users [36]–[37]. One critical 

research area within gaze estimation is its application in 

human-robot interaction (HRI), particularly in social 

robotics[38]–[44]. Studies have explored how robots can 

utilize gaze information to assess human attention, infer 

intentions, and facilitate seamless communication, thereby 

enhancing collaborative human-robot interactions [45]–[47]. 

By incorporating gaze-based control mechanisms into social 

robotics, researchers aim to develop robots that can respond 

more effectively to human behavior, particularly in service-

oriented environments, such as healthcare and customer 

assistance [48]–[54]. 

At the core of gaze-based control systems lies the task of 

accurately estimating the user’s gaze direction [55]–[59]. 

Contemporary eye-tracking technologies leverage a 

combination of computer vision techniques and machine 

learning algorithms to capture and interpret eye movements 

with high spatial and temporal resolution [60]–[65]. Over the 
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past decade, significant strides have been made in improving 

the robustness of gaze estimation under varying conditions, 

including head movements, lighting variations, and 

environmental noise [66]–[70]. 

Furthermore, the versatility of eye-tracking has been 

demonstrated across multiple domains beyond assistive 

technologies [71]–[75]. In social robotics, gaze information 

is employed to facilitate joint attention, infer human 

intentions, and improve the fluidity of human-robot 

communication [76]–[81]. Similarly, in virtual and 

augmented reality applications, gaze-tracking enables 

intuitive navigation, object interaction, and context-aware 

computing [82]–[84]. These diverse applications underscore 

the technological maturity and expanding relevance of gaze 

estimation systems. 

Despite these advances, several human-centered factors 

continue to pose challenges to the accuracy and inclusiveness 

of gaze-tracking technologies. One such critical factor is 

anatomical variability in eye morphology [85]–[88]. 

Differences in eyelid structure, palpebral fissure width, 

epicanthic folds, and scleral exposure have been shown to 

influence the performance of gaze estimation algorithms. For 

instance, individuals with monolid eyes—a common trait in 

East Asian populations—typically exhibit reduced sclera 

visibility and altered eye contours, potentially impairing 

feature extraction processes. Similarly, the use of corrective 

eyewear introduces optical distortions, reflections, and 

calibration difficulties that can further degrade tracking 

accuracy. 

While these challenges have been acknowledged in 

literature, several methodological limitations persist in prior 

studies. First, most investigations examining the impact of 

eye morphology or the use of eyewear on gaze estimation 

have employed small, homogeneous participant samples, 

often lacking balanced representation of monolid and non-

monolid eye shapes or varying eyewear types. Second, many 

studies have focused solely on static gaze estimation tasks, 

such as screen-based fixation or target selection, without 

extending evaluation to spatially oriented tasks relevant for 

robotic control. Third, prior work frequently relied on highly 

controlled laboratory environments, neglecting realistic 

variability in lighting, calibration drifts, or user fatigue—

factors that substantially affect real-world system 

performance [89]–[92]. Moreover, comparative analyses of 

multiple machine learning algorithms applied to anatomically 

diverse datasets remain scarce, limiting the understanding of 

how algorithmic choices interact with human variability. 

These methodological limitations not only constrain the 

generalizability of prior findings but also hamper the 

development of gaze-based control systems that are robust 

and inclusive across diverse user populations. The 

inconsistent evidence regarding the influence of eye shape 

and the use of eyewear on gaze estimation accuracy further 

reinforces the need for a systematic, comprehensive 

investigation. 

To address these gaps, it is essential to systematically 

evaluate how eye morphology and the use of corrective 

eyewear jointly influence spatial accuracy in robotic tasks. 

Studies must employ diversified participant samples, realistic 

task scenarios, and comparative algorithmic analyses to yield 

actionable insights for interface design and algorithm 

development. Leveraging machine learning classifiers, 

including decision tree, support vector machine, discriminant 

analysis, naïve bayes, and K-nearest neighbors classifiers, 

offers a practical approach to the empirical quantification of 

classification accuracy under the influence of varied human 

factors. These classifiers are particularly relevant due to their 

capability to handle heterogeneous feature spaces and to 

model non-linear relationships between gaze features and 

target locations, thus directly addressing the technical 

challenges posed by anatomical and optical variations. 

Based on prior literature and theoretical rationale, we 

hypothesized that (𝐻₀) there is no statistically significant 

difference in gaze estimation accuracy across users with 

different eye shapes or eyewear statuses; and that (𝐻₁) non-

monolid eye shapes and the absence of glasses will exhibit a 

marginally higher average accuracy in spatial gaze-based 

robot control tasks. To test these hypotheses, this study 

investigated the impact of eye morphology and the use of 

corrective glasses on the spatial accuracy of gaze-based robot 

control under a static head pose condition. Experiments were 

conducted using advanced eye-tracking systems and five 

machine learning algorithms, with a stratified participant 

pool balanced for eye shape and eyewear status. 

By empirically evaluating these factors through a 

rigorously designed and methodologically robust study, this 

research contributes to advancing human-centered design in 

gaze-controlled robotics. The findings are expected to 

provide actionable insights for improving the inclusivity, 

adaptability, and performance of assistive technologies 

across diverse user populations and deployment scenarios. 

In this study, we evaluated the impact of eye shape and 

the use of glasses on the accuracy of gaze-based robot control 

under a static head pose condition. A total of five machine 

learning algorithms were tested on gaze data from 

participants with varying anatomical characteristics and 

visual aid statuses. The findings reveal that gaze estimation 

accuracy remained consistent across different groups, 

underscoring the feasibility of inclusive gaze-driven control 

systems. These results contribute to the development of 

assistive technologies that are robust across diverse user 

profiles. 

The research contribution of this paper takes the form of 

an investigation of how eye shape variations and the use of 

eyeglasses influence the accuracy of eye gaze estimation 

algorithms in a human-cyber physical system interface and 

the development of an evaluation framework that 

systematically analyzes these effects using real-user data. 

II. RESEARCH DESIGN 

The experiment was conducted with 24 research 

participants. Twelve participants wore glasses, and the rest 

did not. Twelve were male and the rest were female, twelve 

had monolid eyes and the rest had non-monolid eyes. All 

participants were healthy adults aged between 19 and 21 

years. They had normal or corrected-to-normal vision and no 

known ocular or neurological impairments. They were 

recruited and tested in a random sequence to minimize 
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potential temporal confounds, such as time-of-day effects or 

equipment drifts. Specifically, data collection did not follow 

a sequential participant ID order (1-1 to 8-3), but participants 

were scheduled randomly across available sessions. The 

combination of research participants can be seen in Fig. 1. 

The first research participant in scenario 1 was identified as 

ID 1-1, the second research participant in scenario 1 was 

identified as ID 1-2, and so on until scenario 8, in which case 

the third research participant was identified as ID 8-3. 

 

Fig. 1. The scenario of research participants 

The experiment setup was arranged as shown in Fig. 2. 

The research participants sit on chairs facing the target in the 

form of a storage rack. The storage rack had nine lockers, 

with locker number 1 located in the center of the storage rack. 

In front of an operator was placed an Omron HVC-P camera 

module. The position of the eyes, the position of the camera 

and the position of rack 1 were parallel, namely at the y-axis 

position = 0 and the z-axis position = 0. In three-dimensional 

coordinates, as depicted in Fig 3, the nasal bridge was at 

(0,0,0) the camera was at (-50,0,0), and the center of rack 1 

was at (-100,0,0) in cm. A description of the Euler angles is 

provided in Fig. 4. 

 

Fig. 2. Experiment setup 

Z axis

Y axis

X axis

Roll 
angle γ 

Pitch 
angle β  

Yaw 
angle α   

Nasal bridge 
(0,0,0)

Omron HVC-P 
camera position 

(-50,0,0)

Center position of 
storage rack (-100,0,0)

 

Fig. 3. Experiment setup coordinate 

 

Fig. 4. Description of Euler angle 

All experiments were conducted in a controlled indoor 

laboratory environment. Ambient lighting conditions were 

standardized using consistent artificial illumination and a 

neutral-colored background. To ensure lighting stability, 

ambient illuminance was continuously monitored using a 

calibrated lux meter. For each participant session, 60 

illuminance measurements were recorded prior to data 

collection, immediately after each participant changeover, to 

confirm consistent lighting conditions across sessions. The 

recorded illuminance remained highly stable, with a mean of 

approximately 429 lux and minimal variability across all 

sessions. Fig. 5 shows the interval plot of lighting conditions 

measured across participants, indicating narrow 95% 

confidence intervals. 

 

Fig. 5. Interval plot of lighting conditions (measured in lux) across all 

participants 
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In this study, the yaw and pitch angles obtained from the 

Omron HVC-P camera module were transformed into 

Cartesian coordinates using Euler angle transformations. To 

ensure the robustness of this process and minimize potential 

inaccuracies typically associated with Euler angles, several 

strategies were applied. 

First, the participants’ head movements were constrained 

through ergonomic positioning and explicit instructions to 

maintain a stable head posture. The Omron camera was 

aligned at eye level and at a fixed distance, minimizing 

extraneous head pose variations. Second, a zero-roll angle 

assumption was adopted in the Euler transformation model. 

This simplification, justified by experimental constraints and 

observed participant behaviours, effectively eliminated the 

risk of gimbal lock and reduced computational complexity in 

the transformation matrix. Third, a moving average filter 

(window size = three samples) was applied to smooth the raw 

yaw and pitch angles prior to coordinate transformations. 

This step reduced high-frequency noise while preserving 

gaze trajectory fidelity. 

In experimental scenario 1-8, the participants were asked 

to direct their gaze to several lockers available in front of 

them without moving their necks (static head pose). The 

experimental procedure followed a structured flow, as 

illustrated in Fig. 6. The process began with the participants 

setting their position while ensuring they maintained a static 

head pose. To prevent an unintended movement, they were 

instructed to avoid moving their necks throughout the 

experiment.  

Participant setting 
position

Start

Participants avoid 
moving their necks 

Participants look at 
the nth locker for 5 

seconds

Participants close 
their eyes for 1 

second

m = m+1 

Cycle mth

m > 3 ?

yes

n = 1

n = n+1

n > 9 ?
no

m = 1

no

Data logger output 
file.log

Data cleaning 
output file .csv

Eular angle 
configuration and 

rotation matrix

Data correction base 
on face position

Data labeling

Build a machine 
learning model

Model output 
file.joblib

The prediction 
accuracy of each 

model

Finish

Testing model 
output 

visualization 
testing .png

yes

 

Fig. 6. Data collection and processing flowchart 

The experiment followed a cyclic approach, where the 

cycle count (m) was initially set to 1. Within each cycle, the 

participants directed their gaze at the nth locker for five 

seconds, allowing the system to record their eye movement 

data. After focusing on a locker, the participants closed their 

eyes for one second to reset their gaze before proceeding to 

the next locker. The locker index (n) was incremented, and 

this process continued until n > 9, indicating that all lockers 

were observed. Once a cycle was completed, m was 

increased, and the experiment continued until each 

participant completed three full cycles (m > 3). 

The raw gaze data that had been collected underwent a 

series of processing steps to ensure accuracy and usability. 

First, the system generated a data logger output file (.log), 

which contained the recorded eye movement data. This raw 

data was then refined through a data cleaning process, 

converting it into a structured .csv file and filtering out any 

inconsistencies. Next, Euler angle configuration and rotation 

matrix calculations were performed to standardize the gaze 

angles and transform them into spatial coordinates. 

Additionally, data extraction based on facial position ensured 

that only valid gaze data was retained. A data labelling step 

followed, assigning corresponding labels to each gaze 

position to create a structured dataset for machine learning 

applications. 

Once the data was all processed, a machine learning 

model was built to predict gaze positions based on the 

collected information. The trained model produced an output 

file (.joblib) for further analysis and implementation. To 

assess its performance, an output visualization file 

(testing.png) was generated, displaying the predicted versus 

actual gaze coordinates. Finally, the prediction accuracy of 

each model was evaluated and reported, marking the 

conclusion of the experiment. This systematic approach 

ensured a robust and structured method for collecting, 

processing, and analyzing gaze-based control data, 

contributing to the development of a reliable eye-tracking 

system for robotic applications. 

The machine learning models in this study were 

implemented using Python 3.10 with the Scikit-learn library. 

The dataset was split into training and testing subsets with an 

80:20 ratio to evaluate the model performance. Specific 

hyperparameters were used for each algorithm to ensure fair 

and reproducible comparisons. The decision tree classifier 

employed the Gini impurity criterion without maximum 

depth constraints. The support vector machine (SVM) 

classifier used a radial basis function (RBF) kernel with  

C = 1.0 and gamma set to 'scale'. The discriminant analysis 

classifier was performed using the default parameters for 

linear classification. The Naïve Bayes model used a Gaussian 

distribution with a smoothing parameter of 1e-9. Meanwhile, 

the K-nearest neighbors (KNN) algorithm applied Euclidean 

distance as the metric (p = 2) with k set to 3 and with uniform 

weights. These configurations were chosen based on 

common practices in gaze estimation classification tasks and 

kept consistent across trials. To further ensure model 

robustness and performance consistency, the experiments 

were repeated multiple times with randomized data splits, and 

the average accuracies and inference times were recorded and 

analyzed. 
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In addition to the core methodology, several practical 

challenges were observed during the experiment. Some 

participants reported mild visual fatigue after multiple gaze 

fixation cycles, especially during the third replication, which 

could have influenced the focus and data consistency. This 

issue was addressed by providing short rest intervals between 

sessions to maintain participant comfort and data quality. 

Moreover, intermittent calibration drifts and signal instability 

occurred, particularly among participants wearing corrective 

glasses. These disruptions were often caused by glare or 

reflection from lenses, occasionally affecting the Omron 

HVC-P camera’s ability to track gaze direction precisely. To 

counteract this, the system was recalibrated in real time 

whenever signal degradation was detected. While these 

issues were managed effectively and did not significantly 

impact the integrity of the dataset, they do represent 

important considerations for future implementations, 

especially in more dynamic or less-controlled environments. 

III. RESULT 

In general, from the three replications carried out, the eye 

gaze data of the participant ID 1-1 after coordinate processing 

and cleaning shows that certain targets tended to gather in 

certain areas. The scatter diagram of the target ID 1-1 shows 

the consistency of the image capture results from good eye 

gaze. The presence of the "Null" category, which is indicated 

by an open circle, indicates unclassified data. This is the 

boundary used as a sign that the target had moved. The target 

scatter diagram is shown in Fig. 7. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Scatter diagram target ID 1-1, (a) replication 1, (b) replication 2, and 

(c) replication 3 

In addition, gaze samples that were labelled as  

“Null”—defined as gaze points that did not correspond to any 

of the nine predefined target lockers—were systematically 

excluded from both training and testing datasets. These Null 

instances typically arose due to blinks, transient gaze drifts, 

or brief tracking loss, and were treated as non-informative 

noise rather than classification errors. The exclusion of such 

data ensured that only reliable and clearly classified gaze 

samples were retained for model development and 

evaluation, minimizing the risk of skewed accuracy metrics. 

To ensure the consistency and robustness of the gaze data 

across multiple replications, we further analyzed the 

variability of accuracy values within the participants. 

Specifically, for each machine learning algorithm and 

participant, we calculated the mean accuracy, standard 

deviation, and 95% confidence interval across the three 

replications. This variability analysis provides insights into 

the reliability of the system over repeated trials. Across all 

participants and algorithms, the average standard deviation of 

accuracy was 5.41% (±2.58%), indicating stable performance 

with relatively low intra-subject variation. 

Data from ID 1-1 was then fed into several ML 

algorithms, producing accuracy as in Table I. The confusion 

matrix of each ML algorithm for replication 1 of ID 1-1 can 

be seen in Fig. 8. As shown Fig. 8(a) two testing data points 

that were wrongly grouped by the decision tree algorithm. 

The error was that label 1 was interpreted as label 7. This 

could happen because labels 1 and 7 were adjacent to another. 

Likewise, label 4 was erroneously interpreted as label 5. Both 

error patterns were similar. That is to say the correct shelf 

shifted to the bottom. In Fig. 8(c) the linear discriminant 

analysis (LDA) algorithm successfully grouped all data 

correctly because all numbers were diagonal. This shows that 

there was no misclassification, where each predicted label 

matched the actual label. This success reflects the 

effectiveness of the LDA model in distinguishing between 

different classes of data. With all data correctly classified, 

this model showed good ability in capturing the 

characteristics of the features that distinguished each label. 

In Fig. 9, the SVM (a), Discriminant Analysis (b), Naïve 

Bayes (c), and KNN (d) algorithms showed the boundaries of 
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the prediction data position between shelves. The round dots 

are the data positions selected as training data, and the square 

dots are the data positions selected as test data. 

The summary of the accuracy of the experimental results 

for each scenario can be seen in Table II. The study applied a 

total of eight scenarios, each of which involved three 

participants, and three replications were carried out for each 

participant. As a result, a total of 72 replications were 

produced from various combinations of research participants 

and scenarios. The data was to be used to test the 

hypothesized effects eye shape and eyeglass use on machine 

learning accuracy. 

TABLE I.  ACCURACY OF SEVERAL ML ALGORITHMS ID 1-1 

Algorithms 
Accuracy of replication - 

1 2 3 

Decision Tree 90% 82% 90% 

Support Vector Machine (SVM) 90% 86% 95% 

Discriminant Analysis 100% 86% 95% 

Naive Bayes 95% 86% 100% 

K-Nearest Neighbors (KNN) 90% 91% 95% 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 8. Confusion matrix for replication 1 ID 1-1, (a) Decision Tree, (b) 
Support Vector Machine, (c) Discriminant Analysis, (d) Naïve Bayes, and 

(e) K-Nearest Neighbour 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Visualization of the classification results of each ML algorithm 

replication 1 ID 1-1, (a) Support Vector Machine, (b) Discriminant Analysis, 

(c) Naïve Bayes, and (d) K-Nearest Neighbour 
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TABLE II.  ACCURACY OF SEVERAL ML ALGORITHMS 

No. ID Rep DT SVM LDA NB KNN 

1 1-1 1 0.900 0.900 1.000 0.950 0.900 

2 1-1 2 0.818 0.864 0.864 0.864 0.909 

3 1-1 3 0.900 0.950 0.950 1.000 0.950 

4 1-2 1 0.952 0.905 0.857 0.952 0.857 

5 1-2 2 0.750 0.950 0.950 0.800 0.800 

6 1-2 3 0.952 0.905 0.905 0.905 0.857 

7 1-3 1 1.000 0.955 0.955 0.864 0.773 

8 1-3 2 1.000 1.000 1.000 0.952 1.000 

9 1-3 3 0.952 0.952 1.000 1.000 1.000 

10 2-1 1 0.905 0.857 0.857 0.952 0.810 

11 2-1 2 0.864 0.818 0.909 0.909 0.909 

12 2-1 3 1.000 0.864 0.955 0.864 0.909 

13 2-2 1 0.952 1.000 1.000 1.000 1.000 

14 2-2 2 1.000 0.857 0.905 0.905 0.905 

15 2-2 3 0.857 0.857 0.857 0.905 0.905 

16 2-3 1 0.857 0.810 0.810 0.762 0.810 

17 2-3 2 0.952 0.952 0.952 0.952 0.952 

18 2-3 3 0.905 0.905 0.857 0.810 0.905 

19 3-1 1 0.952 0.857 0.952 0.905 0.857 

20 3-1 2 0.810 0.762 0.905 1.000 0.857 

21 3-1 3 0.818 0.909 0.864 0.909 0.909 

22 3-2 1 0.955 0.955 0.955 0.955 0.909 

23 3-2 2 0.952 0.905 0.857 0.952 0.952 

24 3-2 3 0.905 0.952 0.952 0.952 1.000 

25 3-3 1 0.905 0.905 0.905 0.905 0.857 

26 3-3 2 0.864 0.909 0.909 0.864 0.909 

27 3-3 3 1.000 0.955 1.000 1.000 0.955 

28 4-1 1 0.857 0.857 0.857 0.810 0.857 

29 4-1 2 0.905 0.857 0.905 0.762 0.810 

30 4-1 3 0.857 0.857 0.857 0.905 0.905 

31 4-2 1 1.000 1.000 1.000 1.000 1.000 

32 4-2 2 0.952 0.952 1.000 0.952 1.000 

33 4-2 3 0.909 0.955 0.955 0.909 0.864 

34 4-3 1 0.905 0.857 0.857 0.952 0.857 

35 4-3 2 0.952 0.905 0.952 0.952 0.952 

36 4-3 3 0.952 0.952 0.952 0.905 0.905 

37 5-1 1 0.955 0.955 0.955 1.000 0.864 

38 5-1 2 0.857 0.810 0.857 0.810 0.810 

39 5-1 3 0.955 0.955 0.955 0.955 0.864 

40 5-2 1 0.905 1.000 1.000 1.000 1.000 

41 5-2 2 0.950 0.950 0.900 0.900 0.950 

42 5-2 3 1.000 0.909 0.955 0.864 0.909 

43 5-3 1 0.952 1.000 0.952 1.000 1.000 

44 5-3 2 0.955 0.909 0.864 0.864 0.864 

45 5-3 3 0.905 0.905 0.952 0.905 0.905 

46 6-1 1 0.952 0.857 0.905 0.857 0.952 

47 6-1 2 0.952 0.857 1.000 0.905 0.952 

48 6-1 3 0.952 1.000 0.857 0.810 0.905 

49 6-2 1 0.900 0.850 0.900 0.850 0.850 

50 6-2 2 0.850 0.800 0.850 0.850 0.900 

51 6-2 3 0.955 0.909 0.864 0.909 0.818 

52 6-3 1 0.909 0.909 0.864 0.864 0.864 

53 6-3 2 1.000 1.000 1.000 1.000 0.952 

54 6-3 3 0.905 0.905 1.000 0.952 1.000 

55 7-1 1 1.000 0.955 1.000 0.955 0.955 

56 7-1 2 1.000 0.952 0.857 0.952 0.810 

57 7-1 3 0.952 0.905 0.952 0.905 0.857 

58 7-2 1 0.905 0.952 0.952 0.952 0.952 

59 7-2 2 1.000 0.955 0.955 1.000 0.909 

60 7-2 3 0.905 0.905 0.952 0.905 0.857 

61 7-3 1 0.900 0.850 0.950 0.750 0.800 

62 7-3 2 1.000 0.857 0.952 0.857 0.810 

63 7-3 3 0.950 0.950 0.900 0.900 0.850 

64 8-1 1 0.857 0.810 0.810 0.762 0.810 

65 8-1 2 0.909 0.818 0.818 0.864 0.909 

66 8-1 3 0.952 0.857 0.905 0.857 0.857 

67 8-2 1 0.955 0.955 0.955 0.955 0.955 

68 8-2 2 1.000 0.952 0.952 0.952 0.905 

69 8-2 3 0.857 0.905 0.857 0.905 0.905 

70 8-3 1 0.857 0.952 0.857 0.810 0.810 

71 8-3 2 0.810 0.714 0.857 0.810 0.762 

72 8-3 3 1.000 0.900 0.950 0.900 0.900 

 

 

IV. DISCUSSION 

Statistical testing was conducted to determine the 

relationship between eye shape and the accuracy of each 

machine learning (ML) model. This was done to obtain a fair 

comparison and increase confidence in the conclusions of the 

tests conducted. Eye shapes were categorized into two 

groups: monolid and non-monolid. The monolid shape used 

data from participants in scenarios 3, 4, 7, and 8. The non-

monolid shape used data from participants in  

scenarios 1, 2, 5, and 6. 

An ANOVA test was performed on the monolid and non-

monolid eye shapes regarding the accuracy of the ML 

Decision Tree algorithm with the following hypotheses: 

Null hypothesis  : All means are equal 

Alternative hypothesis  : Not all means are equal 

Significance level  : α = 0.05 

As shown in Table III, the p-value was significantly above 

the significance level, leading to the decision not to reject the 

null hypothesis. The conclusion of this test demonstrates that 

the average accuracy values of the Decision Tree ML 

algorithm for the monolid and non-monolid eye shapes were 

the same. However, the non-monolid eye shape had a higher 

average accuracy compared to the monolid eye shape.  

TABLE III.  ANALYSIS OF VARIANCE OF EYE SHAPE ACCURACY AGAINST 

THE DECISION TREE ML ALGORITHM 

Source DF Adj SS Adj MS F-Value P-Value 

Eye shape 1 0.000062 0.000062 0.02 0.893 

Error 70 0.235040 0.003358   

Total 71 0.235102    
 

The accuracy values with a 95% confidence interval can 

be seen in Fig. 10(a). Although the non-monolid eye shape 

had a higher average accuracy than did the monolid eye 

shape, individually, the accuracy values for the monolid eye 

shape reached 100% a total of eight times, compared to the 

six times reached by the non-monolid eye shape. The 

individual value plot is shown in Fig. 10(b), and the box plot 

is presented in Fig. 10(c). 

Employing the same hypothesis testing procedure as 

utilized for the Decision Tree algorithm, the ANOVA results 

achieved for other machine learning algorithms are presented 

in Table IV. As indicated in Table IV, the p-value was 

considerably higher than the significance level, resulting in 

the conclusion not to reject the null hypothesis. This test 

concluded that the average accuracy values of the Support 

Vector Machine, Discriminant Analysis, Naïve Bayes, and 

K-Nearest Neighbors algorithms concerning the monolid and 

non-monolid eye shapes were equivalent. 

For the support vector machine (SVM) algorithm, 

although the ANOVA results do not reveal any significant 

difference in average accuracy, the non-monolid eye shape 

had a higher average accuracy compared to the monolid eye 

shape. The accuracy values with a 95% confidence interval 

can be seen in Fig. 11(a). The non-monolid eye shape 

achieved a higher average accuracy than the monolid eye 

shape. Individually, the accuracy value for the monolid eye 
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shape reached 100% only once, while the non-monolid eye 

shape achieved 100% a total of six times. The Individual 

Value Plot is shown in Fig. 11(b), and the box plot is 

presented in Fig. 11(c). 

 

(a) 

 

(b) 

 

(c) 

Fig. 10. (a) Interval plot 95% CI of decision tree vs eye shape, (b) Individual 

value plot of decision tree vs eye shape, and (c) boxplot of decision tree 

TABLE IV.  ANALYSIS OF VARIANCE OF EYE SHAPE ACCURACY AGAINST 

THE SVM, DA, NB AND KNN ML ALGORITHM 

Source DF Adj SS Adj MS F-Value P-Value 

Support Vector Machine (SVM) 

Eye shape 1 0.000062 0.000062 0.02 0.893 

Error 70 0.235040 0.003358   

Total 71 0.235102    

Discriminant Analysis (DA) 

Eye shape 1 0.000062 0.000062 0.02 0.893 

Error 70 0.235040 0.003358   

Total 71 0.235102    

Naïve Bayes (NB) 

Eye shape 1 0.000062 0.000062 0.02 0.893 

Error 70 0.235040 0.003358   

Total 71 0.235102    

K-Nearest Neighbor (KNN) 

Eye shape 1 0.000062 0.000062 0.02 0.893 

Error 70 0.235040 0.003358   

Total 71 0.235102    

 

(a) 

 

(b) 

 

(c) 

Fig. 11. (a) Interval plot 95% CI of SVM vs eye shape, (b) Individual value 

plot of SVM vs eye shape, and (c) Boxplot of SVM 

For the discriminant analysis (LDA) algorithm, although 

the ANOVA results do not reveal any significant difference 

in average accuracy, the non-monolid eye shape has a higher 

average accuracy compared to the monolid eye shape. The 

accuracy values with a 95% confidence interval can be seen 

in Fig. 12(a). The non-monolid eye shape achieved a higher 

average accuracy than the monolid eye shape. Individually, 

the accuracy value for the monolid eye shape reached 100% 

only four times, while the non-monolid eye shape achieved 

100% a total of eight times. The individual value  

plot is shown in Fig. 12(b), and the box plot is presented in 

Fig. 12(c). 

For the naïve bayes (NB) algorithm, although the 

ANOVA results do not reveal any significant difference in 

average accuracy, the non-monolid eye shape had a higher 

average accuracy compared to the monolid eye shape. The 

accuracy values with a 95% confidence interval can be seen 

in Fig. 13(a). The non-monolid eye shape achieved a higher 
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average accuracy than the monolid eye shape. Individually, 

the accuracy value for the monolid eye shape reached 100% 

only four times, while the non-monolid eye shape achieved 

100% a total of eight times. The individual value  

plot is shown in Fig. 13(b), and the box plot is presented in 

Fig. 13(c). 

For the K-Nearest Neighbors (KNN) algorithm, although 

the ANOVA results do not reveal any significant difference 

in average accuracy, the non-monolid eye shape hax a higher 

average accuracy compared to the monolid eye shape. The 

accuracy values with a 95% confidence interval can be seen 

in Fig. 14(a). The non-monolid eye shape achieved a higher 

average accuracy than the monolid eye shape. Individually, 

the accuracy value for the monolid eye shape reached 100% 

only three times, while the non-monolid eye shape achieved 

100% a total of six times. The Individual Value Plot is shown 

in Fig. 14(b), and the Box Plot is presented in Fig. 14(c). 

 

(a) 

 

(b) 

 

(c) 

Fig. 12. (a) Interval plot 95% CI of LDA vs eye shape, (b) Individual value 

plot of LDA vs eye shape, and (c) Boxplot of LDA 

 

(a) 

 

(b) 

 

(c) 

Fig. 13. (a) Interval plot 95% CI of NB vs eye shape, (b) Individual value 

plot of NB vs eye shape, and (c) Boxplot of NB 

Based on the statistical testing of each machine learning 

algorithm against the monolid and non-monolid eye shapes, 

the accuracy of the developed system was uniform for each 

eye shape. This indicates that the system could be applied to 

individuals with both monolid and non-monolid eye shapes 

without any significant changes in accuracy. 

Although there were no statistically significant 

differences in average accuracy, the data indicates that the 

average accuracy produced by participants with non-monolid 

eye shapes was higher than that produced by those with 

monolid eye shapes. This superior accuracy was observed 

across all the five machine learning algorithms used, leading 

to the conclusion that, on average, the non-monolid eye shape 

was definitively better than the monolid eye shape. 

Next, we specifically tested the relationship between the 

use of glasses among research participants and the accuracy 

values. The testing was conducted for each machine learning 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2014 

 

Engelbert Harsandi Erik Suryadarma, The Effect of Eye Shape and the Use of Corrective Glasses on the Spatial Accuracy of 

Eye-Gaze-Based Robot Control with a Static Head Pose 

algorithm. This was done to obtain a fair comparison and to 

enhance confidence in the conclusions drawn from the tests. 

 

(a) 

 

(b) 

 

(c) 

Fig. 14. (a) Interval plot 95% CI of KNN vs eye shape, (b) Individual value 

plot of KNN vs eye shape, and (c) Boxplot of KNN 

Statistical testing was conducted to determine the 

relationship between glasses use and the accuracy of each 

machine learning (ML) model. Glasses use was categorized 

into two groups: glasses wearing and glasses non-wearing. 

The glasses wearing criteria used data from participants in 

scenarios 5, 6, 7, and 8. Meanwhile, the glasses non-wearing 

criteria used data from participants in scenarios 1, 2, 3, and 4. 

An ANOVA test was performed on the glasses and non-

glasses regarding the accuracy of the All-ML algorithm with 

the following hypotheses: 

Null hypothesis  : All means are equal 

Alternative hypothesis  : Not all means are equal 

Significance level  : α = 0.05 

The ANOVA test results for other machine learning 

algorithms are presented in Table V. 

TABLE V.  ANALYSIS OF VARIANCE OF GLASSES USED ACCURACY 

AGAINST THE DT, SVM, DA, NB AND KNN ML ALGORITHM 

Source DF Adj SS Adj MS F-Value P-Value 

Decision Tree (DT) 

Eye 
shape 

1 0.005856 0.005856 1.79 0.185 

Error 70 0.229246 0.003275   

Total 71 0.235102    

Support Vector Machine (SVM) 

Eye 
shape 

1 0.000007 0.000007 0.00 0.967 

Error 70 0.260912 0.003727   

Total 71 0.260918    

Discriminant Analysis (DA) 

Eye 

shape 
1 0.000336 0.000336 0.11 0.743 

Error 70 0.217307 0.003104   

Total 71 0.217643    

Naïve Bayes (NB) 

Eye 
shape 

1 0.005903 0.005903 1.32 0.254 

Error 70 0.312281 0.004461   

Total 71 0.318184    

K-Nearest Neighbor (KNN) 

Eye 

shape 
1 0.003996 0.003996 1.01 0.318 

Error 70 0.276034 0.003943   

Total 71 0.280029    
 

Employing the same hypothesis testing procedure as 

utilized for eye shape, the ANOVA results achieved for all 

machine learning algorithms (glasses use) are presented in 

Table V. The data in Table V indicates that the p-value was 

considerably higher than the significance level, resulting in 

the conclusion not to reject the null hypothesis. This test 

concluded that the average accuracy values of the decision 

tree, support vector machine, discriminant analysis, naïve 

bayes, and K-nearest neighbors algorithms concerning the 

use of glasses were equivalent. 

The statistical analyses using ANOVA indicate no 

significant differences in gaze estimation accuracy between 

groups based on eye shape (monolid vs. non-monolid) and 

glasses use (glasses wearing vs. glasses non-wearing) across 

all the five machine learning algorithms. While these results 

support the robustness and generalizability of the developed 

system, it is important to acknowledge the methodological 

assumptions and practical implications associated with these 

analyses. 

ANOVA relies on assumptions of normality of residuals 

and homogeneity of variances. Although the number of 

participants per group was modest (n = 12), each participant 

contributed a substantial number of gaze samples (324 data 

points per participant, derived from nine target positions × 12 

samples per target × three replications), resulting in a total 

dataset size that was sufficiently large for robust statistical 

analysis and model training. Furthermore, the balanced 

design across groups (equal distribution of eye shape and 

glasses status) helped to mitigate potential violations of these 

assumptions. Prior literature suggests that ANOVA remains 

robust to moderate deviations from normality and variance 

homogeneity under such conditions. 
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Beyond statistical significance, it is also valuable to 

consider the practical significance of observed trends in the 

data. Although no statistically significant differences were 

detected, participants with a non-monolid eye shape 

consistently achieved a higher average accuracy across all 

five algorithms compared to those with monolid eyes. 

Similarly, participants without glasses generally exhibited 

marginally higher performance than glasses-wearers, 

particularly when using the Naïve Bayes and K-Nearest 

Neighbors (KNN) algorithms. These patterns, while not 

conclusive, highlight potential areas for further investigation 

and system refinement. 

The lower average accuracy observed for glasses-wearers 

when using Naïve Bayes and KNN models may be 

attributable to the inherent sensitivities of these algorithms. 

The Naïve Bayes model assumes feature independence and 

may be adversely affected by the non-linear distortions 

introduced by eyeglass lenses, such as refraction artifacts or 

specular reflections. Meanwhile, the KNN model relies on 

local neighborhood density for classification, which can be 

disrupted by small positional shifts or the inconsistencies 

caused by lens reflections and calibration noise. These factors 

may have introduced additional variability in gaze feature 

distributions, reducing model performance. 

Potential confounding factors, such as lighting 

reflections, lens distortions, and calibration drifts, were 

systematically controlled in our experimental design. All 

experiments were conducted under standardized lighting 

conditions (an average of 429 lux with minimal variability), 

and a nine-point calibration was performed for each 

participant prior to data collection. The use of a fixed camera 

position and a static head pose further minimized extraneous 

variability. Nevertheless, we recognized that residual effects 

of these factors—particularly subtle reflections and minor 

misalignments in glasses-wearers—may have contributed to 

the observed trends and warrant further exploration in future 

studies. 

These findings suggest that while the developed gaze-

based control system demonstrated statistically consistent 

performance across diverse user characteristics, continued 

refinement to enhance robustness against anatomical and 

optical variability is warranted, especially for users wearing 

corrective eyewear. 

Our findings complement and extend prior research in 

gaze estimation [41]–[71] by demonstrating that spatial 

control accuracy remained consistent across eye shape and 

eyewear groups when evaluated using multiple machine 

learning classifiers under controlled conditions. Previous 

studies have primarily focused on enhancing robustness 

under dynamic lighting or head pose conditions [52]–[56] 

and explored applications in assistive and collaborative 

robotics [12]–[14], [57]–[59], yet few have systematically 

assessed how anatomical differences influence classifier 

performance. For example, [63]–[66] noted reduced scleral 

visibility in participants with monolid eyes as a challenge for 

gaze detection, and [67]–[71] reported accuracy issues due to 

lens reflections in glasses-wearers. Unlike these studies, our 

results show no statistically significant difference in accuracy 

across these user traits, indicating the feasibility of an 

inclusive system. The contribution of this research takes the 

form of a structured, multi-classifier evaluation that isolates 

human anatomical factors—eye shape and eyewear—as 

experimental variables, thereby validating the robustness of 

traditional ML methods for inclusive, real-time robot control. 

This provides a new benchmark for designing accessible 

human-robot interaction systems. 

If we look at the average accuracy for each ML algorithm, 

there were interesting observations to note. The ML Decision 

Tree classifier showed that using glasses would improve the 

average accuracy. As seen in Fig. 15(a), there was a 

noticeable difference in the average accuracy between 

participants who wore glasses and those who did not. The ML 

SVM classifier indicated that the accuracy was relatively the 

same whether glasses were used or not, as shown in Fig. 

15(b). This was also reflected in the p-value of the ML SVM 

classifier, which was 0.967 (almost equal to 1). Meanwhile, 

the ML Naïve Bayes, KNN, and LDA algorithms showed that 

the average accuracy for those using glasses was lower than 

for those not using glasses. As seen in Figs. 15(c), 15(d), and 

15(e), there was a noticeable difference in the average 

accuracy between participants who wore glasses and those 

who did not. 

Although the statistical analyses did not reveal significant 

differences in accuracy between participants with different 

eye shapes or eyewear statuses, subtle trends were 

consistently observed across all machine learning models. 

Specifically, participants with non-monolid eyes and non-

glasses wearers tended to achieve a marginally higher 

accuracy on average. One possible explanation for this trend 

is that non-monolid eyes generally exhibit greater scleral 

exposure, which can enhance contrast and visibility of the eye 

features used in gaze estimation. This facilitates more 

accurate feature detection and reduces ambiguity in 

coordinate mapping. Similarly, participants without glasses 

may have experienced fewer optical artifacts, such as lens 

reflections or light distortions, which are known to interfere 

with infrared- or image-based gaze tracking systems. These 

factors, while not strong enough to produce statistically 

significant effects in this study, may nevertheless influence 

real-world system robustness. 

The practical implications of these findings suggest that 

gaze-based control systems should account for subtle 

variations in user anatomy and eyewear status to maximize 

inclusiveness. Adaptive calibration methods or model fine-

tuning based on user profiles may enhance performance 

across diverse populations. Furthermore, the fact that non-

monolid and glasses-wearing participants still achieved 

comparable performance despite these potential limitations 

supports the feasibility of deploying a single unified system 

across user groups, with minimal performance degradation. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 15. 95% Confidence interval plot (a) of Decision Tree vs. glasses use, (b) SVM vs. glasses use, (c) Naïve Bayes vs. glasses use, (d) KNN vs. glasses use, 

and (e) Discriminant Analysis vs. glasses used 

This study offers several strengths that support the 

validity of the findings. The experimental protocol was 

carefully designed with controlled lighting conditions  

(~429 lux), standardized calibration procedures, and repeated 

trials to ensure consistency and minimize confounding 

variables. The use of five different machine learning 

algorithms provided a comprehensive evaluation of classifier 

behavior under the influence of varying user characteristics. 

However, the study also has limitations. The experiment was 

conducted in a static and controlled indoor environment, 

which did not fully reflect real-world conditions where 

lighting variation, head movements, and background noise 

can influence system performance. 

To extend the applicability of this work, future studies 

may investigate additional anatomical features, such as pupil 

size, eyelid curvature, or eye openness. Environmental 

factors, including ambient lighting conditions and dynamic 

head movements, should also be examined to assess their 

impact on system accuracy and usability. Incorporating 

multimodal data—such as head pose or blink frequency—

may further improve system adaptability, enabling more 

robust human-robot interactions in uncontrolled settings. 

V. CONCLUSION 

This study has investigated the impact of eye shape and 

glasses use on the accuracy of robot control via eye-gaze 
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technology. The findings indicate that, despite minor 

variations, the accuracy of gaze-based control remains 

statistically consistent across different eye morphologies and 

irrespective of the presence or absence of glasses. However, 

it is important to acknowledge certain limitations and 

practical trends observed in the study. 

Although statistical analyses revealed no significant 

differences, participants with a non-monolid eye shape 

consistently achieved a marginally higher average accuracy 

across all five machine learning algorithms compared to 

those with monolid eyes. Similarly, glasses-wearers 

exhibited a slightly lower average accuracy, particularly 

when using naïve bayes and K-nearest neighbors algorithms. 

These trends, while not statistically conclusive, suggest 

potential areas for further refinement and optimization of 

gaze-based systems. 

Potential confounding factors, such as lighting 

reflections, lens distortions, and calibration drifts, were 

carefully controlled through standardized illumination, 

consistent calibration procedures, and fixed experimental 

geometry. Nevertheless, the residual effects of these factors 

may have subtly influenced the results and should be 

considered in future investigations. 

These findings contribute to the development of more 

inclusive and universally applicable eye-gaze-based robotic 

control systems. By confirming that existing eye-tracking and 

machine learning models can perform consistently across 

diverse user characteristics, this research underscores the 

viability of gaze-based control systems in real-world 

applications, particularly for individuals with physical 

disabilities or those requiring hands-free robotic interactions. 

While the study demonstrates the robustness of gaze-

based robot control systems across diverse eye shapes and 

eyewear conditions, it is important to acknowledge certain 

limitations. The experiment was conducted in a controlled 

indoor setting with stable lighting and under static head pose 

constraints. These controlled conditions, while valuable for 

isolating key variables, may not fully reflect the complexity 

of real-world environments. Therefore, care should be taken 

when generalizing the findings beyond the scope of the 

present study. 

Despite these limitations, the results highlight the 

significant societal value of inclusive gaze-based control 

systems. In the realm of assistive technologies, such systems 

offer a non-invasive and accessible means of interaction for 

individuals with motor impairments, potentially enhancing 

autonomy and quality of life. In industrial and collaborative 

robotics, the ability to accommodate diverse anatomical 

features and visual aids wearing supports broader workforce 

integration and safer human-robot cooperation. These 

insights reaffirm the importance of designing adaptive and 

inclusive human-machine interfaces in alignment with 

Industry 5.0 principles. 

A promising direction for future research is the 

incorporation of dynamic head pose estimation, which can 

improve robustness and user experience by allowing natural 

head movements. However, it is important to recognize that 

implementing dynamic head pose tracking introduces 

additional challenges, including increased computational 

complexity, higher real-time processing demands, and the 

need for algorithms that can compensate for motion-related 

artifacts. In addition to head pose integration, further research 

should explore enhancements of algorithm adaptability to 

individual anatomical differences, such as variations in eye 

morphology and eyelid structure, and improvements of 

system robustness under diverse environmental conditions, 

including lighting variability and potential sensor occlusions. 

Addressing these challenges will contribute to the development 

of more accurate, adaptable, and user-friendly gaze-based 

robotic control systems suitable for practical deployment in 

dynamic and heterogeneous user environments. 
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