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Abstract—The magnetic levitation system (MLS) poses a 

substantial control challenge owing to its intrinsic instability 

and pronounced nonlinear dynamics. The implementation of 

robust control methodologies is imperative to guarantee stable 

operational performance, particularly in environments 

characterized by external disturbances and parametric 

uncertainties. This study investigates the development of a PID-

like control strategy for a magnetic levitation system (MLS), 

employing WNN architecture. The parameters of the proposed 

controller are optimized by employing Fick's Law Algorithm 

(FLA). The optimization process utilizes a cost function that 

comprises a weighted sum of the Integral Time-weighted Square 

Error (ITSE), Integral Time-weighted Absolute Error (ITAE), 

maximum overshoot (MO), and minimum undershoot (MU). 

This multi-objective cost function enables a comprehensive 

evaluation of the controller's performance across various 

criteria. A square wave reference signal is employed to conduct 

the optimization process, presenting a challenging test case for 

control system performance due to its abrupt transitions. The 

efficacy of the proposed controller is evaluated through a 

comparative analysis with a conventional PID controller. 

Comparative simulations are conducted employing three 

distinct reference trajectories: step, sinusoidal, and square 

waves. These diverse trajectories provide a comprehensive 

evaluation of the controller's performance. To assess the 

robustness of the proposed controller, simulations are 

conducted within the MATLAB/Simulink environment, 

subjecting the MLS model to both external disturbances and 

parametric uncertainties. The developed controller exhibits 

superior performance and robustness characteristics in 

comparison to the conventional PID controller. It effectively 

attenuates the detrimental impact of both parametric 

uncertainties and external disturbances, while concurrently 

maintaining a high degree of performance accuracy in terms of 

overshoot, steady-state error, and energy consumption. 

Keywords—Wavelet Neural Network; Magnetic Levitation 

System; Fick's Law Algorithm; External Disturbances; Parameter 

Uncertainties. 

I. INTRODUCTION 

 Magnetic Levitation System is a single input, a single 

output (SISO) nonlinear system that is extremely unstable 

[1]-[6]. The fundamental idea behind a magnetic levitation 

device is to use current-generated electromagnetic forces to 

counteract the force of gravity on the levitated object [7][8]. 

The nonlinear differential equation of the third order 

represents the MLS mathematical model constructed from the 

state variables: the vertical position of the levitated object, the 

coil current, and the object's velocity [9]. MLS control's 

primary goal is to provide robust tracking and anti-

interference capabilities to the system. The benefits of MLS 

include reduced energy use, no friction, and more. Numerous 

applications in engineering and education have made use of 

it, including magnetic levitation wind turbines [10][11], 

magnetic levitation trains [12]-[14], magnetic levitation in 

medicine [15], and magnetic levitation bearings [16]-[18]. 

For engineering applications, controller design is crucial, and 

MLS control is a significant and alluring area of control study 

[19][20].  

 Many control algorithms exist in the literature such as 

PID controller [21][22], fractional-order PID controller [23], 

sliding mode controller [24], model predictive controller 

[25]-[29], passivity-based adaptive controller [30][31], 

vision-based controller [32][33]. The adaptive fuzzy 

controller was implemented in [34]-[36]. Nonetheless, 

adjusting the fuzzy controls' parameters, such as the number 

of rules and the kind of membership functions is challenging. 

The robust H-infinity controller has been applied for MLS 

controlling [37]-[39]. However, the intricacy of the design 

necessitates sophisticated mathematics and meticulous 

adjustment of weighting factors. The sliding mode controller 

has been used to control MLS [40][41]. However, the 

chattering effect brought on by discontinuous control is the 

main disadvantage of the SMC. The backstepping controller 

is proposed in [42][43] for controlling the MLS. Whereas, 

each stage of the backstepping control procedure depends on 

the designer's ability to provide a valid Lyapunov function 

that can be used to build a control rule. In [44]-[46] the 

feedback linearization-based controller is used to control the 

MLS. Nevertheless, any disturbances that affect the MLS can 

largely affect how it reacts when utilizing the feedback 

linearization control.  

 Recently, Artificial Neural Network (ANN)-based 

intelligent controllers were proposed to avoid the 

abovementioned problems of the MLS [47]-[49]. 

Accordingly, because of their adaptive capabilities and robust 

self-learning, ANNs can enhance the performance of MLS 

trajectory tracking [50]. For instance, a radial basis function 

neural network (RBFNN)-based model predictive controller 

has outpaced the traditional PID controller in terms of 

trajectory tracking performance of MLS [51][52]. An 

adaptive sliding mode controller (SMC) based on an RBFNN 

surpassed the conventional SMC approach regarding 

resilience and convergence speed of MLS trajectory tracking 

[53][54]. To reduce the MLS's trajectory tracking error, a 
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backpropagation neural network (BPNN)-based feedback 

compensation and fuzzy controllers were suggested [55][56]. 

 The wavelet neural network-based controllers perform 

better than the aforementioned neural networks on trajectory-

tracking tasks which require precise, robust, and 

instantaneous control of MLS [57][58]. The controller based 

on WNN is superior due to its robustness to noise, faster 

learning, improved nonlinear approximation, and localized 

time-frequency representation. These advantages result in 

superior performance, increased dependability, and reduced 

processing needs compared to traditional neural networks. 

 This study presents a PID-like controller using a modified 

ridge wavelet neural network for trajectory tracking of MLS 

while ensuring a particular control performance against 

model uncertainties and external disturbances. The 

straightforwardness and dependability of PID control, 

together with the flexibility and nonlinear approximation 

abilities of WNN are merged for MLS trajectory tracking. 

Improved performance, robustness, and efficacy are the 

outcomes of this synergy, which makes it especially useful 

for systems requiring great accuracy and flexibility. The 

optimization of the MLS cost function, a combination of 

ITSE, ITAE, MO, and MU, utilizes the population-based 

FLA [59][60] to determine the optimal controller parameters. 

FLA has been used in this work because of many properties, 

including its flexibility, ease of implementation, capacity to 

handle nonlinear optimization issues, and ability to steer clear 

of suboptimal areas. The proposed controller's performance 

is contrasted with the conventional PID for step, sine, and 

square reference trajectories. Simulations utilizing MATLAB 

R2023a are conducted to evaluate the efficacy of the 

proposed controller.  

 This paper's primary contributions involve : 

• The gains of the WNN-based controller are optimized 

utilizing a state-of-the-art optimization algorithm known 

as FLA. 

• A multi-objective cost function, incorporating 

performance indices such as ITSE, ITAE, MO, and MU, 

is employed to achieve an optimal transient response and 

minimize steady-state error.  

• Parametric uncertainties and external disturbances are 

incorporated into the system model to rigorously assess 

and validate the effectiveness of the proposed WNN-

based controller. 

 This paper's remaining sections are organized as follows:  

The magnetic levitation system's modeling is shown in 

Section II. The design and analysis of the suggested controller 

are presented in Sections III and IV. Optimization of the 

WNN parameters is presented in Section V. A detailed 

discussion and demonstration of the simulation's outcomes 

are provided in Section VI. The paper's conclusions are 

presented in Section VII, which also identifies areas for 

further research. 

II. MAGNETIC LEVITATION SYSTEM MODEL 

The MLS model utilized in this study is derived from the 

work presented in [61]. Fig. 1 presents a schematic 

representation of an MLS. The system employs an 

electromagnet to adjust the position of a magnetic ball 

through precise control of the current, which is governed by 

feedback derived from the ball's position. An optical sensor 

is integrated into the system to ensure accurate detection of 

the ball's position. The dynamic behavior of the ball is 

described by its equation of motion, which is expressed as 

follows: 

𝑚
𝑑2𝑦

𝑑𝑡2
= −𝑘

𝑑𝑦

𝑑𝑡
+𝑚𝑔 + 𝐹(𝑦, 𝑖)  (1) 

in which 𝐹(𝑦, 𝑖) represents the electromagnetic force 

produced by the electromagnet, with 𝑖 denoting the electric 

current flowing through it. 𝑦 ≥ 0 denotes the vertical 

(downward) displacement of the ball, measured from a 

reference point, where 𝑦 = 0 corresponds to the position of 

the ball adjacent to the coil. 𝑔 represents the acceleration due 

to gravity, and 𝑘 corresponds to the coefficient of viscous 

friction. The inductance of the electromagnet is influenced by 

the ball's position and can be mathematically modeled as 

follows: 

𝐿(𝑦) = 𝐿1 +
𝐿0

1+𝑦/𝑎
  (2) 

where 𝐿1, 𝐿0, and 𝑎 are defined as positive constants. 

Given 𝐸(𝑦, 𝑖) =
1

2
𝐿(𝑦)𝑖2, which represents the energy stored 

in the electromagnet, the force 𝐹(𝑦, 𝑖) can be expressed as: 

𝐹(𝑦, 𝑖) =
∂𝐸

∂𝑦
= −

𝐿0𝑖
2

2𝑎(1+𝑦/𝑎)2
  (3) 

When the coil's electric circuit is powered by a voltage source 

with voltage 𝑣, Kirchhoff's voltage law establishes the 

relationship 𝑣 = 𝜙̇ + 𝑅𝑖, where 𝑅 represents the series 

resistance of the circuit, and 𝜙 = 𝐿(𝑦)𝑖 corresponds to the 

magnetic flux linkage. By defining the state variables 𝑥1 =

𝑦, 𝑥2 =
𝑑𝑦

𝑑𝑡
 and 𝑥3 = 𝑖, and considering the control input 𝑢 =

𝑣, the state-space representation of the MLS can be derived 

as follows: 

 

Fig. 1. Schematic diagram of a magnetic levitation system 

𝑥̇1 = 𝑥2

𝑥̇2 = 𝑔 −
𝑘

𝑚
𝑥2 −

𝐿0𝑎𝑥3
2

2𝑚(𝑎+𝑥1)
2

𝑥̇3 =
1

𝐿(𝑥1)
[−𝑅𝑥3 +

𝐿0𝑎𝑥2𝑥3

(𝑎+𝑥1)
2 + 𝑢]

  (4) 
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Table I provides a list of the nominal values for the 

parameters of the MLS. 

TABLE I.  MLS PARAMETERS 

Parameter Value 

𝑘 0.001 𝑁/𝑚/𝑠𝑒𝑐 

𝑚 0.1 𝑘𝑔 

𝑔 9.81 𝑚/𝑠𝑒𝑐2 

𝐿0 0.01 𝐻 

𝐿1 0.02 𝐻 

𝑎 0.05 𝑚 

𝑅 1 Ω 

[𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] [0, 15] 

III. CONTROLLER DESIGN 

The control strategy utilized in this paper leverages the 

wavelet neural network architecture, owing to its synergistic 

integration of wavelet theory and artificial neural network 

principles. The WNN effectively integrates the localization 

properties of wavelet transforms with the learning and 

generalization capabilities of artificial neural networks. This 

integration results in enhanced efficiency in identification 

and control tasks due to the WNN's inherent local 

specialization. Furthermore, the WNN exhibits a superior rate 

of parameter convergence compared to ANNs, achieving 

convergence within a reduced number of iterations. 

The architecture of the WNN is presented in Fig. 2, which 

presents a Multiple-Input, Single-output (MISO) 

configuration. This architecture aligns favorably with a PID-

like control structure for the MLS.  

 

Fig. 2. Schematic representation of a MISO WNN architecture 

Fig. 2 illustrates the three-layered structure of the WNN, 

comprising an input layer, a hidden layer, and an output layer. 

The number of input nodes 𝑁 is dictated by the specific 

application. In the context of a PID-like controller, the input 

layer comprises four nodes: one for the error signal, one for 

its integral, one for its derivative, and one for the bias. The 

function of this layer is to transmit these input signals to the 

subsequent layers. 

The hidden layer, also referred to as the mother wavelet 

layer, comprises multiple nodes, which are commonly 

referred to as wavelons. These nodes employ a family of 

wavelet functions as activation functions, which are derived 

from a mother wavelet by translation and dilation. The 

Mexican hat wavelet function is selected as the mother 

wavelet due to its smoothness, simplicity, zero-mean 

property, and computational efficiency. Its mathematical 

definition is as follows: 

𝜓(𝑥) = (1 − 𝑥2)𝑒𝑥𝑝⁡(−0.5𝑥2) (5) 

The wavelet function associated with each node 𝜓(𝑧𝑗) is 

derived from the mother wavelet function through the 

following transformation: 

𝜓(𝑧𝑗) = (1 − 𝑧𝑗
2)𝑒𝑥𝑝⁡(−0.5𝑧𝑗

2) (6) 

with 𝑧𝑗 = 𝑑𝑗 (∑  𝑁
𝑖=1 𝑤𝑥𝑖𝑗

𝑥𝑖) − 𝑡𝑗. This definition of 𝑧𝑗 is 

referred to as a modified ridge network. In this formulation, 

𝑡𝑗 and 𝑑𝑗 represent the translation and dilation factors of the 

wavelets, respectively. The number of nodes in the hidden 

layer 𝑀 is contingent upon the complexity of the nonlinearity 

inherent in the application. Various methodologies exist for 

determining the optimal number of nodes in this layer. The 

methodology employed in this study to determine the optimal 

number of nodes in the hidden layer involves an iterative 

process. Initially, a single node is utilized, and the tracking 

error performance of the system is evaluated. Subsequently, 

the number of nodes is incrementally increased until 

satisfactory tracking error performance is attained. It is 

noteworthy that optimal tracking error performance was 

achieved with a single hidden node. Increasing the number of 

hidden nodes did not yield further improvements in tracking 

error performance but rather introduced additional 

complexity. 

The output layer, comprising a single node, generates a 

linear combination of the weighted outputs from both the 

hidden and input nodes. This output, representing the control 

signal, can be expressed as follows: 

𝑢(𝑥) =∑  

𝑀

𝑗=1

𝑤𝜓𝑗
𝜓(𝑧𝑗) +∑  

𝑁

𝑖=1

𝑤𝑥𝑖
𝑥𝑖 + 𝑏 (7) 

Fig. 3 presents a comprehensive depiction of the closed-

loop control system for the MLS, incorporating the proposed 

WNN-based controller. 

 

Fig. 3. Block diagram of WNN-Based MLS control 

IV. STABILITY ANALYSIS 

The augmented dynamic model of the MLS, 

incorporating both matched external disturbances 𝑑 and 

parametric uncertainties, is represented by the following 

equation (8). 
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𝑥̇ = 𝑓(𝑥, 𝑢)

𝑥̇1 = 𝑥2

𝑥̇2 = 𝑔 −
𝑘

𝑚
𝑥2 −

𝐿0𝑎𝑥3
2

2𝑚(𝑎 + 𝑥1)
2

𝑥̇3 =
1

𝐿(𝑥1)
[−𝑅𝑥3 +

𝐿0𝑎𝑥2𝑥3
(𝑎 + 𝑥1)

2
+ 𝑢 + 𝑑]

𝑥̇4 = 𝑒1

 (8) 

an augmented state, denoted as 𝑥4, is introduced to emulate 

the integral action of the PID-like WNN-based controller. 

The parameters 𝑘,𝑚, 𝑎, 𝐿0, 𝐿1, and 𝑅 are represented as the 

sum of their nominal values and corresponding perturbations. 

For instance, the mass 𝑚 is expressed as 𝑚⁡ = ⁡𝑚0 ⁡+ ⁡𝛿𝑚, 

where 𝑚0⁡represents the nominal mass and 𝛿𝑚 denotes the 

perturbation. The error signal 𝑒1 is calculated as the deviation 

of the system's current state 𝑥1 from the reference trajectory 

𝑥𝑟 , expressed as 𝑒1 = 𝑥1 − 𝑥𝑟 .  

The control signal, utilizing the proposed controller with 

a single hidden node, is formulated as: 

𝑢 = 𝑤𝜓1
𝜓(𝑧1) + 𝑤𝑒1𝑒1 + 𝑤𝑒2𝑒2 + 𝑤𝑒̅3 𝑒̅3 + 𝑏 (9) 

where 𝑒2 = 𝑥2 − 𝑥̇𝑟, 𝑒̅3 = 𝑥4 and 𝑧1 = 𝑑1(𝑤𝑒11𝑒1 +

𝑤𝑒21𝑒2 + 𝑤𝑒̅31 𝑒̅3) − 𝑡1. To determine the steady-state values 

of the system states, denoted as 𝑥𝑠𝑠, the state derivatives 𝑥̇ are 

set to zero. This operation yields a system of algebraic 

equations that can be subsequently solved to obtain the 

steady-state solution. Under steady-state conditions, with a 

step-like reference signal applied 𝑥1 = 𝑥𝑟 and assuming the 

absence of external disturbances 𝑑 = 0 and the utilization of 

nominal values for uncertain parameters, the system achieves 

the following steady-state conditions: 

𝑥1𝑠𝑠 = 𝑥𝑟
𝑥2𝑠𝑠 = 0

𝑥3𝑠𝑠 = (2𝑚0𝑔(𝑎0 + 𝑥𝑟)
2 𝐿00𝑎0⁄ )

1/2

𝑅𝑥3𝑠𝑠 = 𝑤𝜓1
𝜓1(𝑑1(𝑤𝑒̅3𝑥4𝑠𝑠) − 𝑡1) + +𝑤𝑒3̅𝑥4𝑠𝑠 + 𝑏

 (10) 

for the specific numerical values provided in Tables I and III 

and under the proposed controller, where 𝑥𝑟 = 0.05, the 

steady-state values are determined as follows: 𝑥𝑠𝑠 =
[0.05, 0, 6.264, −0.00485]𝑇. 

To analyze the stability characteristics of the system 

under the proposed controller, the system (4) is linearized 

around the steady-state operating point 𝑥𝑠𝑠 assuming the 

absence of external disturbances 𝑑⁡ = ⁡0 and utilizing the 

nominal values of the uncertain parameters. The resulting 

linearized system dynamics can be expressed as: 

𝑒̇ = 𝐴𝑒 (11) 

where

𝐴 =
∂𝑓

∂𝑥
|
𝑥=𝑥𝑠𝑠

= [

0 1 0 0
196.1884 −0.01 −3.1320 0
3.79 ∙ 105 3.00 ∙ 104 −40 8.18 ∙ 105

1 0 0 0

], 

and 𝑒 = 𝑥 − 𝑥𝑠𝑠. The eigenvalues of A are listed in Table II. 

 

TABLE II.  MLS PARAMETERS 

Eigenvalue Value 

𝑒𝑖𝑔1 −13.6979⁡ + ⁡305.4084𝑖 
𝑒𝑖𝑔2 −13.6979 − ⁡305.4084𝑖 
𝑒𝑖𝑔3 −9.8216 

𝑒𝑖𝑔4 −2.7925 

 

Given that all eigenvalues of the matrix A possess 

negative real parts, it can be concluded that the linearized 

system exhibits exponential stability under the proposed 

controller. This implies that the error signal 𝑒 converges to 

zero exponentially as time approaches infinity, 𝑙𝑖𝑚
𝑡→∞

⁡𝑒 = 0, 

signifying that the state variable 𝑥1 tracks the reference signal 

𝑥ᵣ exponentially. 

V. WNN PARAMETERS OPTIMIZATION 

As evident from Section III, the number of parameters 

requiring optimization is substantial. Furthermore, this 

number increases rapidly with an increase in the number of 

nodes in the input and hidden layers. Therefore, it is essential 

to employ an optimization method that guarantees the 

convergence of the parameters. When it comes to optimizing 

the parameters of a WNN, there are broadly two categories of 

methods: gradient-based and gradient-free. Gradient-based 

methods are susceptible to becoming trapped in local minima, 

which hinders the WNN parameters from converging to the 

optimal solution. Gradient-free methods, including 

evolutionary algorithms, offer an alternative that does not 

require gradient calculations. The parameters in Equation (7) 

are adjusted through the optimization process to minimize the 

cost function. Parameters are initialized randomly, and the 

lower and upper bounds for the parameters are determined 

based on empirical observations or through a process of trial 

and error. 

A. Cost Function 

The solution generated by the optimization algorithm is 

evaluated using a cost function. The cost function is typically 

a function of performance metrics that are to be optimized. 

For minimization problems, lower cost function values 

correspond to more optimal solutions. Numerous cost 

functions are employed in control system optimization. Some 

commonly used cost functions quantify tracking error, such 

as the Integral of Squared Error (ISE), Integral of Absolute 

Error (IAE), ITSE, ITAE, and Mean Squared Error (MSE). 

Other cost functions incorporate measures of transient 

response characteristics, such as overshoot and undershoot. 

Each of these cost functions influences specific 

characteristics of the transient response and steady-state 

error. The selected cost function is described below: 

𝐽𝐹𝐿𝐴(𝑤) = 𝐼𝑇𝑆𝐸 + 𝐼𝑇𝐴𝐸 + 10 ∙ 𝑀𝑂 + 3 ∙ 𝑀𝑈 (12) 

where the 𝑤⁡is the vector of parameters to be optimized, 

𝐼𝑇𝑆𝐸 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
𝑇

0
, and 𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡

𝑇

0
. This cost 

function (12) is selected to combine the advantages of 

individual metrics, resulting in an improved transient 

response with minimal steady-state error. Specifically, it was 

designed to penalize overshoot and undershoot, reduce 

transient and steady-state errors, achieve faster settling times, 
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and minimize oscillations, particularly when training the 

MLS to track a challenging square wave reference. 

B. Fick’s Law Algorithm 

The FLA is a metaheuristic optimization algorithm that 

leverages Fick's law of diffusion. This law describes the 

inherent tendency of particles, undergoing random thermal 

motion, to migrate from regions of high concentration to 

regions of low concentration. The FLA operates through 

three distinct stages: the diffusion phase, the equilibrium 

phase, and the steady-state phase. The FLA is regarded as an 

efficient and robust optimization algorithm due to its 

capability to achieve a well-balanced interaction among these 

three phases. 

The primary stages of the FLA algorithm encompass the 

following key steps. 

1. Initialization of the optimization parameters. 

2. Clustering the population into two equal groups. 

3. Transfer function. 

4. Updating molecule position. 

For a detailed explanation of the FLA, please refer to [59].   

VI. SIMULATION RESULTS AND ANALYSIS 

In this section, the simulation model of the proposed 

WNN-based controller is constructed using MATLAB 

R2023a Simulink to evaluate and confirm its efficacy. The 

ball’s initial position is set to 0⁡𝑚 (neutral position), and the 

MLS has an operational range of 0.1⁡𝑚. To ensure high 

precision and accuracy in the simulation results, a sampling 

time of 1 millisecond is employed. The performance of the 

proposed WNN-based controller is carefully assessed by 

contrasting it with a conventional PID controller, which 

assists as a benchmark for assessment. Three distinct 

reference trajectories (step, sinusoidal, and square waves) are 

utilized in the comparative simulations to provide a 

comprehensive assessment. To test the controller's rigidity 

under varying conditions and to represent a wide range of 

dynamic behaviors, these trajectories are chosen. 

Furthermore, to validate the flexibility and robustness of the 

proposed WNN-based controller, simulations are run while 

purposely exposing the MLS model to parameter 

uncertainties with 60% in 𝑚 and 20% in 𝑘, 𝑅, 𝑎, 𝐿0, 𝐿1 in 

addition to large external disturbances, 𝑑 = 1 ∙ sin(𝑡). Under 

challenging and realistic working scenarios, this method 

guarantees that the controller's performance is established. To 

ensure a fair comparison, the gains of both controllers were 

optimized using the FLA with the same cost function. The 

optimization process was conducted under nominal 

conditions for the MLS parameters, with no external 

disturbances present. A square wave was employed as the 

reference signal due to its challenging nature for tracking, 

making it a rigorous test for the controllers.   Table III presents 

the FLA parameter values used for both the WNN-based and 

PID controllers. 

Table IV presents the optimized gains for both the WNN-

based controller and the PID controller. 

 

TABLE III.  VALUES OF KEY PARAMETERS FOR FLA 

Parameter 

Value 

WNN-

controller 

PID 

controller 

Number of Optimization 

Variables 
10 3 

Population Size 50 50 

Maximum Iterations 2 2 

Number of runs 1 1 

TABLE IV.  OPTIMIZED GAINS FOR WNN-BASED AND PID CONTROLLERS, 

INCLUDING LOWER AND UPPER BOUNDS USED IN THE FLA OPTIMIZATION. 

Optimal gain Value Lower and upper bounds 

𝑤𝜓1
 19.7619 [0 100] 

𝑤𝑒11 50.5947 [0 100] 

𝑤𝑒21
 41.0184 [0 100] 

𝑤𝑒31
 33.2628 [0 100] 

𝑑1 −4.5374 [−50 50] 
𝑡1 27.5739 [−50 50] 
𝑤𝑒1 9490.1114 [0 10000] 

𝑤𝑒2 750.2516 [0 10000] 

𝑤𝑒3 20461.3188 [0 100000] 

𝑏 100 [0 100] 
𝑘𝑝 8886.1994 [0 10000] 

𝑘𝑖 7041.6060 [0 10000] 
𝑘𝑑 561.3999 [0 10000] 

 

A. Square Signal 

By utilizing square wave as a reference signal, the 

tracking performance of the conventional PID controller and 

proposed WNN-based controller for the MLS is assessed. 

The reference signal was applied for 25 seconds. The square 

wave equation is expressed as: 

𝑥𝑟 = 0.05 + 0.01𝑠𝑖𝑔𝑛(𝑠𝑖𝑛(0.5𝑡)) (13) 

The low-frequency excitation signal is used because the 

system's dynamics ensure that the assessment is consistent 

with the MLS's working characteristics. 

Under, nominal conditions, the existence of parameter 

uncertainties, and external disturbances, Fig. 4 demonstrate 

the tracking performance of the WNN-based and PID 

controllers. With its carefully selected parameters, the WNN-

based controller achieves accurate tracking of the reference 

trajectory with a small overshoot, very small steady-state 

error, and settling time of 1.39 seconds as shown in Fig. 4 

(left). On the other hand, as shown in Fig. 4 (right), 

significantly longer settling times and larger overshoots are 

observed when utilizing the PID controller due to 

unacceptable handling of the parameter uncertainties and 

external disturbances. 

Fig. 5 illustrates a comparison of the controller action of 

the WNN-based and PID controllers. The proposed WNN-

based controller delivers a lower value of control action than 

the PID controller. This demonstrates that the WNN-based 

controller is more efficient in terms of energy consumption. 

This energy efficiency is kept both without and with 

parameter uncertainties and external disturbances, stressing 

the WNN-based controller's superior performance and 

robustness. The results highlight the WNN-based controller’s 

ability to bring dependable and efficient control, even under 

challenging conditions.  
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The numerical values for overshoot, undershoot, and 

settling time pertaining to the WNN-based and PID 

controllers are detailed in Table V. Furthermore, the table 

includes the integral of squared error (ISE) and the integral 

of squared control input (ISU). The data presented in this 

table unequivocally demonstrates the energy efficiency of the 

WNN-based controller. 

B. Sine Signal 

A sine wave is used as the reference trajectory for the ball 

position of the MLS to assess the tracking performance of the 

control system. Explicitly, this reference signal is defined as: 

𝑥𝑟 = 0.05 + 0.01(𝑠𝑖𝑛(0.5𝑡)) (14)  

To test the tracking abilities of the system, the reference 

signal is applied for 25 seconds, to guarantee a smooth and 

reliable trajectory. This arrangement permits an inclusive 

valuation of the controller's capability to track periodic and 

dynamic reference motions, which is demonstrative of real-

world operational situations. A valuable intuition into the 

performance of the system under sinusoidal reference inputs 

is provided by the results, stressing its ability to sustain 

accurate tracking. 

Comparative tracking performance of the PID controller 

against the proposed WNN-based controller under nominal, 

parameter uncertainties, and external disturbances are 

illustrated in Fig. 6.  This figure highlights the robustness and 

superiority of the proposed WNN-based controller in 

handling parametric uncertainties and external disturbances. 

Specifically, parameter uncertainties and external 

disturbances have a significant impact on the sinusoidal 

response of the PID controller, resulting in unacceptable 

tracking performance. However, the proposed WNN-based 

controller successfully maintains accurate tracking without 

degradation in performance while managing these 

uncertainties. 

Furthermore, Fig. 7 illustrates that the proposed WNN-

based controller provides a lower value for control action 

compared to the PID controller. In other words, the proposed 

WNN-based controller is more effective in terms of energy 

consumption than the PID controller, both in the absence and 

presence of parameter uncertainties and external 

disturbances. These Benefits make the WNN-based 

controller a very efficient and consistent control approach for 

the MLS, particularly in uncertain and dynamic operational 

environments. 

The superiority of the proposed controller, regarding 

overshoot, settling time, and energy efficiency, is clearly 

supported by the numerical performance indices in Table V. 

  

Fig. 4. MLS response to a square wave reference signal with WNN-based and PID controllers, showing the effects of parameter perturbations and external 

disturbance 

  

Fig. 5. Control action of WNN-based and PID controllers for square wave tracking, showing saturation limits between 0 and 15 
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Fig. 6. MLS response to a square sine reference signal with WNN-based and PID controllers, showing the effects of parameter perturbations and external 

disturbance

  

Fig. 7. Control action of WNN-based and PID controllers for sine wave tracking, showing saturation limits between 0 and 15 

TABLE V.  EVALUATION OF OPTIMIZED WNN-BASED AND PID CONTROLLER PERFORMANCE UNDER VARIOUS CONDITIONS. 

Controller 
Reference 

signal 

Parameter and external disturbance 

variations 

Settling 

time (sec.) 

Min undershoot or 

Max overshoot % 
ISE ISU 

WNN-based Square 

Nominal parameters, d=0 1.39 8.00 0.0003769 1031.58 

Min. perturbation of all parameters, d=sin(t) 1.39 8.28 0.0003726 360.59 

Max. perturbation of all parameters., d=sin(t) 1.39 7.33 0.0003700 1973.50 

PID Square 

Nominal parameters, d=0 5.43 7.25 0.0002870 1044.99 

Min. perturbation of all parameters, d=sin(t) 5.43 58.22 0.0003898 367.93 

Max. perturbation of all parameters., d=sin(t) 5.43 19.17 0.0002941 1992.51 

WNN-based Sine 

Nominal parameters, d=0 2.00 5.47 0.0001587 1000.82 

Min. perturbation of all parameters, d=sin(t) 2.00 5.71 0.0002221 338.94 

Max. perturbation of all parameters., d=sin(t) 2.00 4.79 0.0001969 1938.44 

PID Sine 

Nominal parameters, d=0 5.00 6.86 0.0001552 1005.88 

Min. perturbation of all parameters, d=sin(t) 5.00 6.73 0.0001631 342.05 

Max. perturbation of all parameters., d=sin(t) 5.00 6.35 0.0001468 1948.83 

WNN-based Step 

Nominal parameters, d=0 2.00 6.38 0.0002098 994.09 

Min. perturbation of all parameters, d=sin(t) 2.00 6.70 0.0002212 336.91 

Max. perturbation of all parameters., d=sin(t) 2.00 5.70 0.0001960 1930.47 

PID Step 

Nominal parameters, d=0 6.00 7.16 0.0001538 1000.72 

Min. perturbation of all parameters, d=sin(t) 6.00 7.08 0.0001617 339.95 

Max. perturbation of all parameters., d=sin(t) 6.00 7.04 0.0001453 1940.68 
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C. Step Signal 

The MLS model is exposed to an input scenario where it 

accepts the reference step input. Explicitly, the reference step 

inputs are defined as: 

𝑥𝑟 = 0.05 (15) 

To assess the capability of the system to track the desired 

ball position, the step input is applied simultaneously over a 

simulation period of 10 seconds. The results of this 

simulation deliver a valuable vision of the behavior of the 

system and its ability to attain accurate control of the ball 

position under such circumstances. 

The tracking performance of the conventional PID 

controller is compared with that of the proposed WNN-based 

controller as shown in Fig. 8. The comparison is run without 

and with MLS parameter uncertainties and external 

disturbances. It can be noticed from Fig. 8 that while both the 

PID and proposed WNN-based controllers reveal some 

ability to handle external disturbances and parametric 

uncertainties, they struggle to control the overshoot, which 

exceeds 10% in all cases. However, the settling time for the 

PID controller is more than twice that of the proposed WNN-

based controller. 

Furthermore, Fig. 9 illustrates the control action for both 

the PID and proposed WNN-based controllers. The proposed 

WNN-based controller delivers a lesser value of control 

action. This implies that the proposed controller is less energy 

consumption than the PID controller, particularly under 

situations of large external disturbances and parametric 

uncertainties. 

Table V's numerical performance indices conclusively 

prove the efficacy of the proposed controller in terms of 

overshoot, settling time, and energy efficiency 

  

Fig. 8. MLS response to a step reference signal with WNN-based and PID controllers, showing the effects of parameter perturbations and external disturbance 

  

Fig. 9. Control action of WNN-based and PID controllers for step tracking, showing saturation limits between 0 and 15
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VII. CONCLUSION 

This work presented the design of a nonlinear controller 

based on a wavelet neural network. The controller gains were 

optimized using the FLA algorithm, resulting in enhanced 

transient response and minimal steady-state error. The 

proposed controller exhibited excellent transient response 

characteristics and demonstrated robustness in the face of 

external disturbances and parameter uncertainties. It 

effectively rejected a significant external disturbance, 𝑑 = 1 ∙
sin(𝑡), and maintained stability and excellent performance 

despite a 60% uncertainty in the ball mass and 20% 

uncertainty in other system parameters. To evaluate its 

performance, the proposed controller was compared to a 

conventional PID controller using a set of three reference 

trajectories: step, sinusoidal, and square waves. Simulation 

results demonstrated that the proposed controller exhibited 

superior transient response characteristics compared to the 

PID controller in terms of overshoot, steady-state error, and 

energy consumption, even under conditions of external 

disturbances and the parameter uncertainties described 

above. A promising future direction involves the 

experimental implementation and evaluation of the proposed 

controller on a real-world MLS. 
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