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Abstract—This work aims to design and implement an FPGA-
based embedded controller for multibody mechatronic systems.
The application considered is a wheeled self-balancing robot. The
main objective is to stabilize the inverted body of the robot in
its vertical position. It is done by precisely driving its wheels
forward and reverse direction until stabilization occurs within a
small distance. Using the multibody dynamics approach for the
control system design of such systems is a challenging task due
to the resulting differential nonlinear algebraic equations. In this
article, development, verification, and simulation were done for the
resulting model. The bumgrate stabilization method was used with
the parameter α = β = 10 shows acceptable violations of ±10−6

and ±10−4 for both holonomic and nonholonomic constraints,
respectively, during the dynamic equations solution. Next, we
designed and simulated optimal feedback controllers and classical
PID controllers for both linear and nonlinear multibody models.
In addition, our testing of the digital PID controller on an FPGA
shows that the steady-state error for successful stabilization is
around ±0.2 degrees, and it takes 2 seconds for the zero-tilt angle
setpoint to settle. Finally, we implemented a PID controller on
the NI-SBRIO 9631 with a 266MHz real-time processor, and a
40MHz Xilinx FPGA target. Using such RIO board enables the
rapid development of such control systems. The results of this
implementation reveals that the controller is able to stabilize the
robot in the range of the tilt angles θ3 = ±15◦ due to the DC
motors torque specifications. Furthermore, the paper proves the
effectiveness of using the coordinate partitioning method for the
state-space formulation of such under-actuated nonlinear systems.

I. INTRODUCTION

A. Background

Reconfigurable field programmable gate arrays adoption are
growing rapidly in many industrial [1], [2], embedded, and
control mechatronic applications [3], [4]. There are many appli-
cations utilized FPGAs in the fields of robotics [5], [6], mobile
robots [7]–[9], autonomous robot navigation [10], [11], serial
manipulators [12], [13], design and control of mechatronic
systems [14] [15] [16], and energy management systems [17],

[18],real-time control systems [2], [3], [14], [19]–[23], and
deep learning accelerators built-in hardware [24]–[27]. In the
field of control engineering, developing FPGAs is of great
importance in completing robotic control systems. Furthermore,
it was found that model-based control methods are the most
efficient and cost-effective. This model must interpret how the
system’s multiple parts move relative to each other. So, the
reconfigurable input/output (RIO) board such as myRIO kit,
SbRIO, or cRIO, which includes an FPGA target, is well-
suited for implementation of the control design for the real-time
system, so that it can achieve the required trajectory [20], [28],
[29]. Also, it is well suited for fast development and prototyping
in the control of micro-robotic systems [4], as the NI-myRIO
based FPGA was used for that purpose. Also, it is used for
hardware in loop simulations as in [30].

FPGAs have long been within the circle of engineers, de-
velopers, and communication researchers with high expertise
in VHDL or verilog, implementing the digital signal processor
algorithms on FPGAs. That requires large efforts due to the
complexities of programming FPGAs. Graphical languages
such as the LabVIEW FPGA module help non-experienced
engineers with the stated languages to easily design, test, and
deploy algorithms and controllers on these FPGA targets. Fea-
tures included in this module replace thousands of script-like
written VHDL commands. This helps in the fast development
of the self-balancing robot real-time control systems instead of
using complex VHDL-based subroutines [3], [29], [31], [32].

Regarding labview based-programming with RIO FPGA de-
vices with embedded controllers,the author in [33] discussed
the different methodologies for building controllers on these
devices. Furthermore, he discussed the floating-point (FP) and
fixed-point (FXP) considerations on the design of digital con-
trollers on FPGAs. Additionally, he explained the design cycle
for building a controller on FPGA target. Beside this, the author
highlighted the importance of resource saving by suggesting of
utilization of BRAMs to reduce resources consumption on the
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target.
On the other side, for the implementation of accurate control

systems on FPGAs, the multibody dynamics (MBDs) approach
is well-suited for building the under-actuated system model in
a general formulation. As it is widely used for modelling and
simulation of the mechanical systems that have been recognized
as a cornerstone in the dynamic analysis [34]–[37], design
[36], [38]–[40], control [35], [41]–[43], mechanical system
parameters identification [36], [44]–[46] and integration with
machine learning based computer simulation [47]–[49]. MBDs
result in nonlinear differential-algebraic constraint equations of
index-1 that govern the complex physical systems’ motion [50]–
[52]. The resulting model in the augmented formulation as in
(1). Where M is the system mass matrix, Cq is the constraints
function Jacobian matrix, q̈ is the generalized acceleration
vector, λ lagrange multipliers associated to each constraint
equation in the constraint function C. Also, Q is the total
external force vector and Qd is the quadratic velocity vector.

[
M CT

q

Cq 0

] [
q̈
λ

]
=

[
Q
Qd

]
(1)

Numerical difficulties may arise when solving the dynamic
equations of motion, especially in the existence of nonholo-
nomic constraints. One of these interesting problems is the
constraint instability during the solution of the general aug-
mented EOMs [53]. As it doesn’t explicitly use the constraints
at both position C and velocity level Ċ, i.e. they are not satisfied
during the solution (numerical integration process) to obtain
positions and velocities of the generalized system coordinates.
This leads to large errors during long simulation time, especially
in bad initial conditions of this integration process [37], [54].
Consequently, Methods to control and eliminate these viola-
tions should exist. Different methods were adopted, namely
could be implemented. The first one is the direct correction
algorithms like in [55], such as the Newton–Raphson method
(post stabilization). These methods were stated and used (some
of them) in the literature [56]–[58]. In this method, at each
integration step, the constraints function is satisfied only at the
acceleration level and that doesn’t confirm that this function
is satisfied at velocity and position levels. so that, errors may
occur. Thus correction is made at velocity and position levels to
get them back to their zero state before the next integration step.
This is done iteratively using newton’s differences to update
the coordinates at position level C. and is done at one step
at velocity level Ċ. On using this method at the existence of
constraints at velocity level,the constraint violation in velocities
is eliminated with only a single step. This may cause errors,
and the constraint equations violates. for that, the approach is
not suited for both moderate and long simulations [56], [57].

The second method, coordinate partitioning method, at which
the generalized coordinates are grouped into dependent and
independent. This is done at position, velocity, and acceleration

levels. The equations of motion are integrated only for indepen-
dent coordinates. Then solving the non-linear constraints vector
using the obtained independent coordinates iteratively using
Newton–Raphson algorithm to have the dependent coordinates.
On finding the total coordinates, The dependent velocities are
obtained. Then, finally, solve the whole set of equations of
motion to get the total acceleration Vector. The number of
independent coordinates reflects the system DOFs. In such
method, the violations are eliminated since all the constraints
at the coordinate, velocity, and acceleration levels are solved.
Its accuracy relies on the selection of the independent and
dependent coordinates. Which is considered one obvious dis-
advantage of that method [56], [59]–[61].

The third method is the constraint stabilization control meth-
ods such as the baumgarte stabilization method stated in [62],
[63], penalty method presented in [64]and the PID method [65].

Constraint stabilization methods are widely addressed due
to their simplicity in the computational formulation and im-
plementation. Although their major drawback is the method in
choosing the stabilization parameters that leads to the simula-
tion failure, it is considered in this article. Due to the simplicity
of the implementation and the suitability for controlling both
holonomic and nonholonomic constraints stabilization, baum-
garte stabilization method will be utilized in this article [56].

In this context we state the different modern and classic
control systems for control of self-balancing robots. Either
two wheels or unicycle robots such as [66], a nonlinear H∞
controller was designed and applied for two-wheeled self-
balanced vehicles (velocity tilting angle). In [67], the robot
model based on lagrangian dynamics was addressed. Then,
they designed a linear feedback controller for the self-balancing
robot with cRio. In [68], they designed a new approach for
nonlinear H∞ controller. While in the thesis [28], it developed
the self-balancing robot classic PID controller based on the
myRio device. Also, in [69], they proposed an adaptive con-
troller for two wheels self-balancing robot combining SMC and
neural network. While in [7], the two-wheeled self- balancing
robot (TWSBR) was controlled to avoid obstacles using fuzzy
that was built using RISC-V (an open-source instruction set
architecture (ISA) and free to use on FPGA). Another research
article, [8], used open source FPGA tools, such as IceStudio
and the IceZum Alhambra board. Going to another type of self-
balancing segway such as unicycle robots which uses a balanc-
ing and another driving mechanisms in [70], it designed a robust
H2 controller and applied to a reaction wheel unicycle robot.
In [71], authores redesigned what was done in [70] and applied
PID, LQR, and SMC controllers. Similarly, in [72] and [73]
which designed and implemented a PID, fuzzy and LQR control
for the wheeled balancing robot in order to keep it stable when
subjected to uncertainties and different heights. Furthermore,
the Dynamic modelling and characteristics analysis of lateral-
pendulum unicycle robot were done in [74].while, [75] designed
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a novel adaptive interval type-2 fuzzy controller (AIT2FC) and
it was used for a single-wheel vehicle (SWV), who successfully
implemented a single-wheel vehicle (SWV) based on a novel
adaptive interval type-2 fuzzy control system. The efficiency
of the (AIT2FC) was proved by real-time control of SWVs
control problem. In, [76], it used labview with arduino test rig
to test both a lead-lad compensator and fuzzy logic controller.
For recent optimization case, this article in [77] addressed the
optimization ofthe sliding mode control parameters using the
firefly algorithm.

B. Problem Statement

The main problem is to design and simulate a fast controller
based on the multibody model for such under-actuated mecha-
tronic system. The validation of the multibody system dynamics
is done through solving the nonlinear differential equations
in (1) This encounters problems due to constraints violations
during the integration process. The other side of the problem is
that the self-balancing robots need fast control actions for fast
stabilization at the preset balancing point.

C. Proposed Solution

In this article, Baumgarte stabilization was considered as a
PD controller. At each integration step, it was utilized to get
the constraints back to their manifolds. thhere are two factors
that are multiplied by the constraints function at position and
velocity levels and summed to the quadratic velocity vector, Qd,
associated with these constraints to bring back the constraints
function at the acceleration level C̈ back to its manifold. That
method keeps violations controlled to their lowest level [56],
[63]. Beside this method, the coordinate partitioning was used
to formulate independent coordinate acceleration to obtain the
system equations of motion [62]. Furthermore, well-designed
controllers lead to perfect stabilization. Classic PID and optimal
state feedback controllers are well suited for the under-actuated
systems. The proposed hardware controller is NI-sbrio 9631
RIO board that include FPGA target is used for the purpose
of control due to their higher performance and accuracy over
other embedded controllers [9].

D. Contribution

The research contribution lies in the formulation of a general
multibody dynamic model with both holonomic and non-
holonomic constraint stabilization for the self-balancing robot
(SBR). Then, the coordinate partitioning method was used to
build the linearized system state space model for the planar
2D multibody model. This is the last part: designing and simu-
lating the state-feedback optimal controller, focusing on pole
placement and linear quadratic regulator (LQR) controllers.
We successfully designed and implemented a PID controller
for robot stabilization in a vertical position. The Sbrio-Fpga

was utilized to construct the embedded-based real-time PID
controller subroutines for this mechatronic system (SBR).

E. Organization of the Article

This section gives a summary of the methods used in this
article. The methods section begins with, the subsection II-A,
at which each term in the multibody model dynamics equation
of motion in (1) is explained in a detailed manner. Starting
with robot description, selection of generalized coordinates,
formulation of holonomic and nonholonomic constraints, mass
matrix, the quadratic velocity vector, and the external forces
for the under-actuated systems. After that, the coordinate par-
titioning method was used to address model-based controlled
design in the next sections. Following this, the multibody
model simulation and stabilization for both the augmented and
coordinate partitioning methods according to the flow chart in
Fig. 3 were implemented. Then, the DC motor model with its
estimated parameters was included to fully define the robot
model. At the end of this section, the state space model was
obtained.

In this subsection, subsection II-B, the controller design
was explained. Two-state feedback, pole placement and LQR,
control methods were designed for both the linearized and
nonlinear models obtained in the subsection II-A. Also, model
modification was done for friction and damping that may exist
due to real hardware joints. Later in this section, we designed a
PID controller and its corresponding discrete transfer function
for digital implementation. Both subsections, subsection II-C
and II-D explained the real hardware implementation of the
proposed PID controller on the Sbrio 9631 FPGA RIO plat-
form. Finally, section III briefly discussed the obtained results,
followed by, section IV that discussed the conclusion and the
expected future work related to the addressed topic.

II. METHODS

A. Self-Balancing Robot Dynamic Model

1) Robot Description:

In this section, We state the full steps applied to build the
wheeled balancing robot multibody model. The self-balancing
robot structure, is shown in Fig. 1. It mainly consists of the
following components:

• Robot Wheels: For planar modeling, we only consider one
wheel for the robot’s movement and stabilization. Frame 2
defines the robot wheel.

• The inverted Body: The wheel is attached to this vertical
component through the revolute joint, which rises upwards
from the robot base. It acts as an inverted pendulum, which
is the common configuration for self-balancing robots. Typ-
ically, the tilt sensor, such as the utilized ADXL335 analog
accelerometer sensor, monitors the pendulum’s angular po-
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sition to help the robot maintain its balance. This body is
defined by frame 3.

• Ground: The global fixed coordinate is defined by XY
frame.

• Key assumptions considered for the system planar MBDs
Model :

1) The robot wheel and the inverted mass are rigid bodies.
2) The mechanical and electrical system losses are initially

set to zero.
3) The wheels and the surface are in constant contact. They

roll without skidding or slipping.
4) The inverted body inclination angle from equilibrium is

small for linearization.

Fig. 1. Self-balancing Robot Generalized Coordinates

2) Multibody Dynamics Model (MBDs):

The generalized coordinates vector for planar MBDs can be
selected and written as,

qT=
[
q2T q3T

]T
(2)

Where, qi=
[
RiT θi

T
]T

=
[
Ri

x Ri
y θi

]T
is the general-

ized coordinates of the body i,i = 1, 2. Ri is the body i centre
of gravity position defined in the global coordinate system XY
and θi is body i orientation about the vector normal to the XY
plane. The coordinate system defined by

(
x2,y2

)
is fixed to

the wheel and this frames rotates with the wheel. Similarly for
the pendulum coordinate system. It is defined by

(
x3,y3

)
and

this frame moves with this body. The derived system equations
of motions in (1), is extended for systems that include both
holonomic and nonholonomic constraints to be,as in [78], [79],




M C
hT

q ĊnhT

q̇

Ch
q 0 0

Ċnh
q̇ 0 0







q̈
λh

λnh


=




Q
Qh

d

Qnh
d


 (3)

Where ,M is the assembled robot mass matrix such that
M = diagonal

(
Mi

)
with each Mi = diagonal(mi,mi, Iiz).

The matrix Cq defines the Jacobian matrix and, λ is the vector
of lagrange multipliers. The quadritic vector, Qd, absorbs all
quadratic terms of velocity derived fro the second derivatives by
time of the constraints function. Iiz is the body i mass moment
of inertia about the vector Z passing through the body centre
of gravity and normal to XY plane. Note that the superscript
h and nh are used through the article refer to holonomic and
nonholonomic respectively.

a) Robot Holonomic Constraints: as shown in Fig. 1,
the joint connecting robot wheel and the pendulum is defined
by one revolute Joint. That is defined in the constraint vector
Ch(R). Also, the wheel must be constrained to be in contact
with the ground at point C defined by a contact constraint. At
which robot wheel radius Rw is always the vertical position
of wheel centre of gravity (R2

y = Rw). For the nonholonomic
constraints, there exist only the wheel pure rolling constraint as
it should roll without sliding in the direction of motion. It can
be defined by Cnh.

Ch(R) =
[(
r2CG2 − r3CG2

)T
hj

T r2C
]T

(4)

Where,
hj

T =
[
0 1

]
, and hi

T =
[
1 0

]

and the global position vector of the point C is defined by,

r2C = R2 +A2ū2
C

Where, ū2
C defines the local position vector of point C defined

in frame 2.

ū2
C =

[
−Rwsin(θ

2)
−Rwcos(θ

2)

]
, Ai =

[
cos(θi) −sin(θi)
sin(θi) cos(θi)

]T

Similarly for the position vectors for the revolute joint common
point between the two bodies CG2. They are defined in frame
2 and 3 by,

r2CG2 = R2 +A2ū2
CG2 (5)

r3CG2 = R3 +A3ū3
CG2 (6)

and the local position of point CG2 in both stated frames as,

ū2
CG2 =

[
0
0

]
, ū3

CG2 =

[
−L
0

]T

Where, L is the position of the pendulum centre of gravity from
the wheels axis.

b) Pure Rolling Non-holonomic Constraint Cnh:

Cnh =
[
hi

T ṙ2C
]

(7)

and the global velocity vector is defined by,

ṙ2C = Ṙ2 + Ȧ2ū2
C
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After simplification, the total assembled constraints vector is,

CTotal =




R2
x −R3

x + Lcos(θ3)
R2

y −R3
y + Lsin(θ3)

R2
y −Rw

Ṙ2
x −Rwθ̇2


 = 0 (8)

It is obvious that system degree of freedom is two, and is
calculated as the following equation,

NDOF = 3NB −NC (9)

Where, NB is the number of bodies = 2, and NC is the
number of holonomic constraints equations = 4 then NDOF = 2
which are the position R2

x and tilt angle θ3. Note the fact that,
the stated pure rolling constraint leads to a holonomic con-
strain that in embedded (hidden) in the nonholonmic constraint
equation (R2

x−Rwθ
2) which is an integrable equation (just for

planar case). But on dealing with spatial system as in [54], it
is fully nonholonomic.

c) Holonomic Jacobian Matrix Ch
q :

Ch
q =

∂Ch

∂q
(10)

Ch
q =




1 0 0 −1 0 Lsin(θ3)
0 1 0 0 1 Lcos(θ3)
0 1 0 0 0 0


 (11)

d) Nonholonomic Jacobian Matrix Cnh
q̇ :

Cnh
q̇ =

∂Cnh

∂q̇
(12)

Cnh
q =

[
1 0 Rw 0 0 0

]
(13)

Refering to (3), The system mass matrix was found as,

M =




m2 0 0 0 0 0
0 m2 0 0 0 0
0 0 I2zz 0 0 0
0 0 0 m3 0 0
0 0 0 0 m3 0
0 0 0 0 0 I3zz




(14)

Recall, from (3) the holonomic quadratic Qh
d is the vector

that absorbs all quadratic terms of velocity associated with
holonomic constraints was found as follows [37],

Ch(q,t) = 0 (15)

Ċh(q, q̇, t) = Ch
qq̇+Ch

t = 0 (16)

C̈h(q, q̇, t) = Ch
qq̈+ (Ch

qq̇)q + 2Ch
qtq̇+Ch

tt = 0 (17)

Qh
d = −

(
Ch

qq̇
)
q
q̇− 2Ch

qtq̇−Ch
tt. (18)

Qh
d =




Lθ̇3cos(θ3)

Lθ̇3sin(θ3)
0


 (19)

In the same manner, Qnh
d is the vector that absorbs all quadratic

terms of velocity associated with nonholonomic constraints,

Ċnh(q, q̇, t) = H(q, q̇, t) + g(q, t) = 0 (20)

C̈nh(q, q̇, t) = Hq̈+ (Hq̇)qq̇+ (gq +Ht)q̇+ gt = 0

Qnh
d = − (Hq̇)q q̇− (gq +Ht) q̇− gt. (21)

Qnh
d = 0 (22)

e) Total External Forces Qex: Based on virtual Work
Principal as in [3], [52], the external forces are,

δWi
ex = QiT

exδq
i (23)

δW2
ex = −m2gδR2

y (24)

δW3
ex = −m3gδR3

y (25)

Q =




0
−m2g

0
0

−m3g
0




(26)

3) Coordinate Partitioning and Linearization of the Planar
MultiBody Model:

The coordinate partitioning method explained in [35], [51],
[52], [61], is used to get the robot independent coordinates to
facilitate the state-space representation model, the generalized
coordinates could be partitioned into independent, qi, and
dependent, qd, coordinates as,

q=
[
qd qi

]T
(27)

Both coordinates are defined respectively,

qd=
[
R2

y θ2 R3
x R3

y

]T
(28)

qi=
[
R2

x θ3
]T

(29)

Now, the Jacobian matrix should be also partitioned into
dependent and independent Jacobian matrices Cqd , Cqi ,

Cqd =




0 0 −1 0
1 0 0 −1
1 0 0 0
1 Rw 0 0


 (30)

Cqi =




1 −Lsin(θ3)
0 Lcos(θ3)
0 0
1 Rw


 (31)

Now for finding the transformation matrices Calculate the
following Matrix,that are used to eliminate Lagrange multipliers
by

Cdi = −C+
qd
Cqi (32)
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where, C+
qd

is Moore-Penrose pseudo inverse matrix of the
dependent Jacobian Matrix. Thus, the transformation matrix
Cdi must be modified to accommodate with the generalized
coordinates by addition of a unity matrix of size 2 × 2 to be
Bi

Bi =

[
Cdi

I2×2

]
(33)

Bi =




0 0
−1/Rw 0

1 −Lsin(θ3)
0 Lcos(θ3)
1 0
0 1




(34)

Use the transformation Bi to get the independent mass matrix
M̄ according to the partitioning coordinates. By rearranging the
system mass matrix in (14) then solve the following,

M̄ = BT
i MBi (35)

M̄ =

[
m2 +m3 + I3zz/R

2
W −Lm3sin(θ3)

−Lm3sin(θ3) L2m3 + I3zz

]
(36)

Similarly, the transformed force matrix is Q̄B

Q̄B = BT
i Q−BT

i Mγ (37)

Where,

γ =




cd
0
0


 (38)

Cd = C+
qd
Qd (39)

Note that the Lagrange multipliers vector λ was eliminated on
using the transformation matrix Bi. Now,

q̈i = M̄+Q̄B (40)

Where,

q̈i =

[
R̈2

x

θ̈3

]

4) Constraints Stabilization Using Baumgarte method:

As discussed in the introduction, the second-order equations
of motion along with the augmented, C̈(q, q̇, t), constraints are
unstable. Due to this, small errors/perturbations arising from
numerical errors that introduced by the integration process
cannot be corrected naturally, and they only tend to increase
with time. Baumgarte introduced a feedback controller that is
used to put the system violations under control if they occur
on the position or velocity constraint equations [62], [63]. That
method brings C̈ back to their manifolds by,

C̈ + 2αĊ + β2Ch = 0 (41)

Where, the constants, α and β, are positive. They are the
weights used to damp out the violations in the constraints

defined at both position and velocity levels. And play the great
role of control terms. As stated that in the background in
section I-A and in [56], [62] that the utilized method keeps
the violations (errors) under control. These constants may be
in the range of (1 to 10). It needs trial and errors to decide the
best selection of the αand β parameters.The first good choice
of these values is α= β= 1 for multibody systems consisting of
rigid bodies that converge the constraints without oscillation.
The use of the Baumgarte stabilization method is carried out
simply in the computational subroutines by employing,

Qd − C = 0 (42)

this leads to
Qd − (2αĊ + β2C) = 0 (43)

and by direct substitution of (43) in the system equations of
motion in (3) instead of using Qd only during the numerical
integration process. Till Now, by Putting the system of nonlin-
ear equations in the form of states. Following that, by solving
the model for the specified states. The state equation is defined
as,

Ẋ(t) = f(x(t),u(t)) = 0 (44)

where, the system states are the wheel displacement, R2
x, and its

time derivative Ṙ2
x. the pendulum tilt angle,θ3 and its derivative

θ̇3 . they are listed by,



x1

x2

x3

x4


 =




R2
x

θ3

Ṙ2
x

θ̇3


 (45)

Validation of the SBR nonlinear model for both the full
generalized coordinates augmented formulation technique and
the coordinate partitioning technique was done through the
simulation. By using MATLAB/functions and mathscripts along
with the common integrator ode45 with predetermined tolerance
to simulate both models with nonlinear dynamics. Table I
include the model parameters used in the simulation. While
the chart in Fig. 2 explains the solution of the multbody model
along with using Bumgrate violations stabilization method.

TABLE I. ROBOT SPECIFICATIONS

Parameter Data Description
m2 0.25 kg wheel mass
m3 2.045 kg pendillum mass
L 0.027 m pendillum CG. position
I2zz 0.00045 kg.m2 wheel mass moment of inertia
I3zz 0.0061602 kg.m2 pendilum mass moment of inertia
Rw 0.06 m wheel radius
g 9.81 m/s2 gravitational constant

At the start, proper robot initial configuration q0 and q̇0

are selected to avoid violations at the start and to ensure
accurate and fast convergence during integration process. Also,
at this step, the initial and final simulation times with the
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solution step δt = 0.001sec are defined. After that, system
mass matrix, jacobian matrices and the quadratic vectors for
both holonomic and nonholonomic constrains are defined in
the form of functions in MATLAB to be called at each step of
time. Following that the solution of (3) at each step of time is
done for the coordinates accelerations q̈ and lagrange multiplies
vectors λhand λnh. After that integration is done using ode45
function for the coordinates at velocity q̇ and position q levels.

Initialize
t0, tf , q0, q̇0

Compute
M, Ch

q , Cnh
q̇ , Q, Qh

d , Qnh
d

Solve the equation
of Motion to obtain

q̈, λh, λnh

Integrate for
q, q̇

t > tft = t + ∆t

Calculate
C(q, q̇, t), Ċ(q, q̇, t)

Stabilize the Constraints
C̈ = Qd −

(2αĊ + β2C) = 0

Recover
q̈, λh, λnh

Get
Mt, Ft

stop

No

Yes

Fig. 2. Multibody Model Simulation With Baumgrate Stabilization Method Flow Chart

At each integration step, Bumgrate stabilization defined in
(43) is calculated to control the constraints violations. At the
end of simulation time, the coordinates accelerations are ob-
tained by direct substitution of the obtained coordinates at both
postion and velocity levels during the solution. Additionally, the
reaction forces and moment can be calculated from lagrange
multipliers vectors [52], [54].

The results from the solution of the nonlinear dynamic
equations are shown in Fig. 3, Fig. 5, Fig. 4 and Fig. 6
respectively. On using the initial conditions defined in (46),
the pendulum falls from its preset initial position and keeps
swinging about the stable equilibrium position(θ3 = π/2) as
shown in Fig. 3. As a consequence, the wheel also keeps
oscillating and its position varies nearly in the range of [-0.114
:-0.06], as shown in Fig. 5, under the effect of IP momentum
as we neglect the friction effect on the robot wheels. Due to
the pure rolling constrains set before.

Furthermore, Fig. 4 and Fig. 6 show the angular and linear
velocities of the inverted body and robot wheel respectively.
The angular velocity starts from zero and varies in the range

of ±17.5 rads/s while the wheel linear velocity varies in the
range of ±0.42 m/s.

x0 =
[
−0.0868 (π/2) + (π/18) 0 0

]
(46)
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Fig. 3. The Inverted Pendulum Tilt Angle θ3

0 2 4 6 8 10
-20

-15

-10

-5

0

5

10

15

20

Fig. 4. inverted pendulum angular velocity θ̇3
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Fig. 5. Robot wheel position R2
x

Also, Fig. 7 shows the holonomic constraints functions error
Ch during the simulation time t. As indicated, this error
is initially relatively large of a value −9.5 × 10−3 and the
effectiveness of using baumgrate stabilization. it damp this error
to be within the range of ±2× 10−6. While Fig. 8 refer to the
violation in the nonholonomic constraints. it keeps the error
within the range of ±10−4 for Cnh. Which both are acceptable
ranges for the simulation of the dynamic response [52] of the
uncontrolled Self balancing robot planar model.
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Fig. 6. Robot wheel linear velocity Ṙ2
x
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Fig. 7. Holonomic constraints violation Ch
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Fig. 8. Nonholonomic constraints violation Ċnh

5) DC Motor Model:

In order to include DC motor model in the multibody
dynamics model to complete the full system block diagram.
we must derive the related equations.
For the motor electrical circuit defined in [81], [82]

v = e+ iaRa + linduc
di

dt
(47)

Where,ia is the armature current, e the back emf and Ra is the
armature resistance. As noted from Table II linduc is very small
when compared to the armature resistance Ra thus linduc = 0.
Note that the mechanical system dynamics can be considered
slow when compared to the motor electrical system. For this
reason, the current transients term di

dt can be neglected as the
model addressed in [83]. There by,

v = e+ iaRa (48)

TABLE II. DC MOTOR ESTIMATED PARAMETERS

Parameter Data Description
NG 34.02 motor gear ratio
kb 1e−2 V s/rad back EMF constant
Jm 7.9431e−7 kg.m2 motor inertia

linduc 8.5744e−6 H rotor inductance
R 18.334 Ω motor resistance
b 1.1355e−5 Nm/s viscous friction constant
Kt 0.014703 Nm/A torque constant

Where, the back emf and armature current could be defined by,

e = kbθ̇ , and ia =
τm
kt

(49)

and kt,kb are torque and back emf constants. By substitution
from (49) in (48) to get,

v = kbθ̇ +
τm
kt

Ra (50)

as shown in Table II
let kt = kb (51)

on the other side, the motor mechanical system,

τm = τload + bθ̇ m + Jθ̈m (52)

where, b and J , are the motor damping coefficient and inertia
respectively. By substitution of (50) and 51 in (52) to get the
DC motor equation, (53), that relates both the mechanical and
electrical systems.

τload + bθ̇ m + Jθ̈m = v
kt
Ra

− kt
2

Ra
θ̇ m (53)

the relation between motor and wheel torque is,

τload =
τw
NG

(54)

where, NG is the motor gearbox ratio. By simplification of
(53)

τw = v
NG kt
Ra

−NG

(
kt

2

Ra
+ b

)
θ̇ m −NG Jθ̈m (55)

while the relation between the wheel linear velocity and the
motor angular velocity at the revolute joint or the wheel axis
defined by,

Ṙ2
x = Rw

θ̇ m

NG
(56)

Assume that J is very small, this ignores the acceleration
term, θ̈m, and it is eliminated. Which effectively assume that
the motor reaches its final value of angular velocity once input
voltage is applied. This results in a reduced order model [84].
Torque is related to both the applied voltage and the inertia of
the system.The resulting torque equation is utilized for later in
linearization with the overall multibody model. Finally the key
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equation that relates motor output control torque of robot wheel
and the input DC voltage ,

τw =
NG kt
Ra

v −
(
kt

2

Ra
+ b

)
NG

2

Rw
Ṙ2

x (57)

6) DC-Motor Parameters Estimation:

We use the Matlab parameter estimation toolbox to simulate
the motor parameters in real-time using a DC motor with
hardware-in-the-loop (HIL). We followed the strategy found in
[68], [85]. The motor driver receives an excitation voltage from
the main controller board as in Fig. 9.
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Fig. 9. Input Voltage For Motor Parameters Estimation (V )

This voltage input is a step signal its amplitude varies
between {0,±7} to see the dc motor speed response at each
change on the step signal. Next, we measure the motor speed
corresponding to this excitation which is indicated in Fig. 10
this is indicated by the pink colour (Real θ̇2 ). Finally, by using
the parameter estimation toolbox in MATLAB software. In this
toolbox, the method used for optimization is the nonlinear least
squares algorithm for model fitting, with a parameter tolerance
of 0.001 and a maximum of 100 iterations. The parameters
resulted from the estimation process using are listed in Table
II.
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Fig. 10. DC Motor Angular Velocity Response θ̇2 (Real Measurement-Simulated)

To validate the estimated parameters, we construct the DC
motor model in Matlab Simulink. Both Fig. 11 and Fig. 12
show the DC motor model provided with its new estimated
parameters found in Table II. Fig. 11 is the main block indicated
by the red color in Fig. 12. It starts with the control signal
input node (V ) that signal enters a summation point that

subtracts the back EMF signal generated due to the rotor
angular velocity. This error signal is multiplied by the electrical
circuit transfer function (linduc, R) that produces the motor
armature current I . We use a saturation function to limit the
current to the rated value of the used DC motor. We find the
motor torque by multiplying this value with the motor torque
constant (T.constant).

Fig. 11. DC Motor Model/Simulink

Fig. 12. Validation Model/Simulink

For the mechanical side of the DC motor, the motor torque is
the input, and the output is rotor angular velocity. In addition to
this, Fig. 12 constitutes the full simulation model at which the
excitation voltage along with the motor estimated parameters
were given to the DC motor model, and the outputs are the
real and simulation results of the rotor angular velocities in
rad/sec. These results were plotted and indicated in Fig. 9.
This method ensures the success of the estimation process. The
output angular velocity from the simulation process is indicated
by the blue color, and it is almost identical to the real measured
data in the pink color.

7) State Space Representation:

Since we need to design a controller for self-balancing robot
stabilization, the state space model is to be found. Before this
step, the modification of the force matrix in (37) was done by
using the half of the input torque (τw/2) from (57) as we deal
with two DC Motors for the right and left wheels that will
keep the robot balanced. Following this the nonlinear MBM
was linearized around the equilibrium operating point (x0,u0).
Where, x0 was defined in (46) and u0 = 0. Recall, the state
space model and Taylor series are utilized, by neglecting terms
of second and higher orders as discussed in [86], [87], taking
into our consideration that fi(x0,u0) = 0 and the variations
about that operating point are, x̃j = xj − xj0 , ũk = uk −
uk0 and ẋi = ˙̃xi. Then the resulted linearized ith state space
equation, at x0 = [0; pi/2; 0; 0] are,

˙̃x = Ax̃+Bũ (58)
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A =




0 0 1 0
0 0 0 1
0 A32 A34 0
0 A42 A44 0


 (59)

B =




0
0

B31

B34


 (60)

Where, the term A32, A34, A42 , A44, B31 and B34 are stated
in section IV. By substitution of the all model parameters in
Table I and the equilibrium operating point results in the state
space model matrices,

A =




0 0 1 0
0 0 0 1
0 1.9337 −1.6202 0
0 84.7510 −11.6927 0


 (61)

B =




0
0

0.1963
1.4168


 (62)

C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]
(63)

Note that, robot parameters in Table I were estimated from
the robot CAD model, the measured and calculated data of the
measurable parameters. In this stage, we could use the results
in (61),(62) and (63) and check the stability, controllability and
observability for the controller design about the stabilization
point.

B. Controller Design

1) Pole-Placement Controller Design:

In state feedback control law, the theory of asymptotic sta-
bility says that the vector for the closed-loop system dynamics
(A-BK), shown in the block diagram in Fig. 13, must have
eigenvalues with strictly negative real parts. Control engineers
are often concerned with the closed-loop characteristics of the
transient response, such as the rise time, tr, peak time, tp,
maximum percentage overshoot, %OS, and the time at which
settling occurs, ts, of the step response.

For that, in the pole placement technique, we are to shape the
system response by finding the desired pole locations according
to a desired system step response of the second-order dominant
poles. The resulting feedback gain matrix, K, is designed to do
this task [73], [87]. Now, the open loop system in (58) has the
following eigenvalues (SI−A = 0) are,

Poles =
[
0 8.8805 −10.388 −4.974

]
(64)

∫ẋ(t) x(t)

A

+
+

B
u

C
r(t)

+

K

−
y

+

D

+

Fig. 13. Closed Loop State Feedback System Block Diagram

Equation (64) indicate that there are at least one pole at the
right-hand side of the pole-zero map in the S-plane. Before
designing a state feedback controller, we must first check the
system’s controllability. We must check the stability of the
system in (58) that it should be controllable. By checking the
rank of the controllability and observability matrices. This can
be easily done by using Matlab commands Ctrb(A,B) and
Obsv(A,C) respectively . It was found that the rank of both
the controllability the observability matrices were four. Thus
the system is controllable and observable,

In this context we used Ackermann’s formula for the calcula-
tion of the state feedback gain vector K in terms of the desired
closed-loop characteristic polynomial [87], [88]. The second
step is shaping the system dynamics response. First of all, we
design an approximation of the second-order system dominant
poles to pull the system poles {0, 8.8805} to the stability region,
and by using the desired following Table III, this yields the
desired dominant second-order transfer function poles as the
first and second poles in (66).

TABLE III. DESIRED DOMINANT POLES FOR THE 2nd ORDER SYSTEM

Symbol Data Description
%OverShoot 25% maximum overshoot

ζ 0.69 damping ratio
ts 2 sec settling time
ωn 2.90 rad/s undamped natural frequancy

The other remaining poles were chosen to be in the −ve
real axis of the s-plane far away with multiples from the origin
to bring the system to stability region (non-dominant poles).
Therefore, by using the data in Table III, we can determine
the desired dominant poles location. The undamped natural
frequency can be found by,

ωn = 4/(ζts) (65)

and the desired closed loop poles are,

DesiredPoles =
[
−2 + 2.10i −2− 2.10i −500 −10

]

(66)
The system’s resulting feedback gain vector for the desired
stated response criteria was calculated to be,

Kplace =
[
−756.356 1363.475 −445.143 151.235

]

(67)
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On testing the controller design, the simulation of the con-
troller on both linearized and nonlinear controller was done.
We initialized the model simulation with the initial conditions
x0,

x0 =
[
−0.0868241 (π/2)− (π/18) 0 0

]
(68)

While the reference state vector is the tracking trajectory, xr,

xr =
[
0.1 π/2 0 0

]
(69)

Note that the initial values for the linearized model are almost
the same as the nonlinear one, except for the initial angle,
which is measured from the linearization point θ3 = pi/2. So,
its initialization should have a small drift from that point, for
example, −π/18 rad.

The results of the controller simulation with both linearized
and nonlinear models, with the red and blue colours respec-
tively, are shown in Fig. 14 for displacement and Fig. 15 for
tilt angle. It is clear that system requirements in Table III have
been met.
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Fig. 14. Robot Wheel Position R2
x Using the Pole Placement Controller
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Fig. 15. The Inverted Body Tilt Angle θ3 Using the Pole Placement Controller

The set point,in Fig. 14, for the wheel displacement, R2
x was

set to 0.1 m and initially it was set to −0.0086 m. It took
about one second to reach the 95% of the desired response.
The maximum overshoot is about 10% with the settling time
of two seconds. The second Fig. 15, the desired tilt angle was
set to θ3 = pi/2 rad while the initial value was set to θ3 =
1.3963 rad as initial drift from the balancing set point. the
response to this setpoint shows that the inverted body settles at
the balancing point pi/2 at nearly two seconds with maximum
overshoot of 3%. Fig. 16 and Fig. 17 indicates the linear and

angular velocity of the first two states and similarly meets the
specified characteristics.
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Fig. 16. The Robot Wheel Velocity Ṙ2
x Using the Pole Placement Controller
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Fig. 17. The Inverted Body Angular Velocity θ̇3 Using the Pole Placement Controller

While, Fig. 18 describes the control action in volts.It is clear
that the linear model,the blue colour, needs initially about 3
volts to get the inverted body track the desired set points for
the wheel displacement and the pendulum tilt angle. while the
nonlinear model,orange colour, initially needs about 17 volts
this is due to initial computation of the nonlinear model but
quickly decays at less than 0.05 seconds to the 6 volts which
is considered the initial voltage required for the stabilization.
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Fig. 18. The Control Voltage Using the Pole Placement Technique

2) LQR Controller Design:

The general equation for the optimal linear quadratic regu-
lator cost function [35], [72], [82] is

J (u) =

∫ ∞

0

[
xTQx+ uTRu

]
dt (70)
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Where Q and R are positive definite weighting matrices. And
solving the Algebraic Riccati Equation (ARE) in (71) for P ,

ATP + PA− PBR−1BTP +Q = 0 (71)

which results in an asymptotically stable closed loop system.
From the linear optimal control theory [35], the gain K used
to minimize (70) is obtained for the optimal controller u by,

K = R−1BTP (72)

, and the control action is found by,

u = −Kx, (73)

The weighting matrices Q and R are adjusted utilizing Bryson’s
rule, as in [35]

1) Qi,i =
1

max(x̃2
i )

2) Ri,i =
1

max(ũ2
i )

Recall that the desired maximum allowable error for each
state is defined by R2

x = 0.01 cm, θ3 = 0.0175 rad,
Ṙ2

x = 0.1 m/sec, θ̇3 = 0.1 rad/sec and the max motor
controller input is 12 V . For that by using the Bryson rules,
R = 0.0069444; and the matrix Q is summarized by,

Q =




10000 0 0 0
0 3286.137 0 0
0 0 100 0
0 0 0 100


 (74)

the optimal control gain matrix is found by using the ”lqr”
command in MATLAB,

K =
[
−1200.00381 1623.8364 −647.06405 211.7751

]

(75)
and the controlled system, its closed loop eigenvalues are found
from A−KB as,

PClosedloop =




−686.695
−5.856

−2.987 + 2.769i
−2.987− 2.769i


 (76)

The simulation results are shown in Fig. 19 and Fig. 20 for
both the displacement and tilt angle respectively. The similar
initial and tracking conditions for the system states were defined
in (68) and (69) respectively.

The most important note from the stated figures is that the
linearized and nonlinear model responses are almost identical.
In addition to that, the settling and zero steady-state errors are
met, while the maximum overshoot is less than 25% from both
the tilt angle and the linear displacement. Furthermore, it is
obvious that the maximum overshoot for tilt angle is higher
than the achieved in the pole placement technique in Fig. 15.
Similarly, for the linear velocity, as shown in Fig. 21, initially
it is zero and goes up to 0.32 m/s before fast decay to zero at
two seconds. Fig. 22 indicates the tilt angular velocity, which

increases up to 0.65 rad/s before decay at the same settling
time as desired. Finally, Fig. 23 describes the control action
or the DC motor control voltage over the simulation time. For
real-time implementation, one should consider the maximum
linear velocity for the selection of the DC motors and therefore
the rated voltage.
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Fig. 19. The Robot wheel Position R2
x Using LQR controller
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Fig. 20. The Inverted Body Tilt Angle θ3 Using LQR controller
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Fig. 21. The Robot wheel Velocity Ṙ2
x Using LQR Controller.
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Fig. 22. The Inverted Body Angular Velocity θ̇3 Using LQR Controller
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Fig. 23. The Control Voltage Using LQR Controller

3) Model Modification for Friction and Damping Forces:

For the realistic behavior of other external forces that cause
losses in the control torque and affect robot stabilization. We
added the friction forces. Assume a smooth Coulomb friction
model will be considered [89]. Therefore, the dry friction force
is given by:

Ffric = −µk |FN | sgn(Ṙ2
x) (77)

where, µk is the dry friction coefficient, FN is the instant
normal force produced by the contact between the two surfaces
interacting, and Ṙ2

x is the relative velocity between them,
whereas sgn is the sign function defined as: [89]

sgn(Ṙ2
x) =





−1 Ṙ2
x ≤ 0,

0 Ṙ2
x = 0,

1 Ṙ2
x ≥ 0.

(78)

The classical Coulomb friction model and Coulomb–tanh alter-
native model could do the same task. Because the alternative
Coulomb–tanh model ensures continuity at zero velocity (repre-
sented by the Ṙ2

x variable) and highly approaches the classical
model as the friction coefficient Kcolmb increases. It is obvious
in Fig. 24 [90]. It shows that at Kcolmb is the perfect case that
is used with the Coulomb–tanh model.

Ffr = −µk |FN | tanh
(
KcolmbṘ2

x

)
(79)

Fig. 24. The Friction Coefficient [89]

For the revolute joint damping due to the inverted mass Tfr

is calculated as, Tfr = −Kd(θ̇3− θ̇2). [91] [92] Thus, the total
modified force vector Q,

Q =
[
m2g −2τw 0 −m3g Ffr +

Tfr

Rw
2τw − Tfr

]

(80)

Recall the inclusion of the DC motor torque, τw, from (57)
and [82]. That equation is simplified to be considered in the
controller design of balancing robot stabilization.

It is assumed that θ̇2 at the moment of an impulse disturbance
on the system, that is, the moment that needs the largest control
action (force), is zero rad/s. Substituting in (56), it shows the
proportionality between the control output torque τ as an input
and the motor driver output voltage to the DC motor, v.

τw =
NG kt
Ra

v (81)

For that we conclude that the force vector is modified as the
following matrix,

Q̄B = BT
i Q−BT

i Mγ (82)

Q̄B =



(Kd

(θ̇2−θ̇3)
Rw

− Frtanh(Kf Ṙx
2
)((m2g) + (m3g))+

Lpm
3θ̇3

2
cos(θ3) + 2KtNG

RaRw
V

(2KtNGV )
Ra

−Kd(θ̇2 − θ̇3)− Lpgm
3cos(θ3)




(83)
Now, the full nonlinear model has been defined on substitution
in (40). In order to linearize the system as we assumed before,
the equilibrium point of the tilt angle, θ3 = 90 + θ. Thus,
sin(θ + 90) = cos(θ) = 0 , cos(θ + 90) = −sin(θ) = −θ,

θ̇3 = 0, θ̇3
2
= 0 and θ is the drift from the equilibrium point.

these substitutions in the nonlinear model results in the
linearized mass matrix, M̄L, and the force matrix, Q̄L, are
defined by,

M̄L =

[
m2 +m3 + Izz2/R2

w −Lpm
3

−Lpm
3 m3L2

p + Izz3

]
(84)

and

Q̄L =

[
Kdθ̇2Rd− Frtanh(Kf

˙Rx2)(m2g +m3g)− θ3 + 2KtNG

RaRw
V

2KtNG

Ra
V −Kdθ̇2 − Lpgm

3 − θ3

]

(85)
After that by numerical substitution in the state space model in
eq.58,

A =




0 0 1 0
0 0 0 1
0 1.9337 −111.3709 0
0 84.7510 −803.7338 0


 (86)

B =




0
0

7.5240
137.5348


 and,C =

[
0 1 0 0

]
(87)

Note that, our main goal is to stabilize the robot in the vertical
position for that the system transfer function for angle related
to input voltage is our interest,

G(s) =
137.5s2 ++9543s

s4 + 111.4s3 − 84.8s2 − 7885s
(88)
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and the system open loop poles for the modified model are,

Popen−loop =




0
−111.4968
8.4725
−8.3466


 (89)

it is obvious that system is not stable as there exist at least one
pole in the right hand side of thae pole-zero map in S-plane.
It is clearly shown from the root-locus graph in Fig. 27 of the
system in (88). There are a pole at the origin point and another
one at the point (8.4725, 0). For this, the PID controller design
is proposed to bring the system to the stability region and shape
the system response.

4) Digital PID Controller Design:
We deal with SIMO (single input, uc, multiple output, θ3, R2

x,
planar system), as it has one input i.e. the torque, τw, or voltage,
v, applied on the wheel and two outputs i.e. the wheel position
and the main body angles, R2

x and θ3 respectively. Various
methods exist for determining the discrete time equivalent of
a continuous controller. Given that there is no exact digital
equivalent of a continuous controller a continuous controller
has access to the complete time history of the error signal e(t).
while a digital controller has access only to the samples of
this signal [93] [94] [95] . We assume that the Analog PID
controller transfer function is Gc =

u(s)
e(s) ,

Gc = kp + ki
1

s
+ kds (90)

And needs to be replaced with a discrete-time controller. It
accepts the samples from the difference between the sensor
angle and set point, which is the controller input signal at the
sample kts, e(kts), from a sampler and, by using past values
of the control signal u(kts) and present and past samples of the
input e(kts), will compute the next control signal, u(kts+ts), to
be sent to the wheels DC motors. The equivalent control action
is composed of three terms in the time domain,

uc
t = up

t + ui
t + ud

t (91)

By discretizing each control action term separately. For the
proportional term, the next control sample can be computed
as,

up
(kts+ts)

= kpe(kts+ts). (92)

While the integral term can be approximated as,

ui
(kts+ts)

=
∫ (kts+ts)

0
e(t) dt

=
∫ kts
0

e(t) dt+
∫ (kts+ts)

kts
e(t) dt

(93)

The integral term
∫ (kts+ts)

kts
e(t) dt could be approximated us-

ing Tusons rule or the trapezoidal method for the numerical
integration for one step of time. [93] [87]

ui
(kts+ts)

= ui(kts) + (ki
ts
2
(e(kts+ts) + e(kts))). (94)

Similarly, the next control sample for the derivative term
is found by using the two point difference form in the term,
ud(t) = kd de(t)

dt to get,

ud
(kts+ts)

= kd
e(kts + ts)− e(Kts)

ts
(95)

Now, the PID controller in discrete form is found by using,
the operator z−1, the backward shift operator. So that u(z)
is the transform of u(kTs + Ts). And by this notation, the
z−1u(z) will be the transform of u(kts). With this definition,
proportional ,integral and the derivative terms are defined as in
(96),(97) and (98) respectively.

up(z) = kpe(z) (96)

ui(z) = z−1u(z) + ki ts
2 (e(z) + z−1e(z))

ui(z) = ki ts
2

1+z−1

1−z−1 e(z)

(97)

ud(z) = kd 1
ts
(e(z)− z−1e(z))

ui(z) = kd 1
ts
(1− z−1)e(z)

(98)

Now recall (91), the controller discrete time transfer function,
[2]

uc(z) = (kp + ki
ts
2

1 + z−1

1− z−1
+ kd

1

ts
(1− z−1))e(z) (99)

The system digital PID controller is defined as in Fig. 25.
Note that, when the sampling time of the integral term is
selected as 1 ms according to the (80 MHz FPGA clock),
the discrete time controller perfectly tracks the continuous time
controller output.

kp

kd(z−1
z )

+

ekrk
+

uk y(z)
x(z)

yk
+

ki(z+1
z−1)

+

−

Fig. 25. Digital PID Controller Block Diagram

We used the MATLAB pidtool to tune system controller
parameters according to the background experience stated by
[87], [88],and [93], in Table IV. Where, D, i and D-by Var
denotes decrease, increase and decrease by varying respectively.
This table summarizes the different effects of each term of
the PID controller on the rise time, settling time, maximum
overshoot and the steady state error of the system response.
E.g. the kp cause the system to respond faster while the ki

parameter eliminates the steady state error.
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TABLE IV. SUMMARY OF PID TERMS EFFECTS

Parameter R.Time OS S.Time SS Error
kp D i D − by V ar. D
ki D i i V anish

kd D − by V ar. D D D − by V ar.

Tuning kp, ki and kd so as to obtain the best parameters that
meet the desired response was done. The results are summarized
in Table VI. Which indicates that the settling time is 0.196 sec,
the percentage overshoot is 19% with zero steady state error.
And, the rootlocus of both the uncontrolled and the controlled
self-balancing robot model are shown in Fig. 27 and Fig. 28.
The rootlocus in Fig. 28 show that th system is stable.

Matlab-simulink as [73], Fig. 26, is used to test and sim-
ulate the designed both continuous time and the digital PID
controllers on the tilt angle linearized transfer function. The
simulink model is established. According to [93], [2] and in
(99), the parameters of the digital PID controller defined in
simulink model are Kp1 = kp,Ki1 = ki ts2 , and Kd1 = kd 1

ts
.

Fig. 26. Simulink Model of Tilt angle controller

Fig. 27. The Uncontrolled System Rootlocus Plot

In this model, saturation function is utilized to limit the
controller output voltage to be within ±12v. Also, a zero order
hold function is used to give a continuous control action as

an input to the CT-Transfer function. Also, the system transfer
function is altered by an input signal to test its response with
small deviations away of the equilibrium balancing angle (1.57
rad).

Fig. 28. The System with The Controller Rootlocus Plot

Furthermore, we used signal input and its unit in rad, and
we made small perpetuation by 0.117 rad from equilibrium
linearization point 1.5707 rad (90 deg.) of the tilt angle as
shown in Fig. 29, then by using the standard PID Controller
block with the tuned parameters in Table V. The output of the
controller block is constrained with the saturation limits ±12v,
the motor-rated voltage.
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Fig. 29. Step Response PID DT-CT

TABLE V. TUNED PID PARAMETERS

Parameter Value Description
kp 16.8 proportional gain
ki 94.05 integral gain
kd 0.7501 derivative gain

The response is displayed by scope function block as shown
in Fig. 29 which indicates both responses of closed loop system
for continuous and discrete time controller. It is clear that
the corresponding the D-PID Controller to the CT-PID has a
slightly small reduction in Overshoot but is slower in terms
of settling and rise time. This also reflects the controller output
signal due to this error is shown in Fig. 30.
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Fig. 30. Control Action DT-CT.

TABLE VI. CONTROLLER DESIGN STEP RESPONSE

Parameter Value Description
Rtime 0.0204 sec rise time
Stime 0.196 sec settling time
OS% 19% maximum overshoot

SSerror 0 steady state error
Gm −17.7db at 10.6 rad/sec gain margin
Pm 88 deg. at 79.1 rad/sec phase margin

C. Hardware System - Electrical circuit

The hardware configuration is shown in both Fig. 31 and Fig.
32. It consists of ,

1) Two DC motors: They are driven using a dual DC motor
driver that is supplied with power from a rechargeable
battery.

2) The dual cytron DC motor driver: It is controlled by the
3.3 v TTL FPGA Kit through DIO port and the driver
PWM pins.

3) DC motor Hall effect encoders: They are installed on the
motor shaft to give feedback about its angular position and
velocity.

4) Accelerometer and gyro sensors: They give the feedback
about the robot body tilt angle θ3 and its angular velocity
θ̇3. Additionally, they take their power from the FPGA Kit
through the AO port.

5) Robot main controller: It includes the hardware repro-
grammable circuit, the FPGA, which is designed and tested
using PC along with the FPGA kit interfacing software
LabVIEW with FPGA module. As shown in Fig. 33, it
includes FPGA target, a real time processor, the I/O digital
and analog ports in addition to the ethernet cable to for
communication with PC.

6) DC-DC converter: It is used to supply the 24V to the sbrio
9631 FPGA kit from the 12v power supply.

7) Fig. 32 shows the robot CAD model, which was imple-
mented in the real-world prototype. It includes all the
stated components in addition to the two robot wheels,
the main inverted body (chassis), the 12V power supply,
and the bolts and connectors that were used to assemble
the whole robot structure.

Fig. 31. System Hardware Block Diagram
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Fig. 32. The SBR CAD Model

Fig. 33. Sbrio 9631 FPGA Board

The accelerometer MEMS sensor is considered the tilt angle
feedback. And its output signal must be conditioned to give
accurate results. The tilt angle of the robot describes the angular
position of the robot’s main body. A low-power MEMS-based
analog ADXL335 accelerometer that measures the static accel-
eration of gravity as well as the dynamic resulting acceleration
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from motion or vibration in the three axes (R̈x, R̈y, R̈z), and
with these three components utilization, the tilt angle is found
[96], [97]. The sbRio 9631 FPGA analog input port (AI) has the
main specifications in Table VII. It’s analog to digital converter
resolution is 16 bits, the conversion time is 4µs and the analog
input ranges are of ±10, ±5, ±1, ±0.2V . These data are
utilized in accelerometer measurements and calibration.

TABLE VII. SPECIFICATIONS OF ANALOG PORT IN SBRIO9631

Property Data unit
ADC resolution 16 bits
Conversion time 4.00− (250) µs− (kS/s)

Input ranges ±10, ±5, ±1, ±0.2 V

The traditional calibration method specified by the sensor
datasheet to obtain acceleration values is implemented by using
the equations from (100) to (102). To find the tilt angle about
the z-axis, see (103). However, this method is not accurate, as
the sensitivity factor makes significant acceleration errors that,
by extension, enlarge the error in the tilt angle, which is not
acceptable in our application. Therefore, we have decided to
develop an alternative solution to address this issue.

R̈x = (Vx(out) − Vx(offset))/Ks (100)

R̈y = (Vy(out) − Vy(offset))/Ks (101)

R̈x

R̈x

=
g.sin (α)

g.cos(α)
(102)

α = tan−1(
R̈x

R̈x

) (103)

Where, α, is the inclination angle, and Ks, is the sensor
sensitivity. While, Vx(offset), Vy(offset) are determined from
sensor calibration with the help of datasheet stated in [97].

In our proposed method, at first, we changed the settings
for analog inputs to get its raw ADC values coming from the
accelerometers. There exist x-y-z axes for ADXL335. For each
axis, two measurements are taken, at maximum positions(+90)
and (−90) degrees. Each single measurement takes 1000 sam-
ples of data and then the calculation of the mean value of these
samples is made. The data taken are summarized in Table VIII.

TABLE VIII. ACCELEROMETER RANGE OF MEASUREMENT

Direction X-Accele. Y-Accele. Z-Accele.
+g 6022.39 12083 11916.7
−g 3968.63 8057.39 8172.55

Following that step, we make a linear equation that maps
the incoming ADC Values from the accelerometer to an angle
about each axis (Anglex, Angley, Anglez) shown in Fig. 34.
this is done by developing a mapping function for each axis as
sensor is linear as follows,

Y = a(x− xlow) + ylow (104)

Where,
a =

yhigh − ylow
xhigh − xlow

(105)

and, x is input data from channel AI0, xlow, is the AI0 Value
corresponding to minimum Value of channel Input and ylow,
is the minimum mapping value corresponding channel Input.
Table IX states the calculated valves for the accelerometer
constant a.

TABLE IX. ACCELEROMETER CONSTANTS FOR EACH AXIS

Direction X-Accele. Y-Accele. Z-Accele.
a 0.09738 0.0496819 0.05341

The output value from each equation is divided by -100 to
get the values of each accelerometer channel in “g”. The angle
about x-axis can be found by,

Anglex = atan2(−yg,−zg) ∗ 57.2957795 + 180 (106)

and the angle about y-axis,

Angley = atan2(−xg,−zg) ∗ 57.2957795 + 180 (107)

similarly the angle about z-axis,

Anglez = atan2(−yg,−xg) ∗ 57.2957795 + 180 (108)

The advantage of using dual axis measuring method is the
ability to distinguish between each quadrant and to measure
angles throughout the entire 360 degrees by examination of the
sign of the measured acceleration values on each axis [96].

Following that we designed a digital low pass filter, by using
bilinear transformation from (109) up to (116). For the sensor
output angle filter,

H (s) =
ω

s+ ω
=

2πfc
s+ 2πfc

(109)

Using bilinear transformation

z =
1 + δt/2

1− δt/2s
(110)

then

s =
2

δt

(1− z−1)

(1 + z−1)
(111)

H(z) =
ω

2
δt

(1−z−1)
(1+z−1) + ω

(112)

now,simplify and substitute for

H(z) = δtω
(z + 1)

(δtω + 2)z + (δtω − 2)
(113)

ω = 2πfc (114)

Based on the sampling time δt = 10 ms and the cut off
frequency fc = 5 HZ. Note that the fc is selected by different
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Fig. 34. Accelerometer reading vi

trial and error notability, by the substitution of these values in
(113) which results in the filter equation in (116),

y(n)

x(n)
= H(z) (115)

y(n) = 0.951219y(n−1)+0.02439x(n−1)+0.02439x(n) (116)

The last stated equation, (116), is implemented in Labview
vi to filter out the undesired frequencies. which is indicated in
the for the fully SBR real-time Vi in Fig. 37, i.e. to find the
angle about X-axis (angle x) the analog accelerometer value
corrosponding to this axis is read through the AI0 (MODA/AI0)
then this value calculated as in (104) and then by finding the
angle by (106). This is done for the three axis angles to test
and validate the developed method to find the tilt anhle from
the low cost accelerometer. The result of this implementation
in NI-LabVIEW with FPGA is shown in Fig. 35. The figure
indicates the plot of both the real (red color) and the filtered
(blue color) tilt angle for different orientations of the sensor
about the x-axis.
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Fig. 35. The Reselt of the Tilt Angle with the designed filter for Adxl335

D. Stabilization Controller Implementation

In this context, we describe the full program used in the
implementation of the stabilization D-PID controller on Sbrio
9631, The FPGA VI side is indicated by Fig. 36. It includes
four ”while loop” And one Single cycle timed loop. Each loop
has its specific task and they are explained in the following
lines,

Fig. 36. SBR PID Balancing FPGA Block Diagram vi

Fig. 37. The RT SBR PID Balancing Block Diagram vi
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1) The first loop is titled ”3.3V for encoder” in Fig. 36A.
This loop Keeps supplying an analog voltage of 3.3 volt
to the 374 ppr DC motor Hall effect encoders drawn From
the DC-DC Converter that supplies the Sbrio 9631. The
indicated binary value ”10200” is related to the raw value
for the 16 bit digital to analog converter on the RIO board
which produce the required 3.3v for the encoder. This can
be done by setting the calibration mode property to the
analog output ports (AO0, AO1) to ”Raw” in the NI 9263
Module Properties dialog box. That is done to make the
FPGA I/O node, only, take a binary value when writing
to the FPGA module. In order to convert the required
output voltage into binary values before writing to the AO
module. By using the formula in (117),

BV = (V × 109–Offset)÷ LSBWeight (117)

The LSBWeight is calculated by,

LSBWeight = (OutputSpan÷ 2DACResolution)× 109

(118)
Where, BV , is the digital value required to be written
on the AO port to the FPGA I/O Node. And V , is
the corresponding voltage Value that is needed at the
output channel. while, Offset, this value is = 0. The
LSBWeight, is the value obtained from the DAC resolution
and this DACResolution = 16bit. Eventually, the
typical Output Span is 21.4V for the NI 9263 Module
that is included in the 9631 RIO board.

2) The second loop, Fig. 36 B named by ”calculate Tilt An-
gle”. This loop is used to read the incoming analog voltage
from the ADXL335 accelerometer from x, y, and z, which
are connected to AI0, AI1, and AI2, respectively.The
calibration process stated in section II-C is implemented
and the resulted offset values for each AI port are added in
this loop in fixed point format. A flat sequence structure is
used along with the loop timer to synchronize the sampling
rate. The loop timer receives the value desired for sampling
time from the host (Real Time Processor). Also, the inverse
tan function in fixed point format is utilized to get the tilt
angle around the Y-axis. which is the installed orientation
of the sensor on the robot.

3) ”Encoder Loop” in Fig. 36 C is a single cycle timed (SCT)
loop that is used to detect the incoming quadrature signal
from the two channels encoder and calculates the number
of pulses per interval of ticks of the FPGA Clock, where
the tick is (1 ÷ 400000 sec). In the execution of each
iteration of this loop, both left and right DC motor encoder
signals are detected and used for the next loop iteration
through shift registers indicated by the blue color.

4) After SCTL calculates the left and right velocity
(pulse/interval), the angular velocity is determined in the
while loop shown in Fig. 36 D, ”Angular velocity Mea-
surement.” It uses two subVIs that change the number of

pulses per interval into radians per second. It also includes
a loop timer to synchronize the reading of each wheel’s
angular velocity with the real-time VI execution.

5) The final loop is the DC pulse width modulation loop
(PWM), as shown in Fig. 36 E. This PWM loop generates
an output voltage at the indicated digital output ports (P9-
8, P9-6) of the sbrio for both motors. This loop also
controls the direction of each motor by enabling/disabling
the P9-7 and P9-5 digital outputs according to the motor
driver’s working principle. The system consists of two flat
sequence structures, each containing two loop timers. They
are used to control the high and low intervals of the PWM
signal. It receives the period time (Ton+Toff) according to
the desired working frequency along with the control input,
the duty cycle resulted from the PID controller in the RT
part, to generate a signal from 0 to 3.3 V. Thereafter, it is
regulated by the Cytron motor driver to a signal between 0
and 12 volts, which is the rated voltage of the DC motors.

Referring to the Host Vi indicated in Fig. 37, it is composed
of a timed loop that works at a rate of 1 msec and it includes
the PID controller for the robot stabilization. the following lines
discuss what it could do along with the FPGA Vi. At first,
Step ”A” in the red circle in Fig. 37, the FPGA target calls
the bit file uploaded on the flash memory. Then the output is
the reference FPGA target that allows opening the FPGA and
getting or sending data to the AI/A/O and the DI/DO ports to
do the specified functions.

Thereafter, a flat sequence structure, at step B, takes 50 ms
before passing to the FPGA node that addresses the FPGA
resources (duty cycle) at step C. That sets the motor driver
to supply zero voltage to avoid any unexpected voltage at the
start of the FPGA target. Following that, the host runs the timed
loop with the stated loop time. In this loop, the host addresses
the FPGA side, step D, for the accelerometer reading, PWM
duty cycle, and the direction for both motors, sensor loop rate,
and the wheel angular velocities. After getting the tilt angle
reading, y-angle, from the FPGA accelerometer loop, it enters
the designed filter, in step E, for the accelerometer reading as
discussed in section (II-C).

Following this step, the D-PID Subvi as in Fig. 38 step F
receives this reading and calculates the error between it and
the desired tilt set point. Then it calculates the PID control
action for stabilization. Note that at each loop iteration, the
shift registers are used to store the previous values of the PID
control output, such as the sum of errors for the integral part,
for the next controller calculations. The PID output is passed
to step G. At which the motor controller Subvi manages the
output control action to set direction and the duty cycle for the
PWM loop on the FPGA side for stabilization of the robot in
the upright position. Finally, step H ensures a zero-duty cycle
for robot motors and closes the FPGA reference target if the
loop terminates.
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Fig. 38. D-PID Controller vi

The Practical HIL-Controller implementation of the robot
stabilization on NI-Sbrio9631 is summarized in this paragraph.
The PID-Controller vi in Fig. 38 was implemented on NI-
LabVIEW to calculate the control action uc each iteration of
the controller loop, each ts. Following this, fine-tuning of the D-
PID parameters was done according to the designed continuous
time and the discrete-time PID controllers with Matlab. We
started with the proportional term, kp, by slightly increasing
its value till the robot started oscillating around the balancing
set point.

At that step we carefully increased the proportional term
of the controller as larger values caused the system to behave
aggressively, oscillating around the set point. At this stage the
damping-derivative term, kd, was carefully increased by 0.001
till the robot started to balance without external aid. But still
there was an error at the balancing step point. For that, a small
integral term, ki, was added to eliminate the steady-state error.
Considering the table defined in Table IV for the effects of each
term on the system response. The final implementation results,
in Fig. 41, 43 and 45 showed the perfect parameters chosen to
meet the response specification.

III. RESULTS

The planar multibody model for the self-balancing robot was
built. After that, Pole placement and LQR optimal controllers
are designed and simulated with both the linearized and nonlin-
ear models to follow a reference trajectory. The pole placement
results ,for the wheel displacement R2

x, the desired position was
reference point 0.1 m. The rise time achived was one second
while the maximum overshoot obtained was about 10% with
the settling time of two seconds. while for desired tilt angle
equilibrium point of pi/2 rad with initial error of 1.3963 rad
the response shows that the inverted body settles in nearly
two seconds with maximum overshoot of 2% and zero steady
state error. while for the LQR optimal controller, the settling
and zero steady-state errors are met as specified in Table III,
while the maximum overshoot is less than 25% nearly about
1% for the wheel position and about 3% for the pendillum tilt
angle. And this is almost higher than the achieved in the pole
placement technique. but both achieve the specified controller
design parameters.

Following that step, design and simulation of the robot
stabilization digital PID controller was addressed. And the
results as listed in Table VI. The rise and settling times
are 0.0204 and 0.196 sec respectively while the Maximum
percentage overshoot is nearly about 19% which are also less
than the specified design parameters. This is another indication
that the controller design along with the multibody modelling
with the coordinate partitioning method succeeded. After that
utilization of FPGA technology in SbRio9631 single RIO board
for practical hardware implementation of the PID controller
on the self balancing robot prototype. Tuning trials are made
for these implementations. Among these trials, we state the
following successful three cases. Case 1, At first the robot is
at a tilt angle of nearly −13 degrees, and the set point for
stabilization is put to be zero. by using the PID Parameters
Kp = 12,Ki = 0.0001 and Kd = 0.00154 the result is
shown in Fig. 41. it shows that the robot is well stabilized
after nearly 1sec with an angle error of −2 degrees. With
the output to the DC motor, control action (Duty cycle), to
stabilize the robot as in Fig. 42. The disturbance as shown in
Fig. 41, was added between the period of 6 and 10 seconds to
test the controller behaviour. That showed the robot tilt angle
with steady-state error of ±0.2◦ . In the Second Case, after
some tuning with the proportional and the derivative gains
then by slightly increasing the integral gain to the values of
Kp = 20,Ki = 0.00181 and Kd = 0.4 it showed good and
enhanced results. As it exhibits less steady-state error between
±0.2◦. Furthermore, the added disturbance at exactly t = 7.5
sec, shows that the robot stabilizes in about 4 seconds with
the same steady state error. Fig. 43 is the corresponding DC
motor voltage (Duty cycle). As seen, its duty cycle became
between ±0.8 and changes according to the exhibited tilt angle
responding to the disturbance at the stated period of time. The
last case, case 3, by changing the set point to θ3 = −1.5◦

the results are shown in Fig. 45 the robot exhibits a higher
overshoot than in Case 1 and Case 2 But settles faster around
the zero for the first 10 seconds then got settled around the
θ3 = −1◦ and at the tenth second it settles between −1◦ and
−1.5◦. The corresponding Duty cycle is shown in Fig. 46. It is
the signal sent to the DC motor driver so as to supply the value
of voltage in the range of ±12 v corresponding to the error in
the tilt angle of the inverted pendulum.

From both cases 1 and 2 for zero tilt angle set-point. It is
notable, that the existence of the steady-state error in the 6
seconds before the external disturbance in Case 1, in Fig. 41,
means that the controller is unable to fully reject the constant
disturbances or uncertainties required to achieve the precise
reference set point (zero tilt angle). This implies insufficient
integral action.In contrast, Case 2 shown in Fig. 43 shows a
smaller steady-state error (typically 0.2 degrees), as we finely
tuned the controller parameters. which means better control
accuracy and a greater ability to handle disturbances, likely
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because of better tuning of the controller.
Furthermore, after fine-tuning the D-PID controller parame-

ters on real-time FPGA hardware, the response to the selected
parameters Kp = 20,Ki = 0.00181 and Kd = 0.4, case 2,
in MATLAB simulink showed that the practical results nearly
match the linearized model in both Fig. 39 and Fig. 40. It
shows a higher overshoot in the linear model responding to the
step signal but immediately settles with a very small steady-
state error. This demonstrates the effects of the linearization
process and other uncertainties in modelling and real hardware
components.
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In addition to that for the practical implementation the robot
started balancing from angle of nearly about −15 degrees and
settled in nearly 2 seconds at the zero set point with error
of nearly about ±0.4 degrees. In addition to that external
disturbance was added to the robot during the stabilization
process that caused error in the tilt angle by 9 degrees and
it showed a good response and fast settling nearly at 4 seconds
to the set point. That ensures the effectiveness of the designed
controller against the external unexpected disturbances for the
proposed robot.

Also, we should state that dealing with FPGAs and the calcu-
lations based on the fixed-point format in dealing with variables
and the reading from the analog port of the accelerometer values
consumed relatively great experimental efforts to adjust the
accelerometer reading. Also, the PWM frequency determination
with the 3.3V TTL DIO of the sbrio 9631 for the smooth
operation of the DC motors was another encountered problem.
Furthermore, the availability of the expensive FPGA board was
one of the limitations of the chosen approach. However, this
limitation can be mitigated with adequate funding sources.

Furthermore, we tried to use the digital accelerometer and
gyro sensors, which need I2C or SPI protocols that are not
supported by the sbrio 9631 FPGA. However, we built the I2C
protocol on the FPGA target and got an accurate filtered signal
for both the tilt angle and its angular velocity. Due to the limited
memory of 64 kb, the I2C consumed nearly all the available
FPGA resources.

This resulted in the inability to perform any other functions
on the FPGA, including the accelerometer, PWM, encoder, and
velocity determination loops, as well as the PID controller,
digital filter, and motor actuation subVis. But for large military
and transportation sectors, it isn’t a hard task to get these NI-
based RIO FPGAs available. For the computational method
of the augmented formulation of the multibody model with
baumgrate stabilization trials for selection of the parameters α
and β has been made till the best selection α = β = 10 results

in acceptable violations ±10−6 and ±10−4 for both holonomic
and nonholonomic constraints.

IV. CONCLUSION

In conclusion, multibody modelling and simulation is a great
approach for model-based controller design and simulation.
We managed to use the coordinate partitioning method in the
MBDs approach for state-space formulation. On the other side,
utilizing FPGA technology contributes to rapid prototyping and
implementation of multibody mechatronic systems controllers.
In this paper, we managed to build the planar multibody model
of the wheeled balancing robot.

Also, the validation of this model was done through the
simulation of the dynamic model. Furthermore, state feed-
back and optimal controllers were designed and simulated
for both linearized and nonlinear MBD models. The digital
PID controller based on the linearized model was designed,
simulated, and implemented on NI-SbRIO with the LabVIEW
FPGA module. Case 2 shows the effectiveness of the designed
controller. It results in steady-state error of ±0.2◦ at two second
when started balancing from ±15◦. And on the application
of external disturbance it recovers the balancing condition in
4 second. This indicates a good degree of model robustness
although linearization and approximations of the DC motor
model.

Which means better control accuracy and a greater ability
to handle disturbances, mainly because of better tuning of the
controller. Which also validate the dynamic modelling approach
and the designed control system. The results of the experimental
work ensure that the linearization of the multibody model is
valid up to tilt angles of ±15◦ around the equilibrium set
point (θ3 = 0◦) according to the limitations of DC motor
torque output specifications. Additionally, we managed to get an
accurate tilt angle measurement from cost effective ADXL335
sensor through software based filter design. Also, before the
deployment, the sensor was calibrated manually as stated in
(section III-C) to get the offsets error.

From this study we can conclude that fast stabilization of the
under-actuated mechatronic systems is very important and has
wide applications in the transportation, industrial and military
sectors. In these sectors goods transportation in confined places
and harbours beside the smart warehouses address these appli-
cations. Furthermore, the balancing and stabilization task is a
crucial task, especially for human transportation using segways
inside small tourist villages, hospitals, and hotels. This task is
also particularly crucial for military applications, such as mobile
robot gunners or snipers operating in high-risk environments.

All the mentioned mechatronics applications hold signifi-
cant importance and necessitate a well-designed stabilization
controller, which is the primary focus of our research. So,
the followed approach could be extended for future work by
applying the optimally designed LQR controller, but in the
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presence of more available sensors, such as digital gyros, and
another modern version of the NI-RIO FPGA board, such as the
NI-myRIO 1900, that provides the interface for UART, I2C, and
SPI protocols. In addition, it includes a Wi-Fi module, which is
important for data transmission with PCs or sensors. The multi-
body model parameter sensitivity analysis is another research
point that would be addressed for the adopted application to
ensure the model robustness. Finally, we can equip the wheeled
self-balancing robot with it with a camera and AI detection tools
to facilitate exploration utilizing FPGA technology.
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