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Abstract—Obstacle avoidance in multi-agent systems is a 

critical area of research driven by advancements in autonomous 

technology and artificial intelligence. This review examines 

various approaches to path planning, formation control, and 

communication architectures, focusing on their effectiveness in 

static and dynamic environments. The research contribution is 

a comprehensive analysis of current techniques based on a 

structured selection process evaluating peer-reviewed studies 

through computational efficiency, real-time adaptivity, and 

scalability. The findings highlight the strengths and limitations 

of classical methods, such as the Improved Artificial Potential 

Field (IAPF), and modern techniques like Reinforcement 

Learning (RL) and Model Predictive Control (MPC). 

Comparative analysis reveals that while these approaches 

improve adaptivity, they also introduce challenges such as high 

computational loads, difficulties in large-scale multi-agent 

coordination, and sensitivity of parameter tuning. Additionally, 

existing formation control strategies depend highly on stable 

inter-agent communication, making them vulnerable to delays 

and failures in decentralized networks. This review identifies 

key research gaps and suggests future directions, including 

hybrid RL-MPC formation control, adaptive path planning 

algorithms, and scalable communication protocols to enhance 

multi-agent system performance in real-world applications. 

Keywords—Multi-Agent Drone Systems; Dynamic Obstacle 

Avoidance; Adaptive Path Planning Algorithms; Real-Time 

Formation Control; Scalable Communication Protocols. 

I. INTRODUCTION  

In recent years, studies of multi-agent coordination have 

been increasing [1], including studies on multi-drone systems 

[2] and multi-robot systems [3]. This trend is driven by 

advancements in autonomous technologies and artificial 

intelligence [4] – [6]. Compared to single-agent systems, 

multi-agent systems have the potential to perform more 

complex tasks [7]. For example, multi-agent drone systems 

may facilitate the delivery of heavy goods [8], search and 

rescue operations [9], and agricultural monitoring [10] to 

increase productivity. These multi-agent collaborative tasks 

require the capability of navigating predetermined paths and 

maintaining formations in changing environments.  

However, despite the significant potential of multi-agent 

systems, their implementation faces challenges, particularly 

in real-time navigation within dynamic and obstacle-filled 

environments [11]. While various path planning and 

formation control methods have been developed, these 

existing methods still face limitations in adapting to dynamic 

obstacles while maintaining formation. One critical research 

gap is the need for more adaptive and integrated strategies 

that simultaneously handle formation control and obstacle 

avoidance in dynamic environments. This review addresses 

this critical gap by analyzing recent developments in obstacle 

avoidance methodologies for multi-agent drone systems, 

particularly in path planning and formation control methods.  

While this review concentrates on multi-agent approaches 

for drone systems, it also examines relevant algorithms from 

other multi-agent systems that benefit drone applications. 

The review examines how different methodologies perform 

under varying environmental complexity and their 

computational and communication requirements. This review 

aims to identify directions for developing more robust and 

adaptive multi-agent navigation frameworks suitable for real-

world deployment by synthesizing findings across 

methodological approaches. 

This review is structured as follows: Section II explains 

the review methodology. Section III discusses various 

obstacle avoidance methods based on the mentioned 

categories. Section IV presents the key findings and 

identified challenges. Finally, Section V concludes the 

review and provides directions for future research. 

II.  REVIEW METHODOLOGY 

A. Selection Criteria 

This review encompasses literature published between 

2019 and 2024, focusing on methods applied to obstacle 

avoidance, path planning, and formation control. The article 

selection process was carried out using keywords such as 

"obstacle avoidance," "multi-agent systems," "multi-robot 

systems," and "multi-drone systems." This period is selected 

due to significant advancements in artificial intelligence-

based path planning, autonomous navigation reinforcement 

learning applications, and multi-agent system technology 

improvements. Studies published before 2019 often lack the 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1711 

 

Shania Argiliana, Adaptive Strategies for Dynamic Obstacle Avoidance and Formation Control in Multi-Agent Drone 

Systems: A Review 

latest algorithmic enhancements and computational 

capabilities that have shaped modern multi-agent control 

systems.  

To ensure this review's relevance and scientific rigor, the 

following criteria were used to select the studies for review: 

(1) Publications from peer-reviewed journals and reputable 

conferences to ensure methodological robustness 

(2) Publications that provided experimental or simulation 

validation of their proposed methods, and  

(3) Publication that explicitly addressed multi-agent 

formation control, obstacle avoidance, and path planning.  

Grey literature, such as industry reports and preprints, was 

omitted to maintain academic rigor. Furthermore, only 

English-language publications were considered to ensure 

consistency in analysis. Eighty-two articles were selected for 

further analysis. These articles were categorized based on the 

primary aspects: obstacle type, formation control, and path 

planning. These classifications are shown in Fig. 1.  

This review seeks to consolidate existing knowledge and 

identify opportunities for hybrid approaches integrating 

multiple strategies for enhanced navigation and coordination 

in multi-agent systems. By systematically comparing 

methodologies, this study aims to guide future research 

toward more efficient and scalable multi-agent navigation 

frameworks. 

B. Limitations 

This review acknowledges several limitations in its 

methodology. First, the emphasis on English-language 

publications may have excluded relevant research published 

in other languages. Second, excluding grey literature may 

have overlooked emerging techniques from industry research 

that have not yet reached academic publication. Finally, the 

rapid evolution of this field means that very recent 

developments may not be fully represented in this review. 

III. OBSTACLE AVOIDANCE METHODS 

This section describes various multi-agent approaches for 

obstacle avoidance systems based on obstacle types, path 

planning, formation control, and communication 

architecture. The categorization is shown in Fig. 1 and 

described further in the following subsections. 

A. Obstacle Types 

Obstacles within an environment are classified into static, 

dynamic, and combined categories, as illustrated in Fig. 2. 

Static obstacles (e.g., walls, buildings) maintain fixed 

positions [17]-[28], [62], often addressed through path 

planning algorithms like Improved Artificial Potential Field 

(IAPF) [16] to determine the shortest path. Dynamic 

obstacles (e.g., pedestrians, vehicles) change position over 

time [29]-[34], requiring continuous real-time path 

adjustments that make Reinforcement Learning (RL)-based 

methods more appealing [34], [63]. Environments with 

combined static and dynamic obstacles [13], [16], [35]-[41] 

requires more integrated approaches for successful 

navigation.  

 

 

Fig. 1. Classification of obstacle avoidance methods 
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Fig. 2. A multi-agent drone system faces obstacle in a complex space 

B. Path Planning 

Path planning is crucial for navigation and obstacle 

avoidance in multi-agent systems, where each agent must 

find an optimal path to its goal while avoiding collisions. As 

shown in Fig. 3, path planning methods have evolved into 

three main categories: classical, optimization-based 

predictive models, and machine learning approaches. These 

categories are differentiated by their calculation approach, 

adaptivity to dynamic environments, and computational 

requirements. The following subsections discuss these 

categories. 

1) Classical Methods: Classical methods in path 

planning utilize graph-based approaches and potential fields, 

such as the Dijkstra [18], A* [39], and Artificial Potential 

Field (APF) [40] Algorithms. These methods are well-known 

foundations and are often used as benchmarks. However, 

these methods struggle to handle dynamic environments, 

inter-agent interactions, and system constraints. The 

following subsections describe these classical methods. 

a) Dijkstra's Algorithm: Dijkstra's algorithm is one of 

the earliest graph-based path-planning methods. The 

approach constructs a graph consisting of nodes and edges, in 

which the nodes represent the possible locations to visit, and 

the edges represent the length of the path between nodes. The 

algorithm starts at the source node and iteratively selects and 

then visits the closest neighbor node until it finally arrives at 

the destination node through the smallest number of nodes. 

Despite its concise idea and programming, its computational 

load grows exponentially with the number of nodes, 

boundaries, and obstacles; hence, limiting scalability to large-

scale multi-agent systems. Improvements to Dijkstra's 

Algorithms have been explored by augmenting with Breadth-

First Search (BFS) [18] for enhanced path finding in 

environments with formation constraints and dense obstacles. 

Another approach [52]-[53] combines Dijkstra's Algorithm 

with the Dynamic Window Approach (DWA) for real-time 

obstacle avoidance in unknown environments. This method 

employs Dijkstra as a global planner and DWA as a local 

reactive planner for dynamic obstacle avoidance. 

b) A* Algorithm: The A* algorithm is also a graph-

based path planning method. It assigns costs to all edges in 

the graph, so its total cost can rank all paths connecting two 

nodes. The algorithm starts at the source node and estimates 

the distance to the destination node. Based on the estimation, 

it selects the lowest-cost edge to visit the next node. Then the 

algorithm iterates the distance estimation, edge selection, and 

node visit until the destination node is reached. The algorithm 

maintains a node list to avoid re-evaluating nodes [11], hence 

faster convergence. However, it does not always guarantee 

the absolute shortest path and often requires distance 

estimation adjustments for complex tasks [54]. A study of 

strategic maps and mazes [55] showed that the A* Algorithm 

provides the shortest path 85% of the time. Its performance 

improvements include integration with Gradient-Based 

Sequential Minimal Optimization (GB-SMO) for smoother 

trajectories [39] and combination with DWA for real-time 

adjustment to moving obstacles [45]. 

c) Artificial Potential Fields (APF): The Artificial 

Potential Fields (APF) Algorithm has long been used in path 

planning for multi-drone systems. The standard form of the 

APF algorithm guides agent movements using attractive and 

repulsive potentials among drones [1], [21], [29]. While 

computationally efficient, standard APF suffers from local 

minima issues, where agents may become trapped near 

obstacles. Improved APF (IAPF) methods [13], [15], [37], 

[22] modify repulsive forces to reduce these problems, while 

hybrid approaches like APF with Coverage Path Planning 

(CPP) [46] enhance obstacle handling capabilities. 

 

 

Fig. 3. The evolution of path planning method 
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2) Optimization-based Predictive Models: This 

approach utilizes optimization techniques to plan efficient 

paths under various constraints. Model Predictive Control 

(MPC) has been applied in multi-agent path planning [14], 

[24], [31], [60], optimizing trajectories and minimizing 

energy while explicitly considering constraints such as safe 

inter-agent distances and obstacle avoidance. MPC predicts 

the future system's behavior and optimizes the control  

sequence to minimize specific cost functions. Despite its  

optimality, MPC implementation faces computational 

challenges, especially for large-scale multi-agent systems in 

complex environments, due to its requirement for iterative 

optimization at every control step.  

Several advancements have been proposed to address 

these computational challenges. Lyapunov-Based MPC 

(LMPC) [20] incorporates Lyapunov functions to ensure 

system stability [80]. LMPC effectively transitions 

formations from tracking to containment, outperforming 

classical control methods with faster responses and more 

precise tracking performance. 

3) Machine Learning Methods: These data-driven 

approaches facilitate adaptive navigation in complex 

environments. Reinforcement Learning (RL) has advanced 

rapidly in multi-agent path planning. Its early studies explore 

Reinforcement Learning Particle Swarm Optimization 

(RLPSO) [26] to improve training efficiency and adaptivity, 

and Deep Deterministic Policy Gradient [34]. 

Deep Reinforcement Learning (DRL) with Double Deep 

Networks (DQN) [35] processes environmental observations 

using Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) to generate navigation actions, 

demonstrating adaptivity across varying scenarios despite 

challenges from communication delays. Multi-Agent 

Reinforcement Learning (MARL) [44] enhances adaptivity 

in complex, high-density scenarios, though computing inter-

agent relationships via Deep Value Networks (DVN) 

increases execution time. 

Recent advances integrate nature-inspired and hybrid 

approaches: The Improved Obstacle Avoidance Algorithm 

(IOAA) [17] maintains formation integrity by adjusting inter-

agent angles without disrupting overall trajectory. Next, the 

Improved Particle Swarm Optimization (IPSO) [37] 

combines modified PSO for global planning with customized 

Artificial Potential Field for local refinement. Finally, the 

Split-Merge strategy mimics pigeon behavior to dynamically 

adjust speeds [47]. 

 The analysis of path planning methods across classical, 

optimization-based predictive models, and machine learning 

categories reveals distinct trade-offs summarized in Table I. 

Dijkstra's Method guarantees optimal solutions but becomes 

inefficient in large environments due to high computational 

complexity. A* offers faster processing at the expense of 

adapting to dynamic changes. Artificial Potential Field (APF) 

provides high responsiveness but suffers local minima issues 

and requires parameter tuning. Model Predictive Control 

(MPC) accurately incorporates system constraints but 

demands significant computational resources. Reinforcement 

Learning (RL) demonstrates superior adaptivity to dynamic 

environments, though its effectiveness depends on training 

data quality. 

C. Formation Control 

Formation control is essential for multi-agent systems, 

ensuring agents maintain formation while navigating toward 

goals and avoiding obstacles. Formation control methods 

have evolved into three categories: classical, improved 

control-based, and machine learning-based approaches. 

1) Classical Methods: These foundational approaches 

for multi-agent coordination focus on maintaining desired 

formations during navigation. As shown in Fig. 4, classical 

methods include leader-follower [11], virtual structure [12], 

behavior-based [13], decentralized [61], and distributed [75] 

approaches. The leader-follower method (early 1970s-1980s) 

represents the earliest form of formation control, while 

distributed formation control (early 2000s) was developed to 

address previous limitations. 

In the leader-follower approach, the obstacle avoidance 

strategy is typically applied to the leader, with information 

relayed to the followers [23] to adjust their formation. Despite 

being intuitive, this method has two key limitations: 

vulnerability to failure if the leader malfunctions, and 

reduced robustness against external disturbances and rapid 

formation changes.  

Many studies [1], [21], [23], [33], [35], [48], [64]-[65], 

[70] have modified the leader-follower approaches to address 

their inherent limitations. Despite these improvements 

targeting robustness and adaptivity, classical formation 

control methods still struggle with dynamic environments 

and unexpected disturbances, driving the development of 

more flexible and robust approaches for complex scenarios. 

 

TABLE I.  TRADE-OFFS OF PATH PLANNING METHODS 

Method Advantages Disadvantages Trade-Offs Common Application 

Dijkstra 
Guarantees the shortest path and is 

optimal for global pathfinding 

Inefficient for large environments 

and high computational complexity 

Guarantees optimal solutions, but 

it is slow 
Static navigation 

A* Faster than Dijkstra 

Can get stuck in local paths and not 

be flexible to changes in dynamic 

environments 

Fast but lacks adaptivity Robotics 

APF Responsive and simple implementation Prone to local minima Fast but requires parameter tuning Drones and robots 

MPC 
Considers system constraints and 

accounts for forward predictions 
Requires high computation 

Accurate but computationally 

expensive 
Drone control 

RL Adaptive to dynamic environments Requires extensive training data 
Flexible, but depends on training 

quality 
Autonomous 
navigation 
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Fig. 4. The evolution of formation control method 

As an alternative to the leader-follower approach, the 

virtual structure method defines the formation as a rigid 

geometric structure. The agents maintain their relative 

positions to virtual points on that structure. This strategy has 

been used with drones [40], which defined the virtual 

structure points as routes to follow. Although this concept 

was easy to implement, the virtual structure method was often 

less flexible in dealing with obstacles and dynamic formation 

changes. Validation in real-world environments with 

complex obstacles is still required, especially given the 

simulation-based limitations of [40]. 

Graph-based formation control represents the formation 

and environmental constraints as a graph. The nodes and 

edges in the graph represent agent configurations and their 

relationships, respectively. Graphs were used to represent 

valid configurations, determine formations that satisfy 

constraints, and plan optimal paths while maintaining graph 

connectivity [18], [29]. Although effective in static 

environments with previously known environmental 

information, the computational complexity and the need for 

global information limited its application in dynamic 

environments. Time-consuming mapping of the 

configuration space became a significant obstacle. 

Finally, Distributed Formation Control (DFC) offered 

improvements in robustness and scalability. This method 

allowed each agent to make control decisions based on local 

information, reducing reliance on global information. DFC 

has been implemented in environments with static obstacles 

[16]. DFC was also utilized with virtual control commands to 

maintain the formation during obstacle avoidance [40]. This 

approach focused on formation maintenance through local 

interactions between agents, making it more adaptive to 

environmental changes and individual agent failures.  

2) Improved Methods: The multi-drone formation 

control continued to address the limitation of classical 

methods and enhance performance in complex environments. 

Early approaches explored leader-follower methods with 

gain and corrective control [17], employing observer-based 

controllers for precision. However, these methods were 

restricted to static obstacles. The combination of leader-

follower and virtual structure (LFVS) [27] augmented the 

accuracy of virtual structures with the flexibility of leader-

follower methods but relied heavily on vulnerable 

communication infrastructures. Other approaches utilized 

thin plate splines (TPS) to minimize formation deformation 

[27], while sliding mode control (SMC) and Linear Quadratic 

Regulator (LQR) were explored in the leader-follower 

context [49]. However, SMC proved sensitive to plant-model 

mismatches. 

Recent studies introduce the Formation Assignment and 

Rotation (FAR) method [19], which uses alternating 

optimization to maintain formation alignment under 

disturbances. The Fixed-Time Methods (FTM) [50] ensure 

accurate estimation of the leader's position and velocity of the 

followers within a fixed time, although they require precise 

parameter tuning. A non-smooth consensus approach with 

backstepping [51] effectively separates position and 

orientation control but is susceptible to chattering.  

Building on this development, current trends include 

Model Predictive Control (MPC) and its variations for their 

predictive capabilities and robust constraint handling. 

Notable variants included distributed MPC [24], [59], [68], 

[71], and two-layer distributed MPC [43], which separated 

translational and attitude control to reduce computational and 

communication load. Dual MPC combines the Control 

Lyapunov Functions (CLFs) to stabilize the formation and 

enhance the optimization convergence, with Control Barrier 

Functions (CBFs) for collision avoidance [51] to enhance its 

adaptability in dynamic environments. 

Despite the predictive capability and constraint handling 

advancements offered by MPC and its variants, these 

methods still depend on predefined models and careful 

parameter tuning. As environments become more dynamic 

and less predictable, such limitations have prompted a shift 

toward learning-based approaches.  

3) Machine Learning: In increasingly complex and 

dynamic environments, studies in multi-agent formation 

control shifted towards Reinforcement Learning (RL) 

approaches [66], [75], particularly Multi-agent 

Reinforcement Learning (MARL). MARL offers better 

learning capabilities and adaptivity than classical methods, 

especially in handling uncertainties, environmental 

dynamics, and complex objectives.  

One notable application of MARL is the Multi-agent 

Deep Deterministic Policy Gradient (MADDPG) [36], 

extended with Prioritized Experience Replay-MADDPG 

(PER-MADDPG). This algorithm uses centralized training 

using experience buffer and decentralized execution 

(Centralized Training with Decentralized Execution - 

CTDE). The reward function encouraged agents to maintain 

formation, avoid collisions, maintain communication, and 

move collectively toward a target. PER accelerates learning 

by prioritizing more informative experiences, although it 

risks overfitting to high-priority samples. An importance 

sampling mechanism mitigates this problem by correcting the 

bias introduced by priority sampling. 
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MADDPG has been applied to multi-agent drone systems 

to maximize secure capacity by optimizing the agent 

trajectory, transmission power from the agent transmitter, and 

jamming power from the agent jammer [58]. This simulation 

study implements the joint trajectory design of agents. The 

continuous action attention MADDPG (CAA-MADDPG) 

method is recommended for further exploration to improve 

learning efficiency and convergence. 

In addition to policy gradient-based approaches like 

MADDPG, the use of Deep Value Networks (DVN) for 

formation control was also explored [44]. This study controls 

formation control through selective communication using 

DVN-based message selection. This approach allows agents 

to select relevant messages from nearby agents based on 

relationships calculated from agent-level and sensor 

information to maintain communication efficiency under 

limited bandwidth. However, this approach assumes perfect 

agent-level information that is often unrealistic in the real 

world. Furthermore, calculating inter-agent relationships 

using DVN can significantly increase total execution time, 

especially with many agents. 

The discussion on the three categories of formation 

control methods (classical, MPC, and machine learning) 

presents distinct trade-offs among these approaches. Table II 

summarizes key comparisons among these methods. 

Classical methods, such as the leader-follower and virtual 

structure-based approaches, offer simplicity and ease of 

solutions but lack flexibility in dynamic environments. In 

contrast, graph-based and distributed control strategies 

provide greater adaptivity to environmental changes, though 

they require more complex coordination mechanisms. Fixed-

Time Control methods ensure guaranteed convergence within 

a predefined time frame but are less responsive to sudden 

disturbances. MPC delivers high precision and robustness in 

trajectory planning but has significant computational 

demands. Meanwhile, machine learning techniques, 

including reinforcement learning and deep neural networks, 

excel in adapting to uncertain and evolving scenarios, albeit 

at the cost of extensive training requirements and data 

dependency [77], [79].  

D. Communication Architecture 

Multi-agent drone systems require a solid communication 

architecture for effective formation coordination and obstacle 

avoidance in complex environments. Current approaches can 

be categorized into centralized, decentralized, and hybrid 

communication strategies, each with distinct implications for 

scalability and resilience in dynamic environments.  

TABLE II.  TRADE-OFFS OF FORMATION CONTROL METHODS 

Method Advantages Disadvantages Trade-Offs Best Suited for 

Leader-Follower 

Simple and easy to implement 

Centralized processing in the 

leader 

High dependency on the leader 

(prone to failure if  

the leader fails) 
Less adaptive to formation 

changes and a dynamic 

environment 

Easy to implement, but lacks 
flexibility in dynamic 

environments 

If the leader fails, the formation 
may collapse 

Fixed formations with 
predefined paths 

Virtual Structure 

Maintains a rigid formation 

Simplifies path planning with 
centralized coordination 

Less flexible in environments 
with many obstacles 

Not easily adaptable to 

dynamic changes 

Stable but less adaptive to 

external disturbances 

Convoy drones or robots 

with fixed formations in 
static environments 

Graph-Based Control 

Can handle formation topology 

changes flexibly 
Offers a mathematical approach 

to formation optimization 

Requires complex 

computations 
Relies on global information or 

inter-agent communication 

Enables flexible formations but 

requires more computation and 

communication 

Navigation with 

frequent formation 
changes, such as drone 

swarms 

Distributed Formation 
Control 

More robust, as each agent can 

make its own decisions 
More scalable for large multi-

agent systems 

Requires more complex inter-

agent coordination 
Not always optimal for tight 

formations 

More adaptive to individual 

agent failures, but requires 
stable inter-agent 

communication 

Dynamic environments 

with formation changes 

and autonomous agents 

Fixed-Time Methods 
(FTM) 

Ensure convergence  

within a fixed time 
Reduces uncertainty  

in formation movement 

Sensitive to parameter tuning 

Less flexible in highly dynamic 

environments 

Guarantees convergence time 

but lacks flexibility for sudden 

changes 

Applications requiring 

stable formations within 

a set timeframe 

Model Predictive 

Control (MPC) 

Can handle physical constraints 

and short-term optimization 

Can anticipate environmental 

changes 

Computationally heavy, 

requiring high processing 

power 
Not always real-time for large-

scale agents 

Accurate and predictive, but 

computationally expensive 

Drone control in 

complex environments 
with many obstacles 

Reinforcement 
Learning 

More adaptive to dynamic 

environments 
Can learn from experience and 

improve performance 

Requires extensive training 

data 
Prone to overfitting in specific 

scenarios 

Adaptive and flexible, but 

requires extensive training and 

is computationally expensive 

Systems in 

unpredictable 
environments require 

rapid adaptation. 

Deep Value Networks 

(DVN) 

Optimizes inter-agent 

communication under  

limited bandwidth 
Can select relevant information 

Assumes ideal inter-agent 

information 

Computationally complex for 
many agents 

Reduces communication needs 

but increases computational 

complexity in processing 
information 

Systems with limited 

communication but 

requiring high 
coordination 
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Centralized approaches primarily utilize Wi-Fi with RTK 

positioning [47]. This architecture enables high-bandwidth 

data transfer (up to 54 Mbps) and supports complex 

coordination algorithms running on the ground control station 

(GCS). However, this centralization creates a critical single 

point of failure—if the GCS connection is lost or degraded, 

the entire system's functionality is compromised. 

Additionally, as the number of agents increases, bandwidth 

limitations and network congestion become significant 

barriers to real-time performance [47]. 

In contrast, decentralized architectures like Zigbee 

networks [13], [37], [57], distribute processing across the 

agents. Each agent handles local decision-making while 

maintaining mesh communication (typically 250 Kbps), 

making the system more resilient to individual node failures. 

Zigbee-based systems can maintain 85% of their coordination 

capabilities even when 30% of communication links are 

disrupted [13]. However, this resilience comes at the cost of 

reduced bandwidth, limiting the complexity of information 

that can be exchanged in real-time. 

Hybrid architecture emerges as a promising solution to 

address the limitations of centralized and decentralized 

approaches. The Double-Wave Swarm (DWS) approach [56] 

uses wave propagation algorithms for message exchange and 

subtask coordination, enabling dynamic adaptation of 

communication pathways based on environmental 

conditions. While DWS improves robustness in changing 

environments, it still faces challenges with message 

overhead, which increases quadratically with agent numbers. 

Recent studies have explored adaptive communication 

strategies that dynamically adjust topology and bandwidth 

allocation based on mission phases and environmental 

constraints. For instance, systems implementing dynamic 

role assignment [37] can reassign communication relay 

functions among agents when network degradation is 

detected, maintaining connectivity in challenging radio 

environments. However, these adaptive approaches remain 

computationally intensive and require further optimization 

for large-scale deployments. 

IV. RESULTS AND DISCUSSION 

This study reviews eighty-two publications on obstacle 

avoidance in multi-agent systems, encompassing path 

planning, formation control, or both. It focuses on operational 

efficiency and agent coordination, evaluating methods and 

their applicability in large-scale multi-agent drone systems. 

A. Synthesis of Obstacle Avoidance Methods 

Various methods address obstacle avoidance in multi-

agent drone systems. Promising approaches include 

Improved Artificial Potential Field (IAPF) [22] for static 

obstacles and Reinforcement Learning (RL) [34] for dynamic 

obstacles. These methods show potential in controlled 

environments, but still face significant challenges when 

applied to more complex and dynamic settings. 

1) Improved Artificial Potential Field (IAPF): IAPF 

has proven efficient in avoiding stationary objects. However, 

it struggles with static and dynamic obstacles in constantly 

changing environments. Therefore, IAPF requires major 

adaptation to handle real-world scenarios in which dynamic 

obstacles may suddenly appear. 

2) Reinforcement Learning (RL): RL can adjust agent 

behavior based on previous experiences, enabling adaptive 

responses to environmental changes. However, it requires 

long training times and substantial computational resources, 

which limits its application in large multi-agent systems that 

require real-time responses. 

3) Hybrid Approach: Combining classical and 

machine learning methods offers a more flexible solution. 

These approaches may leverage the advantages of both 

worlds: the efficiency of classical methods and the adaptivity 

of machine learning methods. However, real-world 

experiments with these hybrid methods are still limited, 

raising uncertainties about their reliability in more complex 

environments. 

B. Comparison of Path Planning Methods 

Classical path planning methods such as Dijkstra [18], A* 

Algorithm [39], and Artificial Potential Field (APF) [40] are 

strong foundations, although their limited adaptivity and 

reliance on prior environmental knowledge limit their real-

world applications. Model Predictive Control (MPC) and 

Reinforced Learning (RL) methods provide greater flexibility 

but require substantial computational resources and precise 

parameter tuning, challenging their implementation in large-

scale multi-agent systems. Table III compares these 

approaches based on computational complexity, dynamic 

environment adaptivity, initial information requirements, and 

solution optimality. 

TABLE III.  COMPARISON OF PATH PLANNING PERFORMANCES 

Criterion A* Dijkstra APF MPC RL 

Computational Complexity 
Medium  

(depends on heuristic) 
High Low 

High  

(depends on 
prediction horizon) 

High (during training), 

Low (after training) 

Adaptivity to  

Dynamic Environment 

Low  

(requires replanning) 

Low (requires 

replanning) 

Fair  

(reactive) 

Good  

(predictive) 

Excellent  

(learns from experiences) 

Needs of Initial Information Map/graph heuristic Map/graph 
Map/graph, 

potential function 

System model, 

constraints, 

objective 

Environment 
(interactions) 

Solution Optimality 

Optimal  

(If the heuristic was 
admissible) 

Optimal 

(guaranteed) 

Not guaranteed 

optimal  
(local minima) 

Depends on the 

problem formulation 
and horizon 

Depending on the 
algorithm and 

exploration,  

can approach the optimal 
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C. Formation Control Approaches 

Formation control of multi-agent systems requires 

adaptivity to communication challenges and rapid formation 

changes. Classical methods such as Leader-Follower, Virtual 

Sstructures, and Graph-based methods have long been used 

in formation control. However, these methods suffer when 

facing communication failures. 

On the other hand, Model Predictive Control (MPC) [51] 

offers adaptive solutions by considering future predictions 

and system constraints, although it suffers from high 

computational load and reliance on parameters that require 

precise tuning. Multi-agent Reinforcement Learning 

(MARL) [44] has shown better adaptivity to dynamic 

conditions and environmental uncertainty, although 

communication between agents is often slow, which hinders 

decision-making, particularly in environments with 

bandwidth limitations or poor communication conditions. 

D. Communication Architectures  

A comparison of the communication architecture between 

Zigbee Network and Wi-Fi is critical for multi-agent drone 

applications. Zigbee should be used if connections to the 

control station are unstable. In contrast, Wi-Fi is preferred 

when connections are stable and sufficient bandwidth is 

available. Table IV compares these protocols. Zigbee uses 

distributed processing with less ground station dependence 

but offers lower bandwidth and shorter range. Wi-Fi employs 

centralized processing with higher ground station 

dependence, greater bandwidth, and wider range through 

routers and access points. Zigbee typically implements mesh 

structures regarding network topology, whereas Wi-Fi uses 

star configurations centered on ground stations. 

TABLE IV.  COMPARISON OF COMMUNICATION ARCHITECTURE: 

ZIGBEE VS WI-FI NETWORK PROTOCOLS 

Feature Zigbee Network Wi-Fi 

Processing Distributed Processing 

Ground Station Dependence Lower Higher 

Bandwidth Lower Higher 

Range 
Shorter 

(typically) 

Longer 

(with routes   
and Aps) 

Network Topology 
Mesh 

(potential) 

Star 
(ground station as  

the center) 

 

E. Identified Research Gaps and Future Directions 

The synthesis of existing methods reveals several 

research gaps that must be addressed to advance multi-agent 

drone systems in real-world applications. 

1) Computational Efficiency and Adaptivity: Modern 

algorithms, such as RL and MPC, offer adaptivity in dynamic 

environments but need significant computational overhead. 

In contrast, classical methods like A* and APF are 

computationally efficient but lack flexibility. Future 

development must bridge this gap, whereas high adaptivity 

can be achieved through low computation load, particularly 

for real-time, large-scale systems. 

2) Integration of Machine Learning and Classical 

Methods: Hybrid methods that combine the structure of 

classical algorithms with the learning capability of data-

driven models present a promising path forward. However, 

further exploration is needed to determine their reliability and 

robustness in real-world, dynamic environments. 

3) Reducing Dependency on Sensitive Parameters: 

Many current methods are susceptible to parameter settings, 

which can compromise system stability. Developing more 

robust algorithms with self-adaptive or parameter-insensitive 

designs would enhance real-world applicability. 

4) Improved Communication Efficiency: Efficient and 

reliable inter-agent communication remains a bottleneck, 

especially in bandwidth-limited or interference-prone 

environments. Adaptive communication strategies, such as 

multi-hop or self-healing network topologies, are necessary 

to maintain coordinated behavior in the field. 

5) Real-World Validation: While many techniques 

succeed in simulation, few have undergone rigorous real-

world validation. Extensive field testing is essential to 

evaluate algorithmic resilience under unpredictable 

operational conditions. 

V. CONCLUSION 

This paper reviews various obstacle avoidance 

approaches in multi-agent drone systems, focusing on path 

planning, formation control, and communication 

architectures. The analysis identifies key advantages and 

limitations of existing methods and provides insights into 

potential research directions. 

Classical Path Planning methods, such as A*, Dijkstra, 

and Artificial Potential Field (APF), remain fundamental but 

struggle in dynamic environments due to their reliance on 

prior knowledge and limited adaptivity. Modern approaches, 

including Reinforcement Learning (RL) and Model 

Predictive Control (MPC), offer greater flexibility but have 

high computational costs and parameter sensitivity, making 

large-scale real-time implementation challenging. Hybrid 

methods that integrate classical and machine learning 

techniques, such as RL-based heuristic search or MPC with 

neural network-based optimization, show promise but require 

further validation in real-world applications.  

Classical Formation Control strategies like leader-

follower, virtual structures, and graph-based methods ensure 

structured coordination but are highly dependent on stable 

communication and sensitive to parameter tuning. Advanced 

approaches such as MPC and Multi-Agent Reinforcement 

Learning (MARL) improve adaptivity, but face challenges 

related to computational complexity and inter-agent 

communication delays. Future research should explore 

hybrid RL-MPC frameworks to enhance formation control in 

highly dynamic environments and develop decentralized 

learning-based methods to mitigate the impact of 

communication disruptions. 

Regarding communication, Zigbee offers decentralized, 

resilient networks with lower bandwidth, while Wi-Fi 

provides higher bandwidth but relies on centralized control, 

making it vulnerable to failures. Future research should 
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investigate adaptive communication strategies, such as multi-

hop networking with dynamic topology adjustments, to 

ensure reliable coordination in large-scale multi-agent 

systems. 

While this review comprehensively analyzes existing 

approaches, it also acknowledges their limitations. The 

selected studies may introduce potential biases, and the scope 

primarily focuses on algorithmic aspects, not hardware 

constraints or energy efficiency considerations. This review 

does not discuss the ethical, logistical, or technical barriers to 

operating the systems in complex operational environments. 

Addressing these aspects in future research would provide a 

more holistic understanding of multi-agent obstacle 

avoidance in real-world applications. 

This review contributes to the field by identifying critical 

barriers to effective multi-agent drone obstacle avoidance, 

such as computational efficiency in dynamic environments, 

formation resilience during communication disruptions, and 

adaptive networking protocols. The urgent research priority 

is developing lightweight, decentralized algorithms that 

maintain performance despite intermittent connectivity. 

Addressing this challenge would enable deployment in 

complex applications, such as package delivery, search and 

rescue operations, and industrial process monitoring. Future 

experimental work should test the hypothesis that hybrid 

approaches combining classical fidelity with learning-based 

adaptivity can achieve reliability and flexibility in real-world 

environments. These advances would transform autonomous 

multi-agent drone systems from controlled laboratory 

demonstrations into robust solutions for complex real-world 

challenges. 
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