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Abstract—Small unmanned aerial vehicles (UAVs) are 

increasingly used for wildfire detection, where they must not 

only identify fire events rapidly but also transmit large 

volumes of sensor data securely to ground stations. Achieving 

both fast on-board analysis and high-speed encrypted data 

transmission within the size, weight, and power limits of UAV 

platforms remain a major technical challenge. In this study, we 

introduce a compact, FPGA-based system that simultaneously 

performs real-time fire detection and high-throughput data 

encryption. Our system integrates a programmable logic chip 

(FPGA), deep-learning models for visual recognition, and AES-

256 cryptographic cores onto a single hardware module. A key 

innovation is a shared scheduling mechanism that coordinates 

these two functions efficiently. Furthermore, we demonstrate 

how artificial intelligence contributes beyond image 

classification: a lightweight neural network monitors input 

data streams and dynamically adjusts encryption key 

parameters, thereby improving security without compromising 

performance. The hardware supports encrypted data transfer 

rates of 800 megabits per second at a latency of just 2 

microseconds, while identifying fire signatures at 30 frames per 

second. Extensive testing, including cross-validation on a 

50,000-frame dataset and environmental stress testing from –

20 °C to 55 °C, confirms robust performance under real-world 

conditions. While the current memory footprint limits multi-

camera input, this work offers a foundational design for future 

systems that aim to combine edge computing, secure 

communications, and AI-driven perception in autonomous 

aerial platforms. 

Keywords—Edge Encryption; FPGA; AES-256; UAV 

Sensing; Real-time AI; YOLOv8-Tiny. 

I. INTRODUCTION  

Unmanned aerial vehicles (UAVs), commonly known as 

drones, have evolved from specialized tools into essential 

assets across a variety of fields. They are now routinely 

deployed for remote environmental monitoring, disaster 

management, agriculture, and search-and-rescue operations 

[1]-[5]. UAVs show great promise in wildfire detection and 

management, where their ability to provide real-time aerial 

surveillance can significantly aid early fire identification 

and rapid emergency response. Modern drones come 

equipped with diverse sensors (optical cameras, thermal 

imagers, gas detectors, etc.), advanced navigation systems, 

and wireless communication links that enable increasingly 

autonomous and efficient missions [1]-[5]. However, the 

effectiveness of these missions depends heavily on reliable 

data communication and control – and wireless UAV links 

are inherently vulnerable to security threats that can 

undermine both safety and performance [1]-[5]. 

Wireless communication vulnerabilities in UAV systems 

raise serious security concerns. An adversary could intercept 

or jam control signals, potentially hijacking the UAV or 

disrupting its flight path. Likewise, unauthorized 

interception of sensor data risks leaking sensitive 

information, and malicious commands injected into the 

uplink could lead to disastrous outcomes (e.g. causing a 

crash or misdirecting the aircraft) [6]-[10]. Real-world 

security analyses have shown that UAV communication 

links can be exploited if not properly protected, making 

robust data encryption and authentication a necessity for any 

mission-critical drone deployment [6]-[10]. In practice, 

many current UAV systems lack the sophistication to 

distinguish legitimate signals from spoofed commands or to 

prevent eavesdropping, leaving them vulnerable to 

interception and intrusion. These gaps highlight the urgent 

need for stronger security protocols in UAV networks to 

ensure that control over the aircraft cannot be seized by 

unauthorized parties and that the data they collect remains 

confidential. 

A parallel challenge in UAV-based fire detection is the 

sheer volume of sensor data that must be processed and 

transmitted in real time. High-resolution video feeds, 

infrared thermal images, and other environmental sensor 

streams can quickly overwhelm a drone’s onboard 
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computer, especially if it relies on a traditional 

microcontroller or low-power processor [6]-[10]. Attempts 

to simultaneously handle live video, telemetry, navigation, 

and control tasks on such hardware often result in excessive 

latency or data dropouts, as the processor becomes 

overloaded. For a time-critical application like wildfire 

monitoring, even slight delays in data analysis or 

transmission are unacceptable – they can mean the 

difference between containing a nascent fire and allowing it 

to spread unchecked. Recent reports have documented UAV 

systems struggling with information overload, where large 

incoming data volumes could not be processed quickly 

enough to provide timely warnings [11]-[15]. For example, 

a prototype “high-speed” UAV control system for fire 

hazard monitoring was found to generate more data than it 

could promptly handle, hampering its ability to issue early 

fire alerts [11]-[15]. These limitations underscore the need 

for more efficient onboard data handling and processing 

architectures that can keep up with the demands of real-time 

sensing.  

Current UAV wildfire surveillance platforms face a dual 

challenge: they must transmit critical sensor information 

rapidly for real-time decision-making, while simultaneously 

protecting that information (and the control link) against 

adversaries. Existing solutions tend to address one of these 

aspects in isolation – either focusing on advanced aerial 

sensing and fire detection capabilities [16], [17] or on secure 

communication protocols for drones [7]-[8] – but seldom 

both together. This gap in the state-of-the-art means, for 

instance, that a drone equipped with sophisticated AI-based 

fire detectors might still be susceptible to data interception 

or sabotage, whereas a highly secure UAV communication 

link could still fail to deliver timely intelligence if the 

onboard processing lags. There is a clear need for an 

integrated approach that combines high-speed data 

processing with robust encryption on the UAV platform 

itself. In other words, a next-generation wildfire monitoring 

drone should be able to analyse and encrypt its sensor data 

on the fly, ensuring that urgent alerts reach emergency 

responders without delay and without exposure to prying 

eyes. Addressing this need is crucial for making UAV-based 

disaster response not only fast and autonomous but also 

trustworthy in the face of cyber threats. 

This paper directly tackles the above challenges by 

developing a novel UAV system that tightly integrates AI-

driven fire detection with high-speed data encryption. The 

primary goal is to enable a low-altitude unmanned aircraft (a 

“low-orbiting” drone) to detect wildfire incidents in real 

time and securely transmit the relevant data to decision 

makers with minimal delay. Achieving this goal requires a 

fundamental rethinking of how UAV onboard systems 

handle information and security [16]-[20]. Rather than 

treating encryption and data analysis as separate concerns, 

our approach redesigns the UAV’s architecture to embed 

intelligence and security into the core of the flight control 

system. 

Specifically, we propose an end-to-end processing 

architecture built around a high-performance programmable 

logic device (e.g., an FPGA-based system-on-chip) 

augmented with external memory and custom AI 

algorithms. In this design, the UAV’s various sensors 

(visual cameras, thermal infrared, smoke detectors, etc.) 

feed data into the FPGA-based processing unit, where real-

time machine learning algorithms continuously analyse the 

incoming streams for signs of fire. Most importantly, the 

same hardware platform also contains an embedded 

cryptographic engine that automatically encrypts all 

outgoing data streams in real-time. By implementing 

encryption directly in the onboard hardware (instead of 

routing data through a separate crypto-processor or software 

routine), the system ensures that security does not become a 

bottleneck – sensitive information is protected without 

adding latency or slowing down the data flow. The inclusion 

of high-speed external memory allows the system to 

efficiently buffer and organize sensor data, enabling 

intelligent filtering and prioritization of information. For 

example, the onboard AI can flag a detected fire hotspot and 

prioritize that data for immediate transmission, while non-

critical sensor readings (or redundant video frames) are 

temporarily held back. This strategy optimizes bandwidth 

usage and guarantees that the most relevant, mission-critical 

information is delivered first. Overall, the UAV effectively 

carries a self-contained “secure AI coprocessor” that can 

make split-second decisions and encrypt data on the fly, 

ensuring that wildfire alerts are both timely and protected. 

In developing this solution, we address several 

interdisciplinary challenges that UAV systems face – from 

real-time multi-sensor data fusion to secure wireless 

communication – which have each been noted in prior 

research [21]-[25]. The key innovation is that our design 

combines all these capabilities into a single, integrated 

framework suitable for a drone. The novelty of our approach 

lies in this tight integration of AI-based sensing, high-speed 

processing, and cryptographic security in the UAV context. 

Unlike previous UAV platforms that might leverage AI for 

improved fire sensing or implement enhanced secure 

communication protocols, but not both simultaneously, our 

system merges these two priorities into one coherent whole. 

For example, some recent works have demonstrated 

effective deep-learning models for fire detection using UAV 

imagery or solar-powered sensor networks, while other 

efforts focus on strengthening UAV data links with 

advanced encryption and key distribution techniques [26]-

[30].   

To our knowledge, this is one of the first efforts to unite 

these advancements by embedding a fire-specific AI 

detection algorithm and a hardware encryption engine side 

by side on a drone’s onboard computer. Our approach 

therefore represents a new paradigm for UAV-based hazard 

monitoring – one in which the drone is not only an eye in 

the sky, but also an intelligent and secure node that can 

autonomously interpret what it sees and immediately share 

that insight in a safe manner. 

The significance of this integrated capability is 

considerable for wildfire management and beyond. By 

processing data on-board and sharing encrypted alerts 

instantly, a UAV equipped with our system can detect fires 

at an earlier stage and notify authorities in time to contain or 

extinguish them before they spread. Faster and more reliable 

fire detection translates to reduced response times, which 
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can help minimize property damage and save lives through 

earlier interventions [31]-[35]. At the same time, the built-in 

security measures ensure that critical emergency 

communications are not compromised by malicious actors – 

an especially important factor in scenarios where intentional 

interference is a risk (for instance, in wildfires that threaten 

strategic infrastructure or in military reconnaissance 

operations). Beyond wildfire scenarios, the advances from 

this work can enhance UAV effectiveness in a range of 

applications. In environmental monitoring and wildlife 

protection, drones could securely relay real-time sensor 

insights (e.g., detecting poachers or spotting flood threats) 

without fear of data leaks. In disaster response and search-

and-rescue missions, a secure high-speed drone network can 

coordinate and share live information even in contested or 

sensitive areas. By removing data bottlenecks and guarding 

against cyber-intrusions, the proposed system improves the 

autonomy, reliability, and safety of UAV operations in any 

domain where timely, trustworthy intelligence is paramount 

[36]-[40]. 

The contributions of this research are as follows: 

• Integrated High-Speed Secure Architecture: We 

design a novel UAV system architecture that embeds a high-

speed cryptographic engine directly into a field-

programmable gate array (FPGA) based flight control unit. 

This integration eliminates the need for a separate crypto 

processor, allowing data encryption to occur in real time on 

the drone without introducing any significant latency or 

bottleneck to the data processing pipeline. 

• External Memory for Intelligent Data 

Management: We incorporate an on-board external memory 

module and intelligent data management strategies to buffer 

and filter incoming sensor data. This feature enables the 

system to automatically prioritize critical information (such 

as detected fire hotspots or alarm conditions) and filter out 

noise or less relevant data. By transmitting only, the most 

pertinent, pre-processed information, the UAV optimizes its 

bandwidth usage and ensures faster, more focused 

communication with ground stations or other network 

nodes. 

• AI-Powered Fire Detection Algorithm: We develop 

advanced artificial intelligence algorithms tailored for early 

fire detection using multi-modal sensor inputs. The UAV’s 

on-board AI can quickly analyse video and thermal imagery 

to recognize subtle cues of a nascent fire while filtering out 

false positives (e.g. sun glare or industrial heat sources). 

This AI-driven detection improves the accuracy and speed 

of wildfire recognition, enabling the system to issue reliable 

alerts with minimal human supervision. 

• Comprehensive System Implementation and 

Evaluation: We implement the proposed integrated system 

on a prototype UAV platform and carry out extensive tests 

to evaluate its performance. The experimental results 

(discussed in detail in later sections) demonstrate that the 

system can simultaneously meet stringent real-time 

processing requirements and security needs: it achieves 

high-throughput encryption of sensor data streams on-board 

the drone, maintains low end-to-end latency for emergency 

alerts, and provides accurate fire detection in various 

scenarios. This comprehensive evaluation confirms the 

effectiveness of our approach compared to conventional 

UAV architectures, highlighting the practical feasibility and 

advantages of combining high-speed encryption with AI-

powered detection in one system. 

II. METHOD 

The Method section provides a detailed description of 

the system architecture, highlighting the specific hardware 

components selected and used, the implementation of the 

cryptographic data protection mechanism, and the specific 

AI algorithms used for fire detection and data analysis. 

The development and validation of the proposed UAV-

based fire detection and encryption system were guided by a 

structured and coherent methodological framework, 

comprehensively depicted in Fig. 1(a).  

_ Phase 1: Data acquisition, wherein multimodal sensor 

data–including thermal imagery, visual recordings, gas 

sensor readings, and precise spatial measurements–are 

systematically collected. This initial step integrates diverse 

data streams sourced from both real-world UAV flight 

missions and publicly accessible datasets on documented 

fire incidents. The comprehensive nature of these datasets 

provides the necessary empirical foundation for subsequent 

AI model training and rigorous system validation processes. 

Such extensive data acquisition is critical, as it facilitates the 

development of generalized AI models capable of reliably 

detecting fires across diverse environmental scenarios. 

_ Phase 2: the acquired raw sensor data undergo pre-

processing. This stage involves careful calibration, 

normalization, and data fusion techniques designed to 

mitigate sensor-specific discrepancies, biases, and inherent 

noise, thereby ensuring a consistently high-quality data 

foundation for downstream algorithmic processing. The 

effectiveness of pre-processing directly influences 

subsequent analytical accuracy and is therefore crucial for 

maintaining the fidelity of input data provided to both the 

AI detection algorithms and the cryptographic modules. 

_ Phase 3: On one hand, the AI model training track 

utilizes the pre-processed and curated dataset to develop 

advanced fire detection models, specifically leveraging 

architectures such as YOLOv8-Tiny for RGB data and 

MobileNetV3-Small for infrared inputs. Training 

methodologies include robust cross-validation procedures 

and sophisticated data augmentation strategies designed to 

address potential dataset biases and rare or extreme 

operational scenarios. This approach enhances model 

robustness and ensures reliable operational performance 

across a comprehensive spectrum of fire detection contexts 

(Fig. 1(b)). 
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(a)  (b) 

 

 
(c) (d) 

Fig. 1. (a) Schematic overview of the UAV system development methodology, showing the integrated pipeline from data acquisition to experimental 
validation. (b) Parallel development architecture illustrating AI model training and FPGA-based cryptographic module integration before unified 

deployment. (c) System integration and continuous optimization loop guided by real-world performance feedback from experimental validation. (d) Table 

linking each methodological stage to the system’s design and performance objectives. 

Concurrently, the hardware design pathway is devoted to 

the synthesis and integration of cryptographic security 

modules directly within an FPGA-based Programmable 

Logic Integrated Circuit (PLIC). The decision to embed 

AES-256 encryption within FPGA hardware was driven by 

the necessity for deterministic, low-latency, and secure data 

processing capabilities, addressing identified shortcomings 

of traditional MCU or SoC implementations. Such 

hardware-centric encryption implementation ensures data 

confidentiality and integrity without compromising critical 

real-time performance or UAV endurance, demonstrating a 

deliberate alignment with the identified operational and 

security needs of UAV systems (Fig. 1(b)). 

_ Phase 4: Both AI model training and hardware 

development tracks ultimately converge within the system 

integration phase. This critical juncture entails integrating 

AI-driven inference capabilities with robust cryptographic 

communications directly within the UAV hardware 

platform. The successful integration of these sophisticated 

modules is rigorously evaluated through simulated 

operational environments designed to emulate realistic fire 

scenarios and potential adversarial disruptions, such as 

communication signal jamming or GPS spoofing. This 

simulation-based integration validation not only ensures 

technical compatibility but also demonstrates the system's 

capacity to effectively manage operational uncertainties and 

adversarial threats (Fig. 1(c)). 

_ Phase 5: The final phase within the methodological 

flow involves comprehensive experimental validation under 

controlled yet realistic conditions. This stage employs a 

structured validation protocol and an environmental stress 

matrix, rigorously evaluating system performance metrics, 

including data processing speeds, detection accuracy under 

diverse environmental scenarios, and resilience to 

encryption-related vulnerabilities. Results from this 

validation process inform continuous iterative refinement, 

optimizing AI models and hardware implementations based 

on empirical performance feedback. A summary alignment 

of each methodological step with its associated performance 

objective is provided in Fig. 1(d). 

A. System Architecture 

The system architecture is depicted in Fig. 2(a), 

illustrating the integration of various hardware components 

to achieve comprehensive data capture, processing, and 

encryption. This architecture is designed to optimize the 

flow of information and ensure that each component 

contributes effectively to the overall functionality of the 

system. The detailed block diagram provides a clear 

overview of the system's constituent parts and their 

interconnections, highlighting the data pathways and control 

mechanisms. 

This block diagram depicts the comprehensive 

architecture of the proposed system, detailing the integration 

of various hardware components for effective data capture, 

processing, and encryption. Key components include the 

PLIC, sensors (ultrasonic, infrared, gas), ADC, external 

memory with AI algorithms, radio transceiver, and the 

electric motor control system, showing the data flow and 

control mechanisms within the system. The central 

component of the system is the Programmable Logic 

Integrated Circuit (PLIC), specifically the Xilinx Virtex 

UltraScale+, selected for its high-speed parallel processing 

capabilities essential for real-time data handling and 

encryption. Compared to traditional microcontrollers, PLICs 

offer greater flexibility and hardware customization, 

allowing for optimized execution of encryption and AI 

algorithms. While Application-Specific Integrated Circuits 

(ASICs) could provide even higher performance, they lack 

the reconfigurability required for adapting to evolving fire 

detection scenarios. The UAV is equipped with a suite of 

sensors to capture comprehensive environmental data. 

Moreover, the UAV platform's effectiveness is substantially 
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augmented by incorporating a carefully selected suite of 

sensors, each chosen based on rigorous criteria of 

performance evaluation. These sensors include high-

resolution video cameras for comprehensive visual 

monitoring, thermal infrared sensors adept at identifying 

heat signatures indicative of fire events, and ultrasonic and 

infrared proximity sensors strategically positioned for robust 

obstacle detection and collision avoidance. Additionally, gas 

sensors are incorporated to identify hazardous atmospheric 

conditions typically associated with fire incidents, such as 

carbon monoxide and other harmful combustion byproducts. 

Each sensor component underwent thorough comparative 

evaluations to ensure optimal performance in terms of 

response time, accuracy under variable environmental 

conditions, and spectral sensitivity, thereby strengthening 

the empirical rigor and functional reliability of the UAV 

platform (Fig. 2(b)).  

 A high-resolution video camera (Sony Alpha 7R IV) 

provides detailed visual information necessary for 

identifying fire characteristics. An infrared thermal sensor 

(FLIR Boson 640) complements the video data by detecting 

heat signatures, enabling fire detection in low-visibility 

conditions. Gas sensors (MQ-7 and MQ-135) measure the 

concentration of gases indicative of fire, such as CO and 

CO2, further enhancing detection accuracy. The selection of 

these sensors prioritizes a balance of information richness, 

cost-effectiveness, and power efficiency suitable for UAV 

deployment. A high-precision multi-channel analog-to-

digital converter (ADC) (Texas Instruments ADS1282) is 

used to convert analog signals from the sensors into digital 

data for processing by the PLIC. The multi-channel 

capability ensures simultaneous and synchronized data 

acquisition from all sensors. External memory (4GB DDR4 

SDRAM) provides ample storage for sensor data, AI 

models, and intermediate processing results, overcoming the 

limited on-chip memory of the PLIC. This allows for the 

implementation of complex AI algorithms and efficient data 

buffering. A radio transceiver (Ubiquiti Networks Rocket 

5AC Lite) facilitates communication with the ground 

station. The 5 GHz frequency band and 802.11ac protocol 

were chosen for their high bandwidth and reliable data 

transmission capabilities. An electric motor control system 

(integrated into the DJI Matrice 600 Pro) enables precise 

control of the UAV's flight, ensuring accurate positioning 

for effective fire monitoring. 

The system comprises several key components that work 

in synergy to achieve the desired functionality: 

● An apparatus-program block for mode selection 

control allows for the dynamic selection of appropriate 

operating modes, adapting the system's behavior to different 

conditions and requirements. This ensures that the system 

can be optimized for various scenarios, enhancing its 

versatility and effectiveness. The ability to switch between 

modes is crucial for mission flexibility.    

● A navigation system that includes a 

GLONASS/GPS receiver is used for precise determination 

of the aircraft's geographical location and trajectory. 

Accurate navigation is paramount for the UAV to 

effectively monitor and respond to fire incidents across 

large areas. This component provides essential spatial 

awareness.    

● A technical vision system, equipped with a video 

camera, captures visual data from the environment, enabling 

real-time monitoring and analysis of the surrounding area. 

The visual data is critical for identifying potential fire 

hazards and assessing the extent of ongoing fires. High-

quality video capture is essential for detailed analysis.    

● Non-volatile memory is included to ensure the 

preservation of critical data, including operational 

parameters and captured information, even in the event of 

power loss or system interruptions. This feature enhances 

the reliability and robustness of the system, preventing data 

loss and ensuring continuity of operations. Data 

preservation is vital for mission success.    

● The programmable logic integrated circuit (PLIC) 

serves as the central processing unit, responsible for 

processing data received from various sensors and 

coordinating the operations of all other system components. 

The PLIC's high-speed processing capabilities are essential 

for real-time data analysis and decision-making. It acts as 

the brain of the system. 

● A dedicated cryptographic data protection unit, 

implemented directly within the PLIC, ensures high-speed 

encryption and decryption of transmitted data, safeguarding 

sensitive information from unauthorized access. Central to 

the proposed technological solution is the implementation of 

an integrated cryptographic mechanism directly embedded 

within a programmable logic integrated circuit (PLIC). The 

choice of AES-256 encryption for this integration was 

determined by conducting a comparative analysis of various 

cryptographic algorithms, including alternative standards 

such as ChaCha20 and Serpent (Fig. 2(c)). AES-256 

emerged as the optimal selection due to its demonstrated 

superior balance between security robustness and 

computational efficiency, which aligns well with the real-

time operational demands of low-orbit UAV environments. 

The rationale behind this selection is related to 

cryptographic robustness and the practical necessity of 

maintaining minimal latency in UAV data transmission 

processes [41]-[45].  This integration enhances both the 

speed and security of data handling within the system. Data 

security is a paramount concern.    

● A radio channel for data transmission and reception 

facilitates real-time communication between the UAV and 

ground control stations, enabling the exchange of critical 

information and commands. Reliable communication is 

essential for effective control and monitoring of the UAV. 

This ensures seamless interaction. 

● An electric motor control system manages the 

aircraft's maneuvers by precisely controlling the electric 

motors, enabling accurate adjustments to the UAV's flight 

path, altitude, and speed. Precise motor control is crucial for 

the UAV's agility and stability during operation. This allows 

for accurate movement. 

● Electric motors provide the necessary propulsion 

for the aircraft, enabling it to navigate and maneuver 
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effectively in the operational environment. These motors are 

selected for their efficiency and reliability. They provide the 

necessary power. 

● A multi-channel analog-to-digital converter (ADC) 

converts analog signals from the various sensors into digital 

data, making it compatible for processing by the PLIC. This 

conversion is a critical step in the data processing pipeline. 

The ADC enables digital processing. 

● Ultrasonic distance sensors are incorporated for the 

detection of obstacles in close proximity to the aircraft, 

enhancing its ability to avoid collisions and navigate safely. 

These sensors provide crucial close-range detection 

capabilities. Obstacle avoidance is essential.    

● Infrared distance sensors also contribute to obstacle 

detection, providing additional layers of safety and 

navigational awareness for the UAV. These sensors work in 

conjunction with the ultrasonic sensors. They enhance 

detection capabilities.    

● A gas sensor is included to detect the presence of 

harmful gases in the surrounding environment, which is 

particularly important in fire-prone areas where hazardous 

gases may be present. This sensor provides critical 

environmental monitoring. Safety is a key factor.    

● Additional external memory, enhanced with AI 

algorithms, significantly boosts the data processing and 

analysis capabilities of the system, enabling advanced 

functions such as fire prediction and intelligent data 

filtering. This external memory is crucial for handling 

complex AI computations. It expands the system's 

intelligence.     

  
(a)  (b) 

 

 

(c) (d) 

 
(e) 

Fig. 2. (a) Block Diagram of the Proposed Technical Solution. (b) Overlay of sensor field-of-view zones on UAV silhouette, illustrating spatial coverage and 
complementary sensing modalities for visual, thermal, proximity, and environmental data acquisition. (c) Comparative radar chart of AES-256, ChaCha20, 

and Serpent algorithms, normalized across energy efficiency, logic footprint, latency, and security strength. AES-256 exhibits the most balanced and 

favorable profile for real-time embedded UAV applications. (d) Layered pipeline of the AI training workflow, illustrating the sequential stages from multi-
source data acquisition to embedded inference deployment within the UAV’s onboard system. (e) Timeline of environmental and adversarial stress 

conditions applied during the 40-minute validation flight, illustrating the duration and overlap of simulated challenges including rain, wind, RF jamming, 

GPS spoofing, and low-visibility smoke 
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B. Hardware Selection   

The selection of hardware components within the 

proposed UAV system was guided by critical considerations 

including latency performance, power efficiency, 

compactness, and comprehensive functional capability. 

Central to this strategy is the deployment of a PLIC, 

specifically leveraging an FPGA-based architecture. Unlike 

conventional microcontroller units (MCUs) or system-on-

chip (SoC) solutions, FPGA architectures offer deterministic 

and highly predictable latency, an essential attribute for 

managing real-time, high-speed encryption tasks and 

concurrent AI inference processes. Traditional MCUs or 

SoCs, despite their ubiquity and ease of integration, often 

suffer from variability in processing latency due to their 

reliance on shared resources and operating system overhead. 

This inherent unpredictability can significantly undermine 

the performance and reliability of real-time, mission-critical 

systems. In contrast, FPGAs facilitate parallel processing 

capabilities, enabling simultaneous execution of complex 

algorithms, sensor data fusion, and cryptographic 

operations, thus ensuring minimal latency and robust real-

time responsiveness crucial to the UAV’s intended 

operational environment (Fig. 3(a)). Additionally, FPGA-

based systems excel in compactness and energy efficiency, 

aligning perfectly with the stringent operational demands of 

UAVs, where optimal energy management is vital to 

mission longevity and reliability. 

The selection of sensors was supported by extensive 

theoretical analysis and practical considerations relevant to 

UAV-based fire detection missions. Factors such as sensor 

response time, measurement accuracy, reliability under 

varying environmental conditions, and appropriate spectral 

sensitivity were thoroughly evaluated. The final sensor suite 

comprises ultrasonic distance sensors, infrared (IR) sensors, 

gas detectors, and high-resolution visual cameras (Fig. 

3(b)). Ultrasonic sensors were specifically chosen due to 

their exceptionally rapid response times and high precision 

in proximity measurement, thereby enhancing obstacle 

detection and collision avoidance capabilities during 

autonomous UAV operations. Infrared sensors were selected 

for their optimized spectral sensitivity and rapid anomaly 

detection capabilities, critical for accurately identifying 

thermal signatures indicative of fire events, even in visually 

obstructed or smoke-filled environments (Fig. 3(c)). 

Furthermore, gas sensors were integrated due to their rapid 

detection capabilities of hazardous gases typically 

associated with fire scenarios, significantly augmenting the 

UAV’s environmental awareness and operational safety 

profile. 

 

 

(a) (b) 

 
(c) 

Fig. 3. (a) Performance comparison between FPGA-based PLIC and conventional MCU/SoC platforms, highlighting deterministic latency, energy 
efficiency, and parallel processing capability critical for real-time UAV operations. (b) Integrated sensor suite architecture illustrating the data acquisition 

and processing pipeline for UAV-based fire detection. The system combines ultrasonic, infrared, gas, and visual sensors, all interfaced through a multi-
channel ADC (where applicable), and routed to an FPGA-based PLIC. Within the PLIC, sensor data undergo real-time AI-based fire detection, prioritization, 

and AES-256 encryption before secure transmission. The architecture highlights the modular and mission-critical integration of environmental perception 

and onboard intelligence. (c) Comparative specifications of selected and alternative sensors for UAV-based fire detection, highlighting performance metrics 
such as response time, spectral range, and environmental robustness. The rationale for each sensor’s inclusion or exclusion is provided in relation to the 

operational demands of real-time aerial fire monitoring  
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C. Cryptographic Engine Design 

Ensuring secure and real-time data transmission from 

UAVs is critical, particularly in mission-sensitive scenarios 

such as fire detection, where the integrity and confidentiality 

of sensor data directly influence operational effectiveness 

and safety outcomes. Given these stringent requirements, 

our proposed system integrates a cryptographic data 

protection module within the PLIC. This integration 

facilitates rapid encryption and decryption processes, thus 

minimizing latency and optimizing the performance crucial 

for real-time UAV applications. 

The selection of an appropriate cryptographic algorithm 

for this integrated approach is crucial. After careful 

evaluation, the Advanced Encryption Standard (AES) with a 

256-bit key length (AES-256) emerged as the optimal 

choice. AES-256 is renowned for its robustness against 

brute-force attacks, owing to its extensive key length, and it 

maintains compatibility with hardware acceleration 

capabilities intrinsic to FPGA-based platforms. Widely 

endorsed by both civilian and defence sectors for secure 

communications, AES-256 provides an ideal balance of 

computational efficiency, security strength, and adaptability 

to hardware-centric implementations. 

To rigorously justify this choice, a comprehensive 

comparative analysis with two other prominent symmetric 

encryption algorithms–ChaCha20 and Serpent–was 

conducted. ChaCha20 is recognized for its strong 

performance in software environments, particularly in 

mobile and low-power CPUs. However, its efficiency 

diminishes significantly in FPGA and hardware-optimized 

contexts due to its streaming cipher structure, which does 

not align as effectively with parallel processing paradigms 

of FPGA architectures. In contrast, Serpent offers 

theoretical advantages in security by using a more complex 

substitution-permutation network, yet this complexity 

results in higher resource consumption and increased 

latency, rendering it less suitable for resource-constrained 

and latency-sensitive applications [41]-[45]. 

A detailed performance evaluation substantiated the 

superiority of AES-256 in the FPGA-based UAV system. 

The AES-256 algorithm demonstrated an encryption 

throughput of 800 Mbps and a latency of only 2.1 µs, 

utilizing approximately 65% of the PLIC resources. By 

comparison, ChaCha20 exhibited a lower throughput of 520 

Mbps, a latency of 3.4 µs, and higher resource utilization at 

71%. Serpent performed even less favourably, with a 

throughput of just 460 Mbps, latency extending to 4.7 µs, 

and a notably high resource demand of 79%. These 

empirical findings decisively favoured AES-256 as the 

optimal cryptographic solution for this application, 

confirming its effectiveness in balancing high throughput, 

minimal latency, and efficient resource utilization within 

FPGA environments (Fig. 4(a)).  

 

 

(a)  (b) 

 
 

(c) (d) 

Fig. 4. (a) Comparative Latency and Throughput Trade-offs of Symmetric Encryption Algorithms in FPGA Environments. (b) Pipeline-Level Schematic of 
AES-256 Engine within Programmable Logic Integrated Circuit (PLIC). (c) Multi-Layered Cryptographic Resilience Strategy against Adversarial Threats. 

(d) Normalized heatmap showing FPGA resource allocation across different cryptographic algorithms. AES-256 demonstrates a favorable hardware 

efficiency profile with lower relative utilization across key resources (LUTs, FFs, DSPs, BRAMs) compared to ChaCha20 and Serpent  
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The architectural decision to embed the cryptographic 

module directly into the PLIC, rather than employing 

external cryptographic coprocessors, represents a critical 

methodological innovation of our system design. This 

integration significantly reduces inter-component 

communication overhead, enhancing the overall efficiency 

and responsiveness of the UAV system. The cryptographic 

module was crafted using HDL, incorporating a pipelined 

architecture to facilitate parallel processing (Fig. 4(b)). Key 

expansion and substitution-permutation operations were 

specifically optimized for minimal gate delay through the 

strategic use of Look-Up Tables (LUTs) and embedded 

Digital Signal Processor (DSP) blocks inherent in the FPGA 

fabric (Fig. 4(c)). 

Key management within the cryptographic system 

warrants equal rigor and sophistication. Adopting a pre-

shared key initialization protocol, the system periodically 

refreshes encryption keys under the governance of the 

UAV's mission control software. Each refresh cycle entails a 

secure wipe of cached keys followed by a robust 

reinitialization process, significantly reducing vulnerabilities 

associated with prolonged static key usage. Moreover, 

proactive countermeasures against side-channel attacks have 

been thoughtfully integrated into the cryptographic pipeline. 

Techniques such as randomized timing intervals during 

substitution rounds and power-equalization padding 

effectively mitigate risks associated with differential power 

analysis (DPA), further enhancing the resilience of the 

system (Fig. 4(d)). 

D. AI Model Architecture & Training 

The effectiveness of the proposed UAV-based fire 

detection system fundamentally relies upon the robust 

integration and deployment of specialized artificial 

intelligence (AI) models that are selected and optimized for 

specific sensor modalities [46]-[50]. In this research, the 

choice of AI architectures reflects a strategic balance 

between computational efficiency and detection accuracy, 

essential for real-time performance in resource-constrained 

environments such as UAVs. Specifically, YOLOv8-Tiny 

was selected for processing visual (RGB) data due to its 

superior inference speed and precision in detecting dynamic 

fire signatures within complex visual environments. 

Conversely, MobileNetV3-Small was adopted for analysing 

infrared (IR) sensor data, largely attributable to its compact, 

lightweight structure and low computational overhead, 

qualities indispensable for operations demanding energy 

efficiency and rapid response capabilities (Fig. 5(a)). 

The training regime for these AI models leveraged a 

curated and expansive dataset consisting of approximately 

50,000 annotated image frames. This comprehensive dataset 

amalgamated various data sources, including authentic 

UAV-acquired imagery, publicly available fire incident 

archives, and systematically synthesized data, each 

contributing uniquely to the model's learning corpus. The 

integration of such diverse data sources is significant, as it 

encapsulates an extensive range of environmental and 

operational scenarios, encompassing variable lighting 

conditions (daytime and nighttime), differing intensities of 

smoke and fire occurrences, and heterogeneous background 

textures and complexities. This deliberate diversification of 

training data enhances the generalizability of the models, 

significantly mitigating the risk of overfitting and ensuring 

reliability across unforeseen real-world conditions (Fig. 

5(b)). 

To further augment the resilience and adaptability of the 

models, rigorous data augmentation techniques were 

applied. These techniques encompassed controlled random 

variations including rotations within ±15 degrees, scaling 

from 0.8 to 1.2 times the original size, horizontal and 

vertical flipping, adjustments to brightness and contrast by 

±20%, and the introduction of Gaussian noise to simulate 

sensor inaccuracies and environmental interference. Such 

comprehensive augmentation strategies theoretically align 

with current best practices in machine learning, effectively 

replicating real-world data variances and promoting robust 

feature learning that enhances the model’s operational 

robustness under varied and unpredictable conditions (Fig. 

5(c)). 

A critical methodological strength of this research lies in 

its implementation of a five-fold cross-validation framework 

to evaluate and ensure the reliability of the AI models' 

performance metrics. This method involved partitioning the 

dataset into five equally distributed subsets, wherein each 

subset sequentially functioned as a validation set while the 

remaining subsets facilitated model training. The careful 

employment of this validation strategy enhances the 

methodological rigor of the training process, offering 

comprehensive insights into the stability and 

generalizability of the models' performance across different 

data partitions. Moreover, an hyper-parameter optimization 

process was systematically conducted through grid search 

techniques, ultimately determining the optimal 

configuration comprising a learning rate of 0.001 (subjected 

to a decay rate of 0.95 per epoch), a batch size of 32, and the 

Adam optimizer executed over 100 epochs (Fig. 5(d)).  

The training process culminated in achieving notable 

performance metrics indicative of both models' efficacy in 

accurately detecting fire events under realistic and 

challenging conditions. Specifically, YOLOv8-Tiny 

demonstrated a robust mean Average Precision (mAP) of 

89.6%, alongside precision and recall values of 91.2% and 

88.3%, respectively. Concurrently, MobileNetV3-Small 

delivered similarly commendable performance on IR data, 

attaining a mAP of 87.9%, precision of 89.1%, and recall of 

86.7%. These results are reflecting a balanced approach that 

prioritizes both precision (reducing false positives) and 

recall (reducing false negatives), essential for applications in 

critical and time-sensitive operations such as fire detection 

and emergency response management. Furthermore, these 

outcomes substantiate the models’ suitability for integration 

into UAV systems tasked with real-time environmental 

monitoring and hazard mitigation (Fig. 5(e) and Fig. 5(f)). 
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Fig. 5. (a) System-level schematic of the proposed AI-powered fire detection and encryption pipeline for low-orbiting UAVs. (b) Composition of the 
annotated 50,000-frame dataset used for training fire detection AI models, illustrating contributions from diverse sources and environmental scenarios to 

enhance model robustness and generalization. (c) Data augmentation techniques applied to fire-scene imagery: original, rotated, scaled, low-light, flipped 

with enhanced contrast, Gaussian noise. (d) Final hyper-parameter configurations used during training of YOLOv8-Tiny and MobileNetV3-Small models, 
optimized for efficient fire detection across diverse sensor modalities and environmental conditions. (e) Training and validation loss curves alongside mean 

Average Precision (mAP) scores for YOLOv8-Tiny and MobileNetV3-Small over 100 epochs, illustrating model convergence and detection performance. (f) 

Five-fold cross-validation results for YOLOv8-Tiny and MobileNetV3-Small models, showing consistent performance across all folds in terms of mean 

Average Precision (mAP), precision, and recall, with low standard deviation indicating model stability and generalizability 

E. Experimental Validation Framework 

To validate the proposed UAV-based fire detection and 

encryption system, a comprehensive experimental 

framework was designed and executed, to evaluate the 

system’s capabilities under realistic operational conditions 

(Fig. 6(a)). Initially, baseline performance metrics were 

established in a controlled laboratory environment [51]-[55]. 

This initial phase used a configured testbed comprising a 

low-orbiting UAV platform outfitted with the previously 

described sensors, FPGA-based cryptographic modules, and 

dedicated AI inference engines. The UAV's hardware 

architecture was centred around a Xilinx Zynq UltraScale+ 

FPGA module, selected for its combination of deterministic 

processing capabilities, power efficiency, and integrated 

cryptographic acceleration. The testbed was further 

supported by a 1 TB external solid-state storage device for 

efficient real-time data logging and powered by high-density 

lithium-polymer batteries, ensuring optimized and sustained 

flight durations throughout extensive testing periods. 

Following baseline performance verification, subsequent 

validation phases involved the simulation of real-world 

operational conditions using a sophisticated environmental 

stress chamber. This facility was specifically designed and 

equipped to replicate a wide array of challenging 

environmental conditions commonly encountered during 

UAV operations. The controlled testing environment 
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enabled systematic variation of key environmental 

parameters in alignment with a constructed environmental 

stress matrix. Conditions tested included varying rainfall 

intensities, encompassing scenarios from light drizzle to 

heavy downpours; smoke density levels ranging from 

minimal to severe; wind speed variations covering calm, 

moderate, and highly turbulent scenarios; and diverse 

illumination conditions such as clear daylight, low-light 

twilight, and complete darkness that required the 

deployment of infrared sensors. Each condition, and their 

combinations, were organized and detailed, allowing precise 

and comprehensive assessment of system responsiveness, 

robustness, and adaptability to complex operational 

environments (Fig. 6(b) and Fig. (c)). 

 
 

(a)  (b) 

 

 
(c) (d) 

 
(e) 

Fig. 6. (a) Flowchart illustrating the sequential phases of the experimental validation protocol, including baseline testing, environmental stress simulations, 

adversarial attack scenarios, and performance evaluation. (b) Three-dimensional isometric cut-away of the environmental stress chamber used for UAV 

system validation. The diagram illustrates spatially distributed stimuli including graded rainfall, smoke density, wind velocity, and infrared illumination, 
enabling controlled evaluation of the UAV’s sensor, encryption, and navigation performance under diverse operational conditions. (c) Environmental Stress 

Matrix used during experimental validation, outlining the range of simulated conditions–rainfall, smoke, wind, and lighting–employed to assess system 

performance under realistic and compounded operational challenges. (d) Experimental setup for adversarial attack simulations, illustrating UAV exposure to 
controlled RF jamming and GPS spoofing signals within a monitored test environment to evaluate communication resilience and navigation integrity. (e) 

Summary of performance evaluation criteria and corresponding measurement methodologies used to assess system reliability, security, and environmental 

resilience during experimental validation 
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Furthermore, recognizing the critical necessity of 

securing UAV communication channels, the experimental 

validation incorporated simulated adversarial attack 

scenarios to assess the resilience and security posture of the 

proposed system. These tests involved sophisticated 

emulations of common threat vectors such as signal 

jamming and GPS spoofing. Signal jamming tests entailed 

deliberate disruptions to the UAV’s communication and 

control links through controlled interference signals, 

mimicking realistic adversarial attempts to disrupt UAV 

operations. GPS spoofing tests were designed to mislead the 

UAV navigation systems through intentionally falsified 

signals, replicating advanced adversarial strategies aimed at 

compromising navigational integrity. Execution of these 

tests utilized specialized hardware and software capable of 

generating precise interference patterns and spoofing 

signals, thereby ensuring controlled, yet challenging, 

scenarios to evaluate the cryptographic mechanisms and 

response strategies incorporated within the UAV platform 

(Fig. 6(d)). 

All experimental data acquired during these tests were 

recorded and subjected to analysis according to a defined set 

of performance criteria. These evaluation parameters 

encompassed data transmission integrity, latency metrics 

associated with encryption and decryption processes, UAV 

navigational stability under stress, sensor detection accuracy 

under varied environmental conditions, and the overall 

resilience of the system against adversarial interventions. 

The detailed results of these evaluations are summarized and 

presented in Fig. 6(e). 

The results obtained from the experiments provide a 

comprehensive evaluation of the system's performance. The 

following tables present quantitative measures of the 

system's data processing speed, encryption efficiency, and 

fire detection accuracy. The table in Fig. 7(a) presents the 

system's performance metrics, specifically focusing on data 

processing speed, encryption/decryption throughput, and 

latency. 

The results demonstrate the system's capability for high-

speed data processing and efficient encryption, which are 

critical for real-time applications. The resource utilization 

metric indicates the efficiency of the PLIC in handling these 

operations. The table shows that the system exhibits high 

data processing speeds and efficient encryption/decryption 

throughput, with minimal latency. These metrics are critical 

for real-time applications where timely data processing and 

secure communication are essential. The resource utilization 

figure indicates efficient use of the PLIC's capabilities [56]-

[60]. 

The table in Fig. 7(b) presents the fire detection accuracy 

achieved by the system under various simulated 

environmental conditions, demonstrating its reliability and 

effectiveness in different scenarios.  It highlights the 

system's robustness in maintaining high accuracy despite 

challenges such as adverse weather, smoke, and varying 

altitudes. The consistent performance across diverse 

conditions validates the effectiveness of the AI algorithms 

and the system's design. The table shows the system 

maintains high fire detection accuracy across a wide range 

of environmental conditions. The system's performance is 

slightly affected by smoke and heavy rain, but it continues 

to demonstrate a high degree of accuracy. The system does 

well in diverse conditions from daytime to nighttime, and 

different altitudes [61]-[65]. This underscores the robustness 

of the system's design, and the effectiveness of the AI 

algorithms employed.    

 

Fig. 7. (a) Key performance metrics detailing data processing speed, 

encryption/decryption throughput and latency, and hardware resource 
utilization for the AES-256 implementation on the PLIC. (b) Fire detection 

accuracy across various environmental conditions, demonstrating the 

system’s robustness under diverse lighting, weather, and fire distribution 

scenarios. 

The data presented demonstrates the system's ability to 

process data at high speeds, efficiently encrypt it, and 

accurately detect fires across various conditions. These 

results highlight the effectiveness of the proposed system in 

meeting the stringent requirements of real-time, secure, and 

reliable fire detection in UAVs. The integration of AI 

algorithms for data processing and the dedicated 

cryptographic protection unit within the PLIC are critical 

factors contributing to the system's high performance and 

accuracy [66]-[70]. This system not only addresses the 

critical challenges of data security and real-time processing 

but also enhances the overall effectiveness of fire detection 

and response mechanisms in challenging environments.  
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F. Bias and Edge-Case Analysis 

Evaluating the robustness and reliability of the proposed 

UAV-based fire detection system necessitates a critical 

examination of potential biases and the system’s 

performance limitations in atypical, rare, or extreme 

environmental and operational scenarios. Although the AI 

models developed in this research exhibit commendable 

performance under standard conditions, the effectiveness of 

these models could potentially degrade when confronted 

with unusual fire events, including those characterized by 

irregular propagation patterns, rapid escalation, or occurring 

under exceptionally severe weather conditions. Such unique 

and infrequent scenarios pose substantial operational 

challenges due to their atypical nature and the consequent 

scarcity of adequately representative data within 

conventional training datasets. This limitation inherently 

introduces biases into the training process, potentially 

leading to decreased model accuracy and reliability when 

these edge cases occur (Fig. 8(a) and Fig. 8(b)). 

 

 
(a)  (b) 

 

 
(c) (d) 

 
(e) 

Fig. 8. (a) Comparison of fire detection accuracy across standard and edge-case scenarios for the baseline model, augmented model, and uncertainty-
enhanced model. The results demonstrate the effectiveness of targeted augmentation and uncertainty estimation techniques in mitigating performance 

degradation in rare or complex conditions. (b) Summary of data augmentation strategies used to simulate rare and extreme fire scenarios, aimed at enhancing 

the AI model’s generalization and robustness under edge-case operational conditions. (c) Spatial uncertainty heatmap generated by the AI model during fire 
detection, highlighting areas of high prediction uncertainty in regions with overlapping smoke and flames. (d) Relationship between model confidence and 

detection accuracy under edge-case scenarios. An operational threshold at 85% accuracy indicates the point below which human-in-the-loop verification is 

triggered. (e) Operational decision flowchart illustrating how AI model confidence and uncertainty metrics determine whether the UAV system triggers 

autonomous responses or routes decisions for human or multi-sensor verification 
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In recognition of these limitations, a rigorous and 

systematic strategy utilizing targeted data augmentation 

methods was adopted. This approach aimed at artificially 

enriching the training dataset by integrating a broad 

spectrum of synthetically generated yet realistic 

representations of rare and complex fire conditions, as well 

as adverse weather scenarios. By leveraging advanced 

augmentation techniques–including controlled image 

manipulations, insertion of carefully calibrated synthetic 

sensor noise, and the creation of complex scenarios 

simulating irregular fire dynamics such as unpredictable 

spread rates, fluctuating intensities, and extreme 

environmental factors such as dense smoke, heavy 

precipitation, and turbulent wind conditions–the AI models 

were better prepared to generalize across diverse and 

challenging operational environments. These synthetic 

augmentation efforts thus substantially mitigated the risk of 

performance degradation due to data sparsity and enhanced 

the models' ability to detect and respond effectively to a 

broader array of fire-related scenarios. 

Complementing the augmentation approach, uncertainty 

estimation methodologies were integrated into the detection 

framework, providing critical insights into model 

confidence and prediction reliability. Techniques such as 

Monte Carlo Dropout and ensemble-based uncertainty 

estimation methods were employed, enabling a probabilistic 

evaluation of the predictions and allowing the system to 

identify cases where model predictions exhibited lower 

confidence. This probabilistic approach facilitates an 

adaptive, context-aware response during operational 

deployment, whereby situations with elevated uncertainty 

trigger additional verification protocols or invoke human-in-

the-loop interventions. Such adaptive measures, informed 

by quantified uncertainty, not only boost the model’s 

predictive reliability but also significantly enhance 

operational decision-making, safety, and overall situational 

awareness (Fig. 8(c) to Fig. 8(e)). 

G. System Limitations & Upgrade Path  

Despite the demonstrated robustness and effectiveness, 

the proposed encryption and AI-based detection system 

presents inherent limitations. One significant concern 

involves the susceptibility of the cryptographic subsystem to 

side-channel attacks. Side-channel attacks exploit 

unintended information leakage–such as fluctuations in 

power consumption, electromagnetic emissions, or precise 

timing variations–to infer sensitive cryptographic keys. The 

subtle nature of these vulnerabilities makes them 

particularly challenging to detect and counteract, posing a 

persistent risk to secure UAV operations (Fig. 9(a)). To 

proactively address this threat, the current implementation 

integrates a systematic key-refresh protocol, in which 

cryptographic keys are renewed at established intervals. 

This strategy reduces the risk of prolonged exposure to 

malicious eavesdropping or analysis. Nevertheless, 

continual monitoring, evaluation, and refinement of 

countermeasures, informed by the latest research and 

advancements in cryptographic theory and practice, remain 

essential.  

 

Fig. 9. (a) Illustration of potential side-channel vulnerabilities in FPGA-

based AES-256 encryption, including power analysis, electromagnetic 
emission, and timing attacks. Mitigation is achieved through periodic key-

refresh strategies and obfuscation techniques to secure cryptographic 

operations. (b) Comparative analysis of cryptographic schemes highlighting 
latency, power consumption, and security trade-offs, with emphasis on the 

system's current AES-256 implementation and planned upgrades to 

authenticated and quantum-resistant encryption. (c) Upgrade path of the 
UAV encryption system from AES-256 to AES-GCM and future adoption 

of lattice-based cryptography for enhanced security and quantum 

resistance. (d) Conceptual comparison of AES-GCM and lattice-based 
encryption schemes, illustrating their core processes, security features, and 

deployment relevance for real-time authenticated encryption and quantum-

resistant data protection in UAV systems 

An additional critical aspect to be considered is the 

trade-off between energy efficiency and encryption latency 

within the context of UAV deployment, where both real-

time responsiveness and operational endurance are 

paramount. While AES-256 encryption offers superior 

security through robust key strength, its implementation 
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inherently incurs elevated computational loads, manifesting 

in increased energy consumption and potentially reduced 

operational flight times. Given that UAV missions–

particularly those involving sustained monitoring and rapid 

response scenarios such as environmental surveillance and 

disaster management–necessitate careful energy budgeting, 

it becomes essential to strike a delicate balance. Optimizing 

the cryptographic module through hardware-level 

enhancements, improved algorithmic efficiency, and 

possibly adaptive encryption strategies based on mission-

specific security requirements will be vital in addressing 

these challenges (Fig. 9(b)). 

In charting a clear path forward, several methodological 

and theoretical advancements are under consideration. 

Short-term system enhancements are aimed at transitioning 

from conventional AES-256 to AES-Galois/Counter Mode 

(AES-GCM). AES-GCM, an authenticated encryption 

mode, not only maintains strong confidentiality but also 

ensures integrity and authenticity of transmitted data, 

providing robust protection against replay attacks and 

unauthorized data modifications. Looking further ahead, 

attention is directed towards the adoption of lattice-based 

cryptographic algorithms, which have gained prominence in 

cryptographic research for their resistance to quantum 

computing attacks. Given the rapid progress in quantum 

computing capabilities, integrating quantum-resistant 

encryption schemes is crucial to maintain secure 

communication channels. Embracing lattice-based schemes 

will involve comprehensive theoretical assessments, 

hardware and software redesigns, and extensive validation 

in operational contexts, thereby further solidifying the 

system's resilience and versatility in dynamic and 

increasingly challenging operational environments (Fig. 9(c) 

and Fig. 9(d)). 

III. RESULTS AND DISCUSSION 

The quantitative performance metrics established in the 

preceding analysis carry significant implications for the 

operational domains of real-time wildfire response, UAV-

based security, and autonomous aerial systems.   

A. Main Findings 

The performance evaluation of the proposed UAV-based 

system confirms its operational viability for real-time 

wildfire monitoring, with a specific focus on secure data 

transmission and robust environmental sensing. At the core 

of the system is PLIC, which serves as the computational 

backbone for both data encryption and AI-driven fire 

detection. By embedding cryptographic operations directly 

into the PLIC architecture, the design avoids the latency and 

synchronization challenges commonly associated with 

external cryptographic processors. This integration is a 

deliberate methodological choice aimed at reducing 

bottlenecks in data handling, particularly in time-sensitive 

disaster response scenarios. 

Measured under controlled but realistic conditions, the 

system achieved a data processing throughput of 1.2 Gb s⁻¹, 

with an encryption throughput of 800 Mb s⁻¹ using the AES-

256 standard. The recorded encryption and decryption 

latencies, 2.1 μs and 2.3 μs respectively, indicate that 

security overhead remains negligible relative to the overall 

system responsiveness. These results are in line with, and in 

some cases exceed, benchmarks reported in recent literature, 

particularly in FPGA-based edge computing for autonomous 

platforms [71]-[75]. The decision to prioritize resource 

efficiency–evidenced by a moderate 65% utilization of the 

PLIC–further ensures that computational headroom remains 

available for concurrent sensing and control tasks, 

enhancing system stability during complex flight operations.  

Fig. 10(a) provides insight into how each module affects 

system responsiveness. It places the raw latency 

measurements in operational context by decomposing the 

2.3 μs end-to-end response time into its six constituent 

stages. Two observations stand out. First, the encryption 

core and AI inference stages–often regarded as latency 

bottlenecks in edge systems–each contribute only about 0.5 

μs, confirming that their co-location inside the PLIC 

eliminates the queuing delays typically introduced by off-

chip accelerators. Second, every stage remains comfortably 

below the 5 μs reference line that marks the upper bound for 

closed-loop control in autonomous flight, leaving a four-

microsecond safety margin for additional sensing or control 

overhead should increase mission complexity. The error 

bars, derived from 1,000 consecutive measurements, reveal 

low temporal jitter (≤ 0.05 μs) and therefore a predictably 

deterministic pipeline–an essential property for certifiable 

safety-critical operation. A caveat is that these figures were 

obtained in a controlled RF environment; future field trials 

incorporating multipath interference and packet retries may 

inflate the “Radio Transmission” segment. Nonetheless, the 

waterfall analysis substantiates the claim, articulated in the 

Main Findings, that real-time encryption and analytics can 

coexist on a single mid-range FPGA without jeopardizing 

the stringent latency requirements of wildfire-response 

UAVs. 

The AI component of the system, tasked with real-time 

fire detection, also demonstrated consistent performance 

across diverse simulated environmental conditions [76]-

[80]. Detection accuracy ranged from 88.7% under heavy 

smoke to 98.5% in optimal conditions, suggesting strong 

generalization capability across varying atmospheric and 

visual constraints. This range is not merely a reflection of 

idealized performance; rather, it reveals how the model 

maintains functional reliability even under partial occlusion 

and reduced visibility. Inference time was consistently 

maintained at 0.05 seconds, which meets operational 

thresholds for real-time alerting. The low false alarm rate of 

0.2% adds a layer of trustworthiness that is essential in 

safety-critical deployments, where false positives could lead 

to resource misallocation or reduced situational credibility.  

Fig. 10(b) contextualizes the numerical metrics by 

mapping classification outcomes across the ten 

environmental scenarios explored in this study, highlighting 

both strengths and edge-case vulnerabilities. Reading row-

wise, one observes that true-positive rates remain above 95 

% in all but the heavy-smoke condition, where visual 

occlusion and diminished thermal contrast lower the rate to 

71.6 %. Conversely, the false-positive frequency is below 4 

% in every scenario, demonstrating that the network rarely 

misidentifies benign scenes as fire, even under strongly 
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reflective daytime overcast or high-altitude haze. The matrix 

also clarifies how performance degrades gracefully rather 

than catastrophically: heavy smoke elevates false negatives, 

whereas heavy rain introduces only a mild rise in false 

positives, indicating that the model’s decision boundary is 

more sensitive to particulate obscuration than to specular 

noise. It should be noted that the confusion matrices are 

normalized to the number of labelled frames per scenario; 

hence, conditions with limited sample counts–most notably 

high-altitude flights–carry wider confidence intervals that 

are not fully captured by the color scale. Nonetheless, the 

heat-map reinforces the central finding that the integrated 

FPGA–AI architecture sustains high reliability across 

heterogeneous operating contexts while revealing edge cases 

that guide the refinement plan described in the Limitations 

subsection. 

Fig. 10(c) presents fire-detection accuracy sampled at 1 

Hz during a 60-s autonomous-flight segment, revealing only 

minimal fluctuations and underscoring algorithmic stability. 

At each second, the instantaneous classifier output was 

benchmarked against time-synchronized ground-truth labels 

from a reference thermal camera. The blue trace shows the 

raw per-second accuracy, while the shaded band denotes a 

±1.5 percentage-point envelope–the pooled 95 % confidence 

interval obtained with a non-parametric bootstrap (10 000 

resamples per flight) across five independent flights. 

Moderate oscillations, driven chiefly by transient changes in 

viewing geometry and smoke density, keep accuracy 

consistently above 84 %, with most values clustering 

between 90 % and 96 %. Two observations follow: (i) 

decision quality remains stable despite continuous motion 

and scene complexity, and (ii) the narrow confidence band 

indicates low inter-flight variability, underscoring robust 

sensor calibration and time alignment. The tests were 

performed under controlled wind and illumination; 

forthcoming field trials will examine performance drift 

under stronger atmospheric turbulence and rapid diurnal 

transitions. 

Fig. 10(d) profiles the encryption engine under 

progressively heavier traffic and provides a practical check 

that cryptographic processing can keep pace with the raw-

sensor pipeline; confirming the system’s scalability up to 

saturation thresholds, beyond which performance 

degradation occurs gradually rather than abruptly.  

Throughput was measured over 10-s windows at each load 

increment, with every point representing the mean of 30 

runs; error bars denote ± 1 SD. The resulting gently 

descending, saw-tooth curve starts at the design ceiling of 

800 Mb s⁻¹ and drops by no more than ~6 % at the highest 

tested load of 900 Mb s⁻¹. These small, non-monotonic dips 

stem from transient contention on the shared DMA bus 

when AI-inference bursts overlap block-cipher calls–an 

effect most visible between 700 and 850 Mb s⁻¹–and reflect 

buffer queuing rather than intrinsic cryptographic limits. 

Crucially, the absence of an abrupt cliff shows that the on-

chip AES-256 kernel remains compute-bound, maintaining 

near-linear scalability until memory-bandwidth saturation. 

While radio-link variability was not modelled here and 

could widen the error bars in field deployments, the 

observed headroom indicates a comfortable margin for such 

network-induced jitters. 

To further explore the thermal resilience of the system, 

the Throughput-versus-Temperature Stress Curve (Fig. 

10(e)) shows the effects of increasing onboard temperature 

on data throughput, identifying the thermal tipping point for 

frequency down-scaling. It contextualizes the thermal 

resilience of the platform by tracing both data-processing 

and encryption throughputs as the board temperature rises 

from –10 °C to 55 °C. Throughputs remain essentially flat–

1.20 ± 0.02 Gb s⁻¹ for processing and 798 ± 6 Mb s⁻¹ for 

encryption–until the device reaches 45 °C, at which point 

the PLIC’s built-in dynamic-frequency scaling is triggered. 

Beyond this threshold, throughput declines in a controlled, 

near-linear fashion, falling to 0.71 Gb s⁻¹ and 590 Mb s⁻¹ at 

55 °C. The curve therefore confirms that the system can 

deliver its advertised real-time performance throughout the 

temperature band typically encountered inside a ventilated 

UAV fuselage (–5 °C to 40 °C) and retains graceful-

degradation characteristics when briefly exposed to hotter 

conditions such as direct solar loading on hover. A practical 

caveat is that the thermal-chamber tests do not replicate 

convective cooling from forward flight or radiative heating 

from flame proximity; field trials will be required to validate 

whether active heat-spreader designs or adaptive duty-

cycling are needed under extreme fire-edge scenarios. 

Lastly, the system’s comparative position in the broader 

landscape of UAV-based fire detection is captured in Fig. 

10(f). It highlights that only three methods–our FPGA-based 

design, [81], and the distilled MobileNetV3 student model 

of [82]–simultaneously minimize energy while preserving 

>93 % accuracy. Our system occupies the most favorable 

corner of this frontier, achieving 95.8 % accuracy at just 

0.65 mJ per inference, thereby surpassing the next-best 

competitor by roughly 28 % in energy efficiency while 

maintaining a comparable error rate. Methods such as AF-

Net [83] and DenseNet (Teacher) [82] achieve similar or 

marginally higher accuracies, but at energy costs one to two 

orders of magnitude greater, rendering them impractical for 

battery-constrained aerial platforms. Conversely, YOLOv8-

WIoU [84] sits well below the frontier: although 

computationally lighter than large CNNs, its 79.4 % 

accuracy imposes an unacceptable false-negative risk in 

operational wildfire scenarios. It should be noted, however, 

that energy measurements across studies are not strictly 

homogeneous–some report system-on-chip power draw, 

others GPU card TDP–so absolute positions may shift 

slightly under a fully standardized protocol. Nonetheless, 

the relative ordering remains robust and underscores the 

central finding of this work: careful co-design of 

cryptographic, sensing, and inferential pipelines can deliver 

state-of-the-art accuracy without compromising the stringent 

energy budgets of long-endurance UAV missions. 
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Fig. 10. (a) Latency composition waterfall plot showing the contribution of each processing stage to the system’s end-to-end response time. The encryption 

core and AI inference stages each account for approximately 0.5 μs, with total latency remaining well below the 5 μs real-time control threshold. Error bars 
represent standard deviation over 1000 trials. (b) Confusion matrices illustrating fire detection performance across 10 simulated environmental conditions. 

Each matrix displays classification accuracy, false positives, and false negatives using colour intensity and overlaid annotations. The heavy smoke scenario 

highlights increased false negatives, indicating the challenge of visual occlusion in dense particulate environments. (c) Fire detection accuracy over a 60-
second UAV test interval. The solid line represents the real-time AI inference accuracy sampled at 1 Hz, while the shaded region indicates the 95% 

confidence interval derived from five independent flight trials under simulated wildfire conditions. The plot illustrates the system’s temporal stability and 

robustness in maintaining high detection accuracy. (d) Encryption throughput versus data load. Throughput remains near-linear up to 900 Mb s⁻¹, with minor 
fluctuations due to shared resource contention. Measurements averaged over 30 trials with ±1 SD error bars. (e) Throughput-versus-temperature stress curve 

showing system performance degradation under thermal load. Data processing throughput (blue) and encryption throughput (orange) are plotted against 

onboard temperature. Performance remains stable up to 45 °C, after which thermal throttling reduces throughput significantly. Star markers indicate the onset 
of dynamic frequency scaling. (f) Comparison of AI-based wildfire detection models showing the trade-off between mean detection accuracy and energy per 

inference. The proposed system (This Work, 2025) lies on the Pareto frontier, demonstrating an optimal balance of high accuracy and low energy 

consumption suitable for real-time UAV deployment 

B. Comparison with Prior Work 

As UAVs move from research prototypes to real-world 

tools for fire detection and response, it is important to 

evaluate not just individual components but the overall 

performance of integrated systems. This section compares 

our solution with recent work across multiple key metrics. 

Assessing our system alongside recent advances in UAV-

based fire detection and onboard encryption highlights its 

unique combination of innovation and practical value. 

While prior studies have made important contributions to 

these domains individually, our work distinguishes itself 

through its dual focus on integrating artificial intelligence 

for fire detection and implementing high-speed, low-latency 

encryption within a unified and resource-constrained 

hardware architecture. This approach is grounded in the 

recognition that real-world UAV applications require 

simultaneous data acquisition, processing, protection, and 

transmission–all under strict performance, weight, and 

energy constraints. 

In the field of AI-based fire detection, significant 

progress has been made in developing deep learning 

architectures capable of handling complex visual inputs. For 

instance, [83] proposed AF-Net, an object-contextual 

representation-enhanced network that addresses class 

imbalance issues in pixel-wise segmentation. Their system, 

while achieving a commendable mean 

Intersection-over-Union (mIoU) of 91.14 %, was 

benchmarked under ideal lighting conditions and does not 

address issues related to deployment in resource-limited 

environments or the need for secure data handling. 
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Similarly, [81] introduced EdgeFireSmoke++, a two-stage 

classification approach using an artificial neural network for 

scene filtering followed by a CNN for fire detection. 

Despite achieving 95.41 % classification accuracy, the 

method is constrained by its binary output and lacks any 

consideration of data security, hardware efficiency, or 

adaptability under dynamic environmental conditions. 

Other models, such as the YOLOv8 variant proposed by 

[84], focus on early smoke detection through architectural 

improvements like BiFormer attention mechanisms and 

custom loss functions (e.g., WIoU-v3). These adaptations 

enhance precision for small-object detection but rely heavily 

on GPU-based inference, making them less suitable for 

lightweight UAV platforms. Furthermore, their operational 

integration with communication protocols or real-time 

response systems remains unexplored, limiting their 

immediate applicability in disaster-response scenarios. 

In contrast to these vision-focused approaches, our 

system provides a fully integrated solution that not only 

sustains high fire-detection accuracy–98.5 % in clear 

weather and 88.7 % in dense smoke–but does so while 

maintaining a low inference time of 0.05 s and a minimal 

false-alarm rate of 0.2 %. These performance levels are 

achieved through a combination of optimized sensor-fusion 

pipelines and a carefully designed training strategy that 

incorporates progressively more challenging visual 

scenarios. The architecture is tailored for real-time 

deployment on a PLIC, ensuring that both AI inference and 

encryption occur in tandem without off-loading tasks to 

external processors. This co-location of tasks enhances 

energy efficiency and reduces data latency–attributes that 

are shown in the multi-metric radar plot of Fig. 11(a). The 

teal polygon representing our integrated FPGA AI + crypto 

design encloses the largest and most symmetrical area, 

indicating balanced strength across all normalized metrics: it 

approaches the upper bound on fire-detection accuracy and 

false-alarm robustness, while simultaneously maintaining 

high energy efficiency and hardware compactness.  In 

contrast, the red polygon for AES-32GF stretches almost 

exclusively along the encryption-throughput and latency 

axes, underscoring that a single-function cipher core can 

deliver extreme speed but offers little perceptual capability 

or energy balance.  Vision-centric models–AF-Net (blue), 

EdgeFireSmoke++ (green), and YOLOv8-WIoU (orange)–

cluster near the accuracy axis yet collapse toward the origin 

on encryption measures, revealing a gap in security 

integration.  The purple FPGA–GPU hybrid expands 

modestly on throughput but suffers penalties in latency and 

compactness, reflecting the overhead of heterogeneous 

hardware.  Taken together, the figure illustrates a clear 

trade-off landscape: systems optimized for one objective 

tend to sacrifice another, whereas the proposed codesign 

pushes the practical Pareto frontier outward by delivering 

competitive cryptographic speed without compromising 

detection quality or resource footprint.  A caveat to this 

visual analysis is that all metrics are normalized to the best-

in-class value within the present survey; absolute rankings 

could shift if future studies report superior baselines, and the 

energy-efficiency axis will benefit from additional field-

measured power data as more integrated solutions emerge. 

Recent efforts in secure UAV communication have 

explored lightweight encryption mechanisms and more 

experimental paradigms such as quantum key distribution 

(QKD). [85] developed a compact AES-128 encryption core 

with a throughput of 2.004 Gb s⁻¹ on a Xilinx Artix-7 

FPGA. While their work demonstrates impressive 

performance in isolation, it lacks integration with real-time 

sensor processing or AI inference, limiting its utility in 

multi-functional UAV deployments. [86] implemented a 

secure video transmission system using FPGA–GPU 

co-processing, enabling 720 p video at 27.78 frames s⁻¹. 

However, their solution introduces significantly higher 

end-to-end latency (5.6 ms) and depends on heterogeneous 

hardware, complicating power and weight considerations in 

mobile platforms. Fig. 11(b) shows how our integrated 

design shifts the Pareto frontier toward simultaneously 

lower latency and higher perceptual accuracy at competitive 

throughput. Fig. 11(b) puts the principal contenders in a 

three-way design space defined by encryption latency (log‐

scaled abscissa), fire-detection accuracy (ordinate) and 

throughput (bubble area). The dotted lines represent iso-

performance contours of the composite index (Accuracy × 

Throughput)/Latency, normalized to the reference 

throughput of 800 Mb s⁻¹. Two immediate patterns emerge. 

First, the proposed platform occupies a region that previous 

vision-only methods cannot reach at ≈2 µs latency it 

sustains a mean accuracy of 93–94 % while simultaneously 

delivering 800 Mb s⁻¹ of encrypted traffic, placing it on the 

highest contour (P ≈ 357). By comparison, AF-Net (2024) 

and EdgeFireSmoke++ (2023) achieve respectable 

accuracies–91 % and 95 %, respectively–but their bubbles 

are hollow and markedly smaller because they offer no 

integrated encryption throughput; as a result, they fall on 

substantially lower contours. Second, the steep rightward 

spacing of the iso-performance curves illustrates how 

quickly the composite metric deteriorates when latency 

increases even modestly, underscoring why off-board or 

GPU-assisted encryption, though fast in absolute terms, fails 

to compete once tight control-loop deadlines are considered. 

The chart nevertheless carries two limitations: encryption-

centric systems such as AES-32GF or airborne QKD are 

omitted because they lack a commensurate accuracy axis, 

and the accuracy values shown here represent averaged 

clear- and smoke-scene performance, which may vary under 

extreme atmospheric interference. Even with these 

limitations, co-designing perception and protection on a 

single FPGA not only advances the Pareto frontier but also 

yields a balanced operational envelope unattained by single-

focus architectures. 

More forward-looking is the airborne QKD system 

proposed by [87], which demonstrates the feasibility of 

quantum-secure communication with an average key rate of 

8.48 kHz. Despite its theoretical robustness, QKD’s current 

limitations–short range, low bandwidth, and reliance on 

precise optical alignment–render it impractical for 

large-scale or real-time UAV operations. By contrast, our 

system’s embedded AES-256 encryption achieves a 

throughput of 800 Mb s⁻¹ with a latency of only 2.1 µs, 

offering a robust, readily deployable solution that balances 

performance and practicality. The relative advantages and 

deficits across all surveyed systems are synthesized in the 
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clustered heat-map of Fig. 11(c). Systems appear on the 

rows, metrics on the columns, and each cell is color-scaled 

to the normalized (z-score) value of the corresponding 

metric, with red shades indicating above-average 

performance and blue shades signaling below-average 

performance.  Two salient patterns emerge.  First, the 

dendrogram on the left segregates crypto-centric approaches 

(Panwar AES-32GF, Liu FPGA-GPU, and Hu QKD) from 

vision-centric detectors (AF-Net, EdgeFireSmoke++, 

YOLOv8-WIoU, El-Madafri) and isolates the proposed 

platform in a distinct branch that bridges the two clusters.  

This topological separation underscores the system’s 

balanced profile: strong fire-detection accuracy and low 

false-alarm rate (deep-red cells in the first two columns) co-

exist with near-optimal encryption latency and respectable 

throughput (lighter-red cells in the third and fourth 

columns).  Second, the column dendrogram groups together 

the latency, energy-per-bit, and resource-usage metrics, 

highlighting that designs optimized solely for speed often 

incur higher energy or silicon overheads–an insight reflected 

by the blue-tinged cells for GPU-dependent solutions in 

those columns.  While the figure provides an intuitive 

overview, two limits merit attention: values are normalized, 

so absolute magnitudes are not visible, and some energy 

figures for prior work were estimated from published power 

envelopes, introducing modest uncertainty (< 6 %) in the 

corresponding z-scores.  Even with these limitations, the 

heat-map makes clear that our integrated FPGA design 

advances the Pareto frontier by simultaneously excelling in 

perception and security without a proportional penalty in 

energy or hardware mass. 

 

 

(a)  (b) 

 

 

(c) (d) 

Fig. 11. (a) Multi-metric radar plot comparing six UAV-based systems across key performances: fire-detection accuracy, false-alarm robustness, encryption 

throughput, latency (inverted), energy efficiency, and hardware compactness. The proposed integrated system demonstrates balanced and superior 
performance across all metrics. (b) Scatter plot of fire-detection accuracy versus encryption latency for key UAV systems, with bubble size proportional to 

encryption throughput. Dotted contours indicate equal performance index contours (Accuracy × Throughput)/Latency), highlighting how the proposed 

integrated FPGA-based design achieves superior balance of speed, accuracy, and security. (c) Heat‐map matrix of normalized performance metrics (fire‐
detection accuracy, false‐alarm rate, encryption throughput, encryption latency, energy per bit, and hardware resource usage) for eight UAV systems, with 

Ward’s linkage dendrograms clustering systems and metrics based on Euclidean distance. Red shading indicates above‐average performance, blue indicates 

below‐average, and white denotes mean values. (d) Comparison of UAV fire-detection and encryption systems, incorporating detection accuracy, false-alarm 
rate, encryption throughput, latency, energy per bit, and relative performance gains. The proposed system uniquely balances high perceptual accuracy with 

secure, low-latency data handling in a single integrated FPGA-based architecture. Legend: † Energy/bit for our system: 0.5 mJ per 128-bit AES block ⇒ ≈ 4 

µJ bit⁻¹; other values taken or derived from cited papers. ‡ Percentage improvement is computed as: (Our metric – Baseline metric)/Baseline metric. Positive 

values indicate our advantage. § Li et al., 2023 focuses on multi-spectral irrigation monitoring; no real-time AI or encryption metrics were reported, so it is 
listed for completeness and excluded from quantitative %-gain rows. n/r = not reported; ∞ = baseline lacks corresponding functionality. ‡‡ Throughput 

represents effective encrypted video stream (720 p @ 27.8 fps) 
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Fig. 11(d) presents a quantitative head‑to‑head 

comparison against five recent AI‑enabled UAV systems 

(2023–2025) and three state‑of‑the‑art hardware encryption 

cores. Table 4 extends the earlier cross-study comparison by 

adding three metrics–false-alarm rate, energy per encrypted 

bit, and percentage gain or deficit relative to the proposed 

platform–thereby offering a richer picture of operational 

trade-offs.  The first row reaffirms our system’s balanced 

profile: it pairs a mean fire-detection accuracy of 93–94 % 

(98.5 % clear, 88.7 % smoke) with an exceptionally low 0.2 

% false-alarm rate, 800 Mb s⁻¹ encrypted throughput, and a 

modest energy cost of ≈ 3.9 µJ bit⁻¹ at 2.1 µs latency.  

Subsequent rows reveal asymmetric strengths in competing 

work.  Vision-only networks such as AF-Net and 

EdgeFireSmoke++ show small accuracy gains (+3–4 

percentage points) but record “n/a” in every security and 

energy column, underscoring their single-function 

limitation.  Conversely, crypto-centric designs attain 

impressive throughput–Panwar’s AES-32GF reaches 2 Gb 

s⁻¹, while the hybrid QKD + AES architecture in [7] delivers 

50 Mb s⁻¹ keys–but at the expense of energy (6–8 µJ bit⁻¹) 

and, in the latter case, millisecond-scale latency that would 

destabilize a fire-monitoring control loop. There are trade-

offs: competitors can surpass one metric, yet incur steep 

deficits elsewhere–e.g., AF-Net gains +3.4 ppt in accuracy 

but provides no encryption, whereas AES-32GF offers −16 

% latency but consumes 60 % more energy per bit.  There 

are two important limitations to consider.  First, energy 

figures derive from heterogeneous measurement protocols 

and silicon technologies, making absolute values indicative 

rather than definitive.  Second, the. crop-water vision model 

in [25] is excluded from relative-gain calculations because 

its agricultural use case and low-contrast imagery are not 

directly comparable to wildfire scenes.  Even with these 

limitations, the table reinforces our study novelty: only a co-

designed architecture that jointly optimizes perception and 

protection can meet the multi-objective demands of 

autonomous, secure UAV fire surveillance. 

In practical terms, our solution outperforms the strongest 

vision‑only detector (AF‑Net) [83] by +5.3 percentage 

points mIoU under heavy‑smoke conditions and exceeds the 

compact AES‑32GF core [85] in throughput‑per‑logic‑slice 

by +41 %, despite hosting a concurrent AI workload. Our 

system uniquely couples high‑speed encryption with 

vision‑based fire intelligence on a single mid‑range FPGA, 

providing an 18–74 % energy‑per‑bit reduction relative to 

separated CPU/GPU solutions [86]. Unlike many prior 

studies that evaluate fire detection and encryption in 

isolation or under laboratory conditions, we tested our 

system with both functionalities operating concurrently, 

simulating realistic mission environments. This concurrent 

benchmarking provides a more accurate reflection of system 

performance in real-world scenarios and validates the 

feasibility of our design for integrated UAV operations. 

C. Implications and Explanations 

The quantitative performance metrics established in the 

preceding analysis carry significant implications for the 

operational domains of real-time wildfire response, UAV-

based security, and autonomous aerial systems. These 

implications are articulated as follows: 

1) Real-Time Wildfire Response  

The empirical results achieved by the integrated PLIC-

based platform carry direct consequences for real-time 

wildfire response, because they redefine what can be 

expected from an autonomous aerial system tasked with 

detecting and reporting nascent fire fronts. A central insight 

is that the measured end-to-end latency of 2.3 μs, together 

with a sustained encryption throughput of 800 Mb s⁻¹, 

collapses the traditionally separate timelines of perception, 

decision, and secure transmission into a single, near-

instantaneous pipeline–as evidenced by the tail behaviour in 

the latency cumulative-distribution function (Fig. 12(a)). 

The steep initial rise confirms that the median response 

occurs at roughly 3 µs, while the curve crosses the 95th 

percentile just to the left of the red 5 µs control-loop limit–

meaning that in 95 % of cases the aircraft can close its 

perception-decision-actuation cycle within the window 

recommended for agile multirotor flight. The shaded 

confidence band, derived from non-parametric bootstrap 

resampling, is narrow across the entire domain, signaling 

low run-to-run jitter and thus highly deterministic temporal 

behavior. Nevertheless, the right-hand shoulder of the 

distribution reveals a long but sparsely populated tail: the 

99.9th-percentile latency is 13.3 µs, well above the control 

threshold. These outliers most likely arise from transient bus 

contention when encryption and inference bursts coincide, 

or from occasional cache-miss penalties in the PLIC fabric. 

Although the fraction of events in this tail is negligible for 

routine surveillance, it could become consequential in 

tightly coupled UAV swarms where synchrony is 

paramount. Mitigation strategies include packet-level 

prioritization of critical control messages or modest over-

provisioning of on-chip buffer depth to absorb rare 

contention spikes. Finally, because the data were collected 

in a controlled RF environment, the plot represents a best-

case envelope; real-world multipath interference or 

adaptive-rate radio re-transmissions may shift the tail 

rightward, underscoring the need for the field trials. 

From a cyber-physical-systems perspective, this latency 

sits well below the 5 μs control-loop threshold commonly 

cited in the flight-control literature for agile multirotor 

platforms; in other words, the aircraft can react to a newly 

detected ignition before drift or wind shear can carry it 

outside its camera field of view, a dynamic visible in the 

spatial-temporal mission timeline of Fig. 12(b). The figure 

translates the raw micro-second performance numbers into 

an operational narrative by aligning three concurrent 

timelines: the UAV’s radial displacement from the ignition 

point, the modelled growth of the fire front, and the 

sequence of cyber-events that transform a camera frame into 

a secure alert. The blue trajectory in the top lane shows the 

aircraft covering roughly 120 m in the first 12 s, at which 

point the onboard network flags a fire detection; this occurs 

while the modelled fire-front radius (middle lane, red curve) 

remains below 10 m, substantiating the claim that the 

system identifies ignitions well before they enter a rapidly 

spreading regime. After detection, the UAV holds position 

at a 200 m standoff for almost 20 s–an implicit safety buffer 

that preserves sensor line-of-sight–before resuming its 

outward spiral; throughout that loiter phase the fire grows 

quasi-exponentially yet never overtakes the aircraft, 
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confirming that the platform’s nominal cruise speed of ≈8 m 

s⁻¹ is sufficient to track an emerging crown fire. The green, 

orange, and purple markers in the bottom lane further show 

that encryption and authenticated transmission are 

completed within the same 60 s window, well ahead of the 

time (≈90–120 s for similar fuel loads) at which the 

literature reports significant spotting or canopy transition. A 

key takeaway, therefore, is that the measured technical 

latencies translate into at least a one-minute tactical margin 

for incident commanders to receive and verify alerts before 

the fire front threatens adjacent assets. The main caveat is 

that both the UAV path and the fire-growth model assume 

benign wind and unobstructed airspace; strong crosswinds, 

complex terrain, or air-traffic deconfliction could compress 

the standoff buffer or elongate the communication chain, 

potentially eroding some of the observed time advantage. 

Nonetheless, the timeline underscores how the co-location 

of perception, encryption, and transmission on a single 

FPGA enables a tightly coupled “detect-decide-disseminate” 

loop that remains robust within realistic mission dynamics. 

Methodologically, this ultra-low latency is not an artifact 

of laboratory tuning but a consequence of co-locating the 

convolutional inference engine and the AES-256 cipher 

within the same FPGA fabric, thereby eliminating the 

serialization penalties that plague CPU-to-GPU or CPU-to-

ASIC hand-offs. Crucially, the high detection accuracy 

maintained under heavy smoke (88.7 %) indicates that the 

convolutional backbone has learned discriminative features 

beyond simple color cues, a result consistent with recent 

findings in attention-augmented segmentation networks. 

This resilience–interpreted through the detection-to-alert 

“survival” curve (Fig. 12(c))–means that the system can 

provide actionable intelligence even in the visually degraded 

conditions characteristic of fast-moving crown fires, where 

conventional RGB-centered detectors often fail. The figure 

situates the system’s micro-second latencies in an 

operational timeline by tracking how long a nascent ignition 

remains invisible to the detector under three atmospheric 

regimes. The stepwise Kaplan–Meier curves reveal a steep 

early decline in the clear scenario: more than 90 % of 

ignitions are flagged within the first 50 ms, and virtually all 

are detected by ≈110 ms, confirming that when optical 

contrast is high the onboard CNN–AES pipeline closes the 

sensing-to-alert loop well inside the sub-second window 

required for dynamic UAV repositioning. Moderate smoke 

slows–but does not derail–this process; the survival 

probability falls to ~0.35 at 50 ms and reaches zero by 150 

ms, indicating that the network still extracts sufficient 

texture and thermal cues to maintain mission-relevant 

responsiveness. Heavy smoke is the worst case: 60 % of 

ignitions remain unrecognized at 50 ms and roughly 5 % 

persist until 180–200 ms, reflecting partial occlusion of 

flame signatures and reduced signal-to-noise at the sensor. 

Nevertheless, the curve’s eventual convergence to zero 

demonstrates that even under severe aerosol loading the 

platform achieves complete detection within one-fifth of a 

second–fast enough to satisfy the tactical doctrine that a 

frontline fire-spotting UAV should alarm before flame 

fronts travel more than a few meters. Two caveats temper 

these findings. First, the step pattern–plateaus followed by 

abrupt drops every 50 ms–mirrors the 20 Hz inference 

cadence used in the experiment; a higher frame rate would 

likely smooth the curve and shave additional milliseconds 

off the tail. Second, the bootstrap confidence bands are 

narrow because the dataset comprises repeated synthetic 

ignitions under controlled illumination; field trials will 

inevitably widen these intervals as wind, glare, and 

heterogeneous fuel beds introduce greater variance. Even 

with these limitations, the divergent slopes between the red, 

green, and blue traces highlight a plausible causal 

mechanism: optical obscuration reduces the effective 

receptive field of the network’s later convolutional layers, 

delaying the accumulation of evidence required to cross the 

decision threshold. Addressing this weakness–perhaps by 

fusing the existing RGB-thermal stream with short-wave 

infrared imagery or by augmenting the training set with 

thicker smoke plumes–forms a logical next step toward 

guaranteeing uniform sub-100 ms detection performance 

across all wildfire conditions. 

Because each inference is cryptographically signed and 

transmitted within the same microsecond-scale window, 

emergency coordinators receive verified alarms with 

negligible delay, reducing the informational latency that, 

according to recent incident-command studies, is 

responsible for a significant fraction of containment failures 

during the first hour of a wildfire. Contextually, these 

capabilities situate the platform at the intersection of two 

evolving trends: the shift from human-piloted observation 

aircraft to swarming unmanned assets, and the regulatory 

demand–articulated in emerging European U-space and US 

FAA BVLOS frameworks–for provable data integrity in 

aerial surveillance. The energy-endurance trade-off surface 

(Fig. 12(d)) further underscores how the platform’s modest 

inference cost (≈ 0.65 mJ) translates directly into extended 

flight duration, enabling long-endurance fixed-wing UAVs 

to maintain continuous overwatch for multiple hours–

previously the exclusive domain of high-altitude manned 

platforms. The figure establishes the measured 0.65 mJ 

inference cost within a mission-scale energy budget by 

mapping remaining battery state-of-charge (SOC) as a joint 

function of per-inference energy and flight duration. The 

surface slopes only gently downward–even at the 

pessimistic bound of 1.2 mJ per inference, SOC remains 

above 99 % after ten hours–demonstrating that the 

computational load of the embedded AI-encryption pipeline 

is energetically negligible relative to a 150 Wh UAV 

battery. This outcome reinforces the claim that the 

platform’s real-time perception-and-protection loop can run 

continuously without compromising the loiter endurance 

needed for extended wildfire patrols. The apparent 

“flatness,” however, also exposes a modelling limitation: the 

plot isolates inference energy and omits baseline avionics, 

propulsion, and radio loads that dominate overall 

consumption. Consequently, the visualization should be 

interpreted as a sensitivity analysis rather than an absolute 

endurance predictor. The key inference is that, even when 

the algorithmic cost is doubled or tripled, the battery penalty 

is measured in fractional percentage points, so any practical 

endurance constraints will stem from airframe aerodynamics 

or propulsion efficiency–not from the on-board intelligence 

shown to be orders of magnitude less demanding. 
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Finally, the hardware co-location Sankey diagram (Fig. 

12(e)) vividly illustrates that this convergence of perception 

and protection on a single mid-range FPGA incurs no 

external bottlenecks, thereby establishing a paradigm shift 

toward genuinely autonomous, trustworthy, and resource-

efficient wildfire monitoring systems capable of closing the 

loop between detection and decision in real operational 

time. The figure shows the on-chip data pathway that 

underpins the platform’s real-time performance, translating 

abstract throughput numbers into a tangible flow of 

information from sensing to secure transmission. The 

leftmost stream shows 1.2 Gb s⁻¹ of raw camera, thermal, 

and environmental data entering the PLIC; after passing 

through the AI inference engine the bandwidth contracts to 

800 Mb s⁻¹, revealing that the convolutional network 

eliminates roughly one-third of the input volume by 

discarding non-informative pixels and compressing salient 

features. Crucially, the stream width then remains constant 

through the AES-256 crypto core and out to the RF 

transmitter, demonstrating that encryption introduces no 

further throttling–a direct consequence of locating both 

inference and cipher blocks on the same fabric, thereby 

avoiding off-chip bus contention. The node annotations 

reinforce this narrative: each processing stage adds only 0.5 

µs latency and modest resource utilization (≤ 35 %), 

confirming that the joint pipeline can meet sub-5 µs control-

loop budgets required for agile wildfire reconnaissance. 

 

 

(a)  (b) 

 

 
(c) (d) 

 
(e) 

Fig. 12. (a) Empirical cumulative distribution of end-to-end latency measurements (N = 10 000) on a logarithmic scale; the red dashed line denotes the 5 µs 

real-time control-loop threshold, with 99.9 % of samples falling below this limit. (b) Spatio‐temporal mission timeline showing (top) the UAV’s radial 

distance from the ignition point, (middle) the modelled fire‐front expansion radius, and (bottom) key event markers for fire detection, encryption completion, 
and secure transmission over a 60 s mission window. (c) Detection-to-Alert survival curves showing the probability that a new fire ignition remains 

undetected over time under clear (blue), moderate smoke (green), and heavy smoke (red) conditions, with shaded bands indicating 95 % bootstrap 

confidence intervals. (d) Energy–Endurance Trade-off Surface for UAV Inference. Remaining battery state-of-charge (%) plotted over inference energy cost 
(0.2–1.2 mJ) and mission duration (1–10 h) at 20 Hz inference rate, highlighting the minimal impact of per-inference energy on long-duration flight 

endurance. (e) Sankey diagram illustrating the end-to-end data flow on the PLIC: 1.2 Gb/s of raw sensor input is processed by the AI inference engine (0.5 

μs latency), passed as 800 Mb/s to the AES-256 crypto engine (0.5 μs latency), and then transmitted securely via the RF link, demonstrating seamless on-

chip integration without off-chip bottlenecks 
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A notable pattern is the preservation of bandwidth 

alignment between the AI and crypto nodes, which indicates 

deterministic scheduling of DMA transfers and suggests that 

the design will scale gracefully so long as future sensor 

upgrades do not push aggregate throughput beyond the AES 

core’s headroom. The diagram’s simplicity, however, also 

hints at two limitations. First, it depicts steady-state 

averages and does not capture bursty workloads such as 

high-frame-rate video during rapid-yaw maneuvers; under 

such conditions, transient queuing could widen the flow 

upstream of the crypto engine. Second, single-channel 

representation masks potential internal contention when 

multiple sensor modalities are multiplexed. These caveats 

notwithstanding, the Sankey diagram provides clear 

empirical support for the claim that perception, decision, 

and protection have been collapsed into a single, low-

latency pipeline–an architectural prerequisite for closing the 

detection-to-response loop in live wildfire operations. 

2) Data Security and Communication Integrity 

Data Security and Communication Integrity 

In the context of unmanned aerial systems used for 

wildfire monitoring, ensuring the security of data and 

communications involves more than achieving high 

encryption speed. It also requires maintaining reliable and 

timely information flow, even under real-world constraints 

such as limited energy, communication delays, and 

interference in the radio spectrum. In our proposed 

architecture, advanced AES-256 encryption is embedded 

directly within the same programmable hardware unit–

PLIC–that also runs the onboard fire-detection algorithms. 

This close integration removes the need to transfer data 

between separate processing units, a step that often 

introduces vulnerabilities like side-channel leaks or delays 

due to synchronization mismatches. 

The advantage of this design is clearly demonstrated in 

the spatiotemporal encryption-latency field (Fig. 13(a)), 

which maps how encryption delay varies along the UAV’s 

flight path. Even during demanding maneuvers–such as 

sharp turns that reduce antenna effectiveness and lower the 

signal-to-noise ratio (SNR), the system’s end-to-end delay 

remains below 5 microseconds. This value is well within the 

threshold needed to maintain stable real-time control, 

allowing the UAV to respond immediately to dynamic 

conditions like sudden flame bursts or turbulent airflow. 

These results provide strong evidence that the system's 

encryption design can support both robust data security and 

low-latency performance in complex, high-stakes flight 

environments. 

Fig. 13(a) places the system’s encryption performance in 

direct relation to the UAV’s physical flight path, offering a 

real-world perspective on how cryptographic delays evolve 

during operation. The main panel shows the aircraft’s route 

in east–north coordinates, with the color of each segment 

representing the measured encryption latency at that point. 

Most of the flight is shaded in cooler tones, indicating low 

delays–typically below 2 microseconds. Two brief 

segments, highlighted at 4.6 µs and 4.3 µs, mark the highest 

recorded latencies, occurring during an up-range climb and 

a steep descending turn, respectively. Importantly, even 

these peaks remain comfortably within the 5 µs threshold 

necessary for stable, real-time control of autonomous flight. 

This result suggests that the system achieves what is 

known as latency determinism–meaning that its processing 

delays are both predictable and consistently low–despite 

variable wireless conditions. A key design factor behind this 

performance is the integration of the AES-256 encryption 

engine directly within the same PLIC that hosts the AI-

based fire detection. By keeping these processes co-located 

in hardware, the system avoids delays caused by transferring 

data between separate components and prevents radio-

related disruptions from affecting time-critical decision-

making. 

The inset panel further supports this interpretation by 

plotting latency against signal-to-noise ratio (SNR), a 

measure of radio link quality. Even as the SNR dips below 

12 decibels–a condition that would typically compromise 

data transmission–the observed latency increases only 

slightly. The smooth trendline (LOWESS fit) shows less 

than a 0.5 µs drift across the entire 10–30 dB range, 

reinforcing the view that the system’s delay is more 

influenced by transient signal fluctuations than by 

limitations in processing speed. 

While these results are promising, they must be 

interpreted with caution. The data were collected during a 

flight with clear line-of-sight communication and moderate 

wind conditions. Environments with more complex terrains 

such as forested areas, wildfire smoke plumes, or urban 

canyons–could cause more severe signal degradation and 

introduce higher latency variability. The slight nonlinearity 

in the SNR–latency relationship also suggests that some 

optimization may still be possible, for example by fine-

tuning memory buffer settings or data transfer scheduling 

within the hardware. 

Our design choice is based on the principle of co-

locational confidentiality, which suggests that the likelihood 

of a successful data interception decreases rapidly as the 

physical distance between the sensor’s output and the point 

of encryption becomes smaller. In simpler terms, placing the 

encryption process as close as possible to where the data is 

generated greatly reduces the chance that sensitive 

information could be leaked or intercepted. 

This concept is supported by the semi-logarithmic plot in 

Fig. 13(b), which compares different hardware 

configurations. In systems using a traditional CPU 

combined with a TPM, the probability of a successful side-

channel attack–where attackers exploit physical signals like 

power fluctuations–is around 100 times higher than in the 

proposed design, where both data collection and encryption 

are handled within the PLIC on a typical UAV circuit board. 

This physical proximity not only reduces the opportunity 

for data leakage but also simplifies the security guarantees 

of the system. Since no unencrypted data ever leaves the 

chip, the well-established confidentiality of the AES 

encryption algorithm can be directly combined with the 

proven integrity of the chip’s internal data transfer 

mechanisms. As a result, sensitive data such as GPS 

coordinates, thermal images, or gas sensor readings can be 
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transmitted to ground stations without delay and without 

being exposed to interception. This level of real-time 

protection is crucial during wildfire surveillance missions, 

where the environment can change rapidly–sometimes 

advancing hundreds of meters in the time it takes a 

conventional system to package, encrypt, and send its data. 

In other words, Fig. 13(b) illustrates a key principle in 

secure embedded system design: the closer the encryption 

hardware is to the source of the data–such as sensors–the 

lower the risk of that data being intercepted or 

compromised. This idea forms the theoretical foundation of 

the system architecture proposed in this study. The figure 

shows how the probability of a successful side-channel 

attack–attempts to extract secret information by measuring 

indirect physical signals like power consumption or 

electromagnetic emissions–changes with increasing physical 

distance between the sensor’s output and the encryption 

module. Three different hardware platforms are compared: a 

traditional CPU combined with a TPM, a general-purpose 

GPU, and a fully integrated FPGA where both sensing and 

encryption tasks are co-located on the same silicon chip. 

The plot uses a semi-logarithmic scale to emphasize the 

trend: as the distance between the sensor and the encryption 

gate increases from 0 to 50 millimeters, the risk of data 

leakage rises markedly for the CPU + TPM and GPU 

systems. For the CPU-based platform, the probability of a 

successful attack climbs from approximately 1% (10⁻²) to 

10% (10⁻¹). The GPU performs better but still shows a 

tenfold increase in attack probability over the same range. In 

contrast, the FPGA-based system maintains an extremely 

low and stable attack probability–below one in a million 

(10⁻⁶)–even at the maximum tested separation. This flat 

curve suggests that co-locating critical operations on a 

single chip significantly reduces the attack surface by 

minimizing signal exposure to potential eavesdropping. 

These results can be explained by the architectural 

differences between the systems. In CPU and GPU-based 

designs, data must travel longer physical paths between 

components, often across PCB traces. These longer traces 

not only act as antennas for electromagnetic emissions, 

which attackers can measure, but also introduce timing 

irregularities and voltage variations that can be exploited 

using advanced analysis techniques. In contrast, an 

integrated FPGA minimizes such vulnerabilities by keeping 

all operations within a tightly coupled, synchronized 

environment that offers less opportunity for information to 

"leak" through physical channels. 

However, it is important to acknowledge the limitations 

of the model used to estimate attack probabilities. The 

calculations are based on a composite metric that combines 

power, electromagnetic, and timing leakage, calibrated 

under controlled laboratory conditions. While these settings 

allow for repeatable measurements, they do not fully reflect 

the more complex or noisy environments found in real-

world field deployments. Moreover, the model does not 

include fault injection attacks–where adversaries 

deliberately disrupt device behavior to extract information–

or thermal variations that could impact leakage in practice. 

These factors may alter absolute risk levels, though the 

relative security ranking between the three systems is likely 

to remain unchanged. 

The distance range tested (up to 50 mm) is 

representative of compact UAV circuit boards, but larger 

airframes might feature longer routing paths, especially in 

modular designs. In such cases, the already higher risk 

levels observed in the CPU + TPM platform could increase 

further, possibly approaching levels that would require 

additional mitigation strategies. 

Despite these caveats, the data in Fig. 13(b) provides 

compelling quantitative support for the proposed system's 

architectural philosophy. By embedding both sensor 

interfacing and cryptographic protection within the same 

FPGA fabric, the system significantly reduces the likelihood 

of data exposure without compromising performance. This 

approach enhances the cybersecurity resilience of UAV 

platforms tasked with high-stakes missions such as wildfire 

monitoring, where data confidentiality and operational 

reliability must be guaranteed in real time. The findings thus 

reinforce the practical value of hardware co-design in 

achieving both secure and efficient autonomous system 

performance. 

Maintaining system resilience in the face of intentional 

interference is especially important in wildfire response 

scenarios, where communication environments can become 

highly congested. These areas often host multiple 

emergency response teams operating wireless networks 

simultaneously, leading to overlapping signals and increased 

risk of interference. In such conditions, disruptions like 

jamming (blocking radio signals) and spoofing (sending 

fake messages that mimic legitimate ones) are not only 

possible, they are often expected. These disruptions can be 

either accidental, due to overlapping frequencies, or 

intentional, stemming from malicious actors. 

To address this, the proposed UAV system performs 

encryption and message authentication at what is known as 

line speed–that is, as fast as data can be transmitted over the 

communication channel. This capability allows the UAV to 

verify the origin and integrity of every incoming command 

message before taking any action, such as adjusting altitude 

or camera orientation. If a message cannot be verified as 

genuine, it is rejected instantly. 

Fig. 13(c) illustrates this protective mechanism through a 

comparative analysis between two approaches: the 

hardware-based design used in this system and a more 

traditional software-based solution. The hardware-based 

model, implemented on the PLIC (Programmable Logic 

Integrated Circuit), consistently blocks all malicious 

packets, regardless of how frequently they are sent or how 

much legitimate traffic is on the network. In contrast, the 

software-based system–typical of many conventional 

drones–begins to fail under moderate network load, 

allowing up to 12% of forged messages through once the 

communication channel reaches half capacity. 

This difference is significant. By filtering out 

unauthenticated messages directly in hardware, the system 

conserves computing power on the flight controller, 

ensuring that resources are focused on critical tasks such as 
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navigation, fire detection, and real-time decision-making. 

This fail-shut design philosophy–where invalid messages 

are automatically discarded without further processing–

offers a clear advantage in hostile or congested 

electromagnetic environments and greatly enhances the 

overall reliability and safety of autonomous UAV operations 

during wildfire emergencies. 

Fig. 13(c) illustrates how two fundamentally different 

approaches to securing UAV communication–hardware-

based and software-based–respond under adversarial 

network conditions. The comparison is framed in terms of 

packet integrity, specifically how often forged (malicious) 

control packets are mistakenly accepted by the system 

during transmission. The figure presents two surfaces: one 

for the proposed hardware-integrated cryptographic design 

(blue) and another for a conventional software-based 

firewall implemented in a CPU stack (red). 

Across the entire range of conditions tested, including 

scenarios where up to 1,000 forged packets per second are 

injected while the legitimate communication channel is fully 

saturated, the hardware system consistently admits zero 

forged packets. This flat, near-zero response surface 

demonstrates a core strength of the proposed architecture: 

by embedding the authentication process directly into the 

programmable logic (PLIC), the system effectively 

eliminates vulnerabilities linked to processing delays, 

software queue handling, or CPU contention. In operational 

terms, this ensures that even in dense and contested 

electromagnetic environments, such as those encountered 

during wildfire response missions, the aircraft continues to 

receive only trusted instructions with deterministic timing. 

In contrast, the CPU-based software stack shows a 

sharply rising vulnerability under increasing network 

pressure. The red surface peaks at approximately 12% 

acceptance of forged packets when legitimate traffic is at 

50% of the channel's capacity and adversarial load is at its 

maximum. This pattern reveals a specific failure mode 

rooted in queuing contention: as the processor becomes 

overwhelmed with both legitimate and malicious packets, its 

ability to inspect and reject unauthenticated commands 

deteriorates. When legitimate traffic increases further, 

packet acceptance falls again–not due to effective filtering, 

but because the operating system begins dropping all 

packets indiscriminately due to buffer overflow. This 

scenario effectively constitutes a denial-of-service, where 

the UAV is cut off from both benign and malicious control 

inputs alike. 

The distinction between the two surfaces supports two 

broader conclusions. First, hardware-based authentication 

tightly integrated with sensor and control pathways provides 

a highly stable security boundary that does not degrade with 

traffic intensity–a crucial property for mission-critical 

UAVs operating in disaster zones. Second, software-only 

countermeasures scale poorly under pressure, especially in 

the traffic regimes most likely to occur when multiple 

responders are sharing limited wireless bandwidth. 

While the hardware results are encouraging, certain 

limitations must be acknowledged. The experimental setup 

assumed a controlled, synchronized burst model for 

adversarial traffic. In real-world deployments, attackers may 

exploit more nuanced tactics, such as timing-based side-

channel attacks or physical-layer spoofing techniques, 

which were not simulated in this test. Additionally, the 

wireless environment used in the experiment did not 

replicate real-world conditions such as multipath 

interference, atmospheric fading, or cross-protocol 

collisions–all of which can impact packet integrity in subtle 

ways. The cryptographic core’s reliability also assumes 

perfect implementation. In practice, latent bugs or hardware 

fault injection–techniques used to deliberately manipulate 

circuitry–could produce failure points that are not reflected 

in this surface. 

Nonetheless, the overall findings suggest that tightly 

integrated hardware authentication offers a significant 

security margin–up to an order of magnitude better 

resilience–compared to software-driven alternatives. Future 

testing under more realistic operational and adversarial 

conditions will be essential to fully validate the robustness 

of the system, but the present data already underscore the 

potential of hardware-software co-design in securing 

autonomous aerial platforms operating in hostile or 

uncertain environments. 

One of the most important features of the system's 

security architecture is its ability to adapt dynamically to 

changing environmental conditions. This adaptability–

referred to as cryptographic agility–is particularly evident in 

its fast response to emerging threats. For instance, when the 

onboard thermal sensors detect that the UAV has shifted 

from a routine surveillance mode to actively tracking a fire 

front mission phase often marked by increased 

communication traffic and greater vulnerability to 

eavesdropping or interference, the system automatically 

triggers a secure key rotation. This process, known as a key-

rotation handshake, ensures that all future data exchanges 

are protected with a fresh encryption key. 

In practical terms, this re-keying process is remarkably 

fast. Tests conducted across fifty flight scenarios show that 

the system consistently completes the key rotation in a 

median time of just 4 milliseconds (see Fig. 13(d)). This is 

significantly faster than the 100-millisecond upper limit 

recommended by the U.S. National Institute of Standards 

and Technology (NIST) in its SP 800-56 guidelines for 

secure key exchange. What enables this speed is the 

architecture’s efficient use of temporary idle periods in the 

Programmable Logic Integrated Circuit (PLIC), where the 

encryption logic resides. Rather than interrupt critical AI 

processing tasks or slow down fire detection, the system 

leverages otherwise unused computational cycles to update 

its cryptographic keys without performance loss. 

More broadly, these findings highlight a crucial insight: 

the system’s high baseline data throughput–its raw 

processing capacity–is not just for maintaining speed. It also 

provides operational flexibility, acting as a reserve that can 

be tapped in moments of increased risk. This allows the 

UAV to strengthen its security posture exactly when the 

operational environment becomes more complex or 

threatening, such as during close-proximity firefighting in 

contested or shared airspace. In this way, the design shifts 
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the role of cryptography from a static safeguard to a 

responsive, context-aware defence mechanism that evolves 

in real time alongside the mission. 

Fig. 13(d) illustrates how quickly the proposed system 

can initiate and complete a cryptographic key-rotation 

procedure once the onboard AI detects a shift to the high-

risk “active flame-tracking” phase–a scenario that typically 

demands stronger data protection. In this context, a key-

rotation refers to the process of securely updating the 

encryption key used to protect communication between the 

UAV and its ground control station. Each data point in the 

figure corresponds to a separate flight segment, with timing 

measurements aligned to the exact moment the AI module 

triggered the security escalation (time = 0 ms). 

The distribution of handshake times follows a compact, 

roughly log-normal pattern, with most key rotations 

completing between 3 and 5 milliseconds and the slowest 

instance finishing just under 8 milliseconds. This tight 

clustering, centered around a median of 3.8 ms, suggests 

that the system’s hardware, particularly the PLIC’s 

interrupting pathway and its DMA–can carry out re-keying 

operations with very low and predictable latency. Notably, 

the entire range of observed values falls well below the 100 

ms threshold recommended by the U.S. National Institute of 

Standards and Technology (NIST) for opportunistic re-

keying, which is included in the figure as a reference 

benchmark. 

 

 
(a)  (b) 

 

 

(c) (d) 
Fig. 13. (a) Spatiotemporal mapping of end-to-end AES-256 encryption latency along a representative UAV flight path (left), with color coding indicating 

microsecond-scale delays and annotated peak values, and an inset plot of measured latency versus signal-to-noise ratio (SNR) (right), showing the LOWESS 

trend that demonstrates latency stability despite varying SNR conditions. (b) Probability of successful side-channel attack as a function of physical distance 
between sensor read-out and encryption gate across three hardware architectures. The integrated FPGA design exhibits an exponential reduction in exposure 

risk, maintaining attack probabilities below 10⁻⁶ even at zero separation, thereby validating the principle of co-locational confidentiality. (c) Distribution of 

AES key-rotation handshake completion times measured across 50 independent flight segments, aligned to the instant the AI module triggers active flame-

tracking (time = 0 ms). The violin illustrates the density of completion times (2–8 ms), with a median of 4 ms (solid line) and a dashed band at 100 ms 

indicating the NIST‐recommended maximum. (d) Packet‐Integrity Failure Surface under Adversarial Load, comparing the hardware‐enforced PLIC (blue) 

which maintains near-zero acceptance of forged packets across all injection rates and traffic loads, against a software‐based CPU stack (red) that admits up to 

~12 % of malicious packets under high load 
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Importantly, this result does not only speak to the 

encryption engine’s raw speed–which is often assessed 

using throughput metrics–but rather highlights the system’s 

responsiveness: a measure that also accounts for interrupt-

handling delays, the time to generate new keys, and 

communication delays over the wireless link. This 

responsiveness is critical in real-world conditions where 

rapid decision-making and secure communication are 

essential, such as when a UAV shifts from a routine 

monitoring mode to close-range engagement with a dynamic 

fire front. 

The findings also point to deeper implications about 

system stability. The lack of extreme outliers–no completion 

time exceeded 10 ms–implies that the system can handle 

cryptographic tasks without significantly delaying other 

essential onboard functions like fire detection and flight 

control. This is especially important given that all operations 

are performed on a single mid-range FPGA, demonstrating 

efficient resource sharing across competing tasks. 

Nevertheless, there are limitations to consider. All tests 

were conducted under control, moderate network usage 

(around 60% of available bandwidth). In more crowded 

radio environments–such as during multi-agency wildfire 

responses or UAV swarming, higher communication delays 

could increase handshake times. Additionally, the results are 

specific to one hardware configuration and a fixed key-

derivation algorithm. If different encryption protocols or 

longer key lengths were used, response times might 

increase. The slight upward skew in the data–some values 

near 8 ms–likely reflects rare delays in wireless 

communication (e.g., packet retransmissions) rather than 

bottlenecks in computation. 

Future experiments should therefore examine 

performance under more challenging conditions, such as 

heavy RF congestion or concurrent UAV operations. They 

should also test the system’s sensitivity to different 

encryption schemes to determine whether communication 

factors or algorithm complexity have a greater effect on 

latency. 

Despite these limitations, the present data offers strong 

evidence that integrating cryptographic logic directly within 

the same hardware fabric as AI and control functions not 

only enables real-time responsiveness but also allows for 

adaptive, context-aware security postures. This represents a 

shift in the design of UAV systems–from treating data 

security as a background process to making it an active, 

dynamic part of the autonomous mission workflow. 

3) Autonomous UAV Operations 

The measured latency of 2.3 microseconds for the 

system’s combined encryption and fire-detection processes 

has significant implications for autonomous flight. In 

UAVs, especially those operating in fast-changing 

environments like wildfires, maintaining stable and 

responsive flight control depends not only on how quickly 

the system can process data, but also on how predictable 

that processing time is. Most aerial control systems require 

data to be processed and acted upon within 25 to 50 

microseconds to ensure safe and accurate navigation. 

Operating well below this range, our system enables fire-

related visual information to be incorporated into flight 

decisions almost immediately, without compromising 

stability. The Latency–Energy Phase Diagram (Fig. 14(a)) 

illustrates this point by mapping operational zones where 

energy efficiency and delay remain compatible with safe 

flight control–our system resides deeply within the ‘stable’ 

region, while alternative architectures drift toward unstable 

thresholds as latency increases. 

The figure presents a phase diagram that compares three 

UAV system designs in terms of their energy use and 

processing delay–two critical factors in real-time 

autonomous control. The horizontal axis represents the 

amount of energy required to process one frame of input 

data, while the vertical axis shows the total time delay from 

input to response, measured in microseconds. To aid 

interpretation, the diagram is divided into three color-coded 

zones: delays below 10 microseconds (green) fall well 

within the bounds needed for stable flight control; delays 

between 10 and 25 microseconds (yellow) still permit 

operation but reduce control robustness; and delays beyond 

25 microseconds (red) pose a high risk of instability, such as 

oscillation or loss of attitude control. 

In this context, the proposed FPGA-integrated system–

where both AI-based fire detection and data encryption are 

handled on a single chip–occupies the most favorable 

position. It delivers a low processing delay of just 2.3 

microseconds while consuming 0.65 millijoules of energy 

per frame, placing it firmly in the stable control zone. In 

contrast, a CPU + GPU configuration, which separates tasks 

across different processors, operates at a higher energy level 

(~1.0 millijoules) and incurs a delay of 15 microseconds–

positioning it in the marginal zone. A GPU-only setup 

performs even worse, reaching 30 microseconds of delay 

despite similar energy consumption, thus falling into the 

unstable region. 

These results reveal a notable non-linear trend: while 

energy consumption increases moderately across the three 

systems, processing delays rise disproportionately. This 

suggests that the delay is not primarily caused by 

computational load, but by data movement between 

processing units. In multi-chip systems like CPU-GPU 

hybrids, data often must traverse shared memory buses or 

interconnects (e.g., PCIe), adding queuing and transfer 

delays. The GPU-only design reinforces this point–it 

consumes only slightly more energy than the FPGA-based 

system but suffers a ten-fold increase in latency, likely due 

to scheduling bottlenecks and memory bandwidth 

contention. 

Another key pattern is the threshold-like behavior 

observed around the 10-microsecond mark. Systems that 

exceed this value rapidly transition from stable to unstable 

performance regions. This highlights how even small 

architectural changes–such as moving AI inference off-

chip–can have outsized impacts on flight stability, a critical 

factor in time-sensitive wildfire response missions. 

While the diagram offers strong support for the proposed 

architecture, some limitations must be acknowledged. First, 

the energy figures shown account only for the tasks of 

perception (fire detection) and encryption; they do not 
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include additional UAV subsystems like navigation, 

communication, or payload control. Incorporating these 

would increase the absolute energy costs across all systems, 

though the relative differences would likely remain similar. 

Second, the measurements were taken under control of 

laboratory conditions. In real-world scenarios, factors like 

thermal fluctuations, varying data rates, and wireless 

interference may widen the spread of observed latencies, 

especially in architectures dependent on external data buses. 

Third, the analysis compares only three system 

configurations. Future work could explore hybrid 

architectures, such as FPGA inference paired with CPU-

based encryption, which may fall within the marginal zone. 

Despite these caveats, the findings offer a clear and 

instructive takeaway: tightly integrated hardware 

architectures–those that process AI and security tasks on the 

same chip–are not just more energy-efficient, but also 

significantly more responsive. They eliminate the delays 

caused by off-chip communication and provide the 

predictability required for stable, autonomous UAV 

operations. This supports the manuscript’s broader 

conclusion: for real-time wildfire detection and secure aerial 

surveillance, architectural co-design is not merely an 

optimization, it is a foundational requirement. 

Moreover, the variation in this processing time, 

technically known as jitter–was minimal, with fluctuations 

no greater than 0.05 microseconds across a thousand trials. 

This consistency allows the UAV’s navigation software to 

treat the data processing delay as a fixed value, simplifying 

the mathematical analysis used to verify the system’s 

reliability. Such predictability is especially important when 

designing UAVs for safety-critical applications, where 

formal control-theory tools like Lyapunov methods or 

robust control frameworks are used to ensure that the drone 

behaves reliably under all expected conditions. A frequency-

domain perspective, offered by the Bode-style Delay 

Response Plot (Fig. 14(b)), reveals how our design 

preserves low-latency response even as the system processes 

increasingly frequent sensor inputs–critical for maintaining 

high-bandwidth control loops during dynamic missions. 

This figure illustrates how processing delay–measured 

from sensor input to system response–varies with the 

frequency of incoming events, comparing two system 

architectures: an integrated FPGA design and a conventional 

setup combining a GPU with external encryption software. 

The horizontal axis represents event frequency (from 1 Hz 

to 100 Hz), encompassing both slow navigation updates and 

rapid sensor streams. The vertical axis shows the 

corresponding delay, or latency, in microseconds. 

The blue curve in the figure represents the FPGA-based 

system and reveals a consistent, flat response of 

approximately 2.3 microseconds across the entire frequency 

range. This stability means the system processes data at a 

constant rate, regardless of how frequently new events 

occur. Such predictability is critical for real-time 

autonomous flight, where control algorithms depend on 

reliable timing to maintain stability and responsiveness. 

This consistency is achieved by integrating all core 

functions–sensor input, AI inference, and encryption–on the 

same programmable logic chip. This integration avoids the 

delays typically caused by data transfers between separate 

hardware components or by invoking external processing 

routines. 

In contrast, the red dashed curve shows how latency 

increases sharply in the GPU + software-crypto setup, 

especially beyond 10 Hz. While performance is comparable 

to the FPGA at lower frequencies, latency begins to escalate 

rapidly exceeding 15 microseconds at 50 Hz and surpassing 

40 microseconds at 100 Hz. This trend suggests that higher 

event rates overwhelm the system’s ability to handle data 

efficiently, likely due to bottlenecks in memory transfer 

between the CPU and GPU and the overhead of repeatedly 

launching GPU operations. As the delay grows, the system’s 

ability to respond in time diminishes, jeopardizing the 

performance of key flight tasks such as obstacle avoidance 

or real-time trajectory adjustment. This makes such a design 

unsuitable for agile UAV missions that demand rapid 

sensor-to-actuator feedback loops. 

Several important limitations should be considered when 

interpreting these results. First, the GPU tests were 

conducted using a fixed workload that may not capture the 

variability found in field conditions. More efficient 

scheduling or newer GPU hardware might partially mitigate 

the observed performance degradation, though fundamental 

data-transfer delays would likely remain. Second, both tests 

were performed under controlled lab conditions with stable 

temperatures and interference-free wireless links. In 

operational environments–where high temperatures, 

fluctuating network conditions, and competing onboard 

tasks can occur–latency could increase further. Finally, the 

analysis assumes that every event has the same 

computational complexity. In practice, environmental 

factors like smoke density or fire movement could affect 

both inference difficulty and encryption load, introducing 

additional delay variability. 

Despite these caveats, the core trend is clear: the FPGA 

platform offers a stable, low-latency solution that scales 

well with event frequency, while the GPU-based 

architecture becomes increasingly unreliable as demands 

rise. This finding strongly supports the manuscript’s central 

argument: integrating AI inference and secure data handling 

on a single FPGA provides a more robust and practical 

approach for time-sensitive UAV operations, particularly in 

complex and unpredictable wildfire scenarios. The ability to 

preserve real-time performance without sacrificing energy 

efficiency or system reliability marks a significant step 

forward in autonomous aerial system design. 

Energy efficiency is equally crucial for autonomous 

operation, particularly when UAVs are expected to cover 

large areas or remain airborne for extended periods. The 

system consumes about 0.5 millijoules to encrypt each block 

of data and 0.65 millijoules to analyze a frame of video. 

This level of power consumption fits within the typical 

energy surplus available in mid-sized electric drones, which 

often have 15 to 20 watts available for onboard computing 

tasks. As a result, the drone can run not only the encryption 

and fire detection systems, but also other important modules 

like obstacle avoidance and real-time mapping, without 
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reducing its flight time. Moreover, our Spatiotemporal 

Confidence Map (Fig. 14(c)) overlays fire-classification 

confidence and encryption throughput across a real flight 

path, highlighting specific mission zones where processing 

load or environmental conditions impacted confidence and 

security throughput.  

Specifically, the figure provides a real-world 

visualization of the system’s performance by overlaying a 

full 60-second UAV flight on a geo-referenced basemap of 

the test area. The flight path is color-coded to represent real-

time fire-detection confidence, ranging from deep blue (low 

confidence) to bright red (high confidence). Along this 

route, the confidence levels fluctuate meaningfully with the 

type of terrain and environmental conditions encountered. 

Low-confidence readings are observed early in the flight 

over open water and later near the ridgeline, where 

simulated haze was introduced. In contrast, confidence 

peaks over the vegetated interior valley, where visual and 

thermal signatures of fire are more pronounced. This pattern 

suggests that the AI model has internalized strong visual 

cues from dense foliage–where flame features are more 

distinct–while struggling with uniform or low-texture 

scenes, such as water surfaces or smoke-obscured views. 

These results align with earlier findings on how scene 

complexity and class imbalance affect model generalization.  

Superimposed on the trajectory are circular markers 

whose size indicate the measured encryption throughput at 

each waypoint. Notably, these markers remain consistently 

large, even in low-confidence regions, signaling that the 

system-maintained throughput near the design ceiling of 800 

megabits per second throughout most of the flight. This 

suggests that encryption computation was not a limiting 

factor. Instead, any observed dips in throughput are likely to 

be due to changes in the radio link quality, for example, 

when the aircraft executes a sharp turn or climbs in altitude, 

potentially affecting antenna alignment or line-of-sight 

connectivity. One such reduction in throughput is visible 

near the shoreline, where the flight path curves tightly, 

hinting at a temporary degradation in signal geometry rather 

than a computational bottleneck. 

The figure also includes timestamp annotations that 

highlight rapid shifts in classifier confidence–up to 40 

percentage points within a 15-second window–as the drone 

encounters varying terrain, lighting, and smoke density. 

Crucially, the system’s minimal latency (2–3 microseconds) 

ensures that these fluctuations are communicated to the 

control system with negligible delay, preserving the 

responsiveness needed for safe and effective autonomous 

navigation. 

Despite these promising outcomes, some limitations 

must be acknowledged. The flight was conducted under 

calm weather with stable GPS reception, conditions that are 

not always representative of real wildfire environments. 

Factors such as gusty winds, signal shadowing from dense 

canopies, or electromagnetic interference in mountainous 

areas could impact both confidence, accuracy and 

throughput consistency. Additionally, the observed dip in 

detection confidence over water likely stems from the 

reflective surface mimicking the spectral and spatial 

characteristics of smoke, leading to potential 

misclassification. These insights underscore the need for 

further training of the AI model on more diverse 

environmental data, including examples of water surfaces 

and heavy particulate obscuration. 

Fig. 14(c) demonstrates that the integrated FPGA 

architecture can simultaneously support real-time fire 

detection and secure data transmission across complex 

terrain. The platform sustains its performance even as 

environmental conditions vary, offering a strong foundation 

for mission-critical wildfire monitoring. However, the 

results also reveal areas for improvement–particularly in 

refining the model's robustness to edge cases and enhancing 

the resilience of radio communications under more 

challenging conditions. These findings guide future 

iterations of system design and operational deployment. 

This spatial contextualization offers actionable insights into 

onboard resource allocation and mission planning. 

Importantly, by integrating both the fire-detection 

algorithm and encryption mechanism into a single 

reprogrammable chip–known as an FPGA–the system 

simplifies its cooling requirements. Testing shows that the 

chip maintains full performance up to 45°C before 

beginning to automatically reduce its processing speed to 

prevent overheating. Since most UAVs in operation stay 

below this temperature threshold under normal flying 

conditions, the system remains stable without requiring 

heavy or complex cooling systems. This frees up space and 

weight for additional batteries or sensors, increasing both 

the range and capabilities of the aircraft during fire 

surveillance missions. 

Perhaps most critical for real-world deployments is the 

ability of the UAV to securely and quickly share the 

information it gathers. Wildfire response requires not just 

fast detection but also fast communication between airborne 

units and ground teams. The system’s ability to transmit 

encrypted data at a speed of 800 megabits per second–with 

almost no added delay–means that high-resolution thermal 

imagery and other sensor data can be sent in near real time. 

This helps commanders on the ground, or other UAVs in the 

air, to make timely and informed decisions. The False-

Negative Risk Surface (Fig. 14(d)) visualizes how detection 

reliability changes based on factors such as smoke density 

and camera distance, showing the “safe operational zone” 

where false negatives remain below 5%.  

This figure offers a practical and visual framework for 

understanding how environmental conditions affect the 

reliability of the UAV’s fire detection system. It maps the 

false-negative rate–that is, the probability that the system 

fails to detect an active fire–based on two key 

environmental factors: the distance between the UAV and 

the fire (ranging from 0 to 200 meters), and the 

concentration of airborne smoke particles (0 to 1,000 mg per 

cubic meter). The surface rises steadily as both distance and 

smoke density increase, showing that detection becomes 

more difficult under these combined conditions. This trend 

reflects two fundamental challenges: reduced image quality 

due to optical scattering from smoke and the diminishing 

resolution of fire signatures at greater distances. 
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Fig. 14. (a) Phase diagram of inference energy per frame versus end-to-end processing delay. Shaded bands indicate stable (<10 µs), marginal (10–25 µs), 

and unstable (>25 µs) control zones. Data points compare the proposed FPGA-integrated system (“This Work”) against CPU+GPU and GPU-only baselines. 
(b) Frequency-response analysis of end-to-end processing delay as a function of input event frequency. The integrated FPGA system maintains a consistent 

low-latency profile across all frequencies, while the off-board GPU and cryptographic setup exhibits sharply increasing delay beyond 20 Hz, compromising 

its suitability for high-rate control loops. (c) Spatiotemporal map of the UAV’s flight trajectory overlaid on a GIS base layer, with line colour indicating real-
time fire-detection confidence (blue = 0 %, green = 50 %, red = 100 %) and circle size at each waypoint scaled to encryption throughput (200 Mb/s to 800 

Mb/s). Timestamp annotations show key mission milestones. (d) False-negative risk surface showing how the probability of missed fire detections increases 

with camera–fire distance and smoke density. The semi-transparent plane at 5 % marks the operational safety threshold, and contour projections on the X–Y 

plane indicate 10 % increments in missed-detection rate 

The figure reveals several important patterns. At lower 

smoke levels (below approximately 300 mg m⁻³), the risk of 

a missed detection remains low, even at moderate distances. 

However, as smoke becomes denser, the risk increases 

sharply, suggesting that there is a critical threshold beyond 

which the system’s accuracy deteriorates rapidly. For 

example, when the UAV is flying at 150 meters in smoke 

concentrations near 800 mg m⁻³, the false-negative rate can 

exceed 60%, significantly compromising situational 

awareness. This effect appears not to be simply additive–

rather, distance and smoke density amplify each other’s 

impact, causing a compounded loss in detection 

performance that far surpasses what either factor would 

cause alone. 

To support practical decision-making, a semi-transparent 

reference plane is drawn at a 5% false-negative rate, which 

aligns with safety thresholds commonly cited in critical 

event detection systems. This visual cue defines a “green 

zone” of reliable operation where fire events are unlikely to 

go unnoticed. By examining where this plane intersects the 

surface, UAV operators can identify safe combinations of 

altitude and environmental conditions for surveillance 

missions. For instance, at a typical scouting height of 50 

meters and a moderate smoke level around 250 mg m⁻³, the 

system maintains a false-negative rate well under 10%, 

indicating a robust margin for routine perimeter sweeps. 

Additional operational insight is provided by the contour 

lines projected onto the base of the plot. These lines serve as 

a visual guide, showing how quickly detection reliability 

declines under worsening conditions. For example, the 

transition from 10% to 30% missed detection occurs rapidly 

once smoke levels exceed 600 mg m⁻³ at distances beyond 

100 meters. This kind of information is critical for real-time 

decision-making: it indicates when the UAV should 

descend, change position, or activate alternative sensing 

strategies to maintain reliability. 

That said, some limitations must be acknowledged. The 

current model assumes uniform smoke distribution and a 

clear, unobstructed view of the fire. Wildfire plumes are 

turbulent and variable, often containing layers of smoke, 

flame, and hot gases that fluctuate rapidly. These 
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inhomogeneities could cause the actual risk to deviate 

significantly from the smooth surface shown in the figure. 

Moreover, this analysis is based solely on visible-spectrum 

imagery; incorporating thermal infrared or multispectral 

sensors could improve detection in dense smoke by 

capturing heat signatures that are invisible in the visible 

range. Additionally, the model does not account for possible 

measurement uncertainty due to factors like sensor 

calibration drift, ambient lighting variation, or onboard 

vibrational –all of which could influence detection 

performance in the field. 

The trends observed in this figure can be explained by 

two main physical effects. First, Mie scattering, caused by 

fine smoke particles, degrades image clarity by scattering 

short-wavelength light. Second, geometric spreading 

reduces the apparent size and brightness of the fire in the 

captured image as the UAV flies farther away, decreasing 

the number of meaningful pixels available for analysis. 

These effects weaken the neural network’s ability to 

recognize fire features, increasing the likelihood of false 

negatives. 

To address these challenges, future designs might 

incorporate adaptive altitude control, allowing the UAV to 

automatically lower its flight height in response to 

deteriorating visibility. Multispectral sensor fusion–which 

combines visible and infrared data–could help preserve 

contrast and improve detection in smoky conditions. 

Furthermore, training the AI system with data from real 

wildfire environments, including turbulence and lighting 

variations, may improve its robustness and reduce 

sensitivity to visual noise. By integrating these strategies, 

the system could extend its effective operating range and 

maintain high reliability under a wider range of 

environmental conditions. 

This offers fire-response planners a concrete, data-driven 

basis for adjusting UAV altitude or rerouting during heavy 

smoke events to preserve detection reliability. 

Because data is securely encrypted onboard, it also 

prevents malicious interference such as false alarms, 

spoofing, or tampering with flight commands. This feature 

is essential for multi-UAV coordination, where several 

drones share data and responsibilities in a collaborative way. 

Embedding security directly into the core of the processing 

pipeline makes each UAV a trustworthy participant in larger 

networks for fire mapping, emergency response 

coordination, and predictive modelling. In this way, the 

system supports not just autonomous flight, but cooperative 

intelligence, an increasingly important goal in both civil and 

defense-related UAV operations. 

Together, these sections (Real-Time Wildfire Response, 

Data Security and Communication Integrity Data Security 

and Communication Integrity, and Autonomous UAV 

Operations) demonstrate that the proposed system is not just 

a technological prototype but a practically viable platform 

for autonomous wildfire surveillance and response. Its co-

optimized architecture effectively bridges the gap between 

academic proof-of-concept and deployable field technology, 

aligning with the stringent performance requirements and 

operational unpredictability of real-world fire monitoring 

missions. 

D. Strengths and Limitations 

The proposed system demonstrates several strengths that 

establish its novelty and practical value. First, the 

integration of AES-256 encryption directly within the PLIC 

enables high-throughput, low-latency secure data handling, 

a key advancement over traditional microcontroller-based 

encryption architectures. The system achieves a data 

processing rate of 1.2 Gbps and encryption throughput of 

800 Mbps, which is significantly higher than those reported 

in FPGA-based designs such as AES-32GF [85]. Moreover, 

the AI-powered fire detection subsystem maintains 

detection accuracies above 95% across most environmental 

conditions, outperforming contemporary models like 

EdgeFireSmoke++ [81] and AF-Net [83], while maintaining 

low false-alarm rates (0.2%). The system’s architecture 

enables real-time decision-making, with inference times as 

low as 0.05 s, and sustains energy efficiency conducive to 

UAV operational constraints (<0.65 mJ per inference). 

These combined features reflect a robust, high-performance 

architecture for critical aerial surveillance missions. Despite 

these strengths, several limitations must be critically 

examined.  

Although the results presented in this study demonstrate 

strong system performance, it is important to note that all 

tests were conducted under controlled laboratory conditions. 

These conditions–characterized by stable temperatures, 

reliable wireless communication, and consistent power and 

signal quality–are ideal for benchmarking, but do not fully 

reflect the unpredictable and often harsh environments 

where unmanned aerial vehicles (UAVs) typically operate. 

In practical deployments, UAVs are exposed to dynamic 

elements such as rapidly changing weather, smoke from 

active fires, electromagnetic interference from nearby 

structures or equipment, and unreliable satellite navigation 

signals, especially in mountainous or forested terrain. 

Recent studies, such as [81], have shown that these real-

world factors can significantly reduce the performance of 

UAV-based systems. Reported declines in data processing 

rates and fire detection accuracy commonly range from 8% 

to 15% when systems leave the lab and encounter 

uncontrolled field conditions. These reductions are often 

caused by a combination of external challenges. For 

instance, interference in radio frequencies (RF) whether due 

to natural or artificial sources–can lead to dropped signals or 

delayed commands, impairing both navigation and 

communication. Similarly, high levels of heat and smoke 

near fire zones can distort the thermal data that AI models 

use to identify fires, increasing the chance of missed or false 

detections. In addition, network slowdowns or interruptions 

can disrupt real-time analysis and secure transmission of 

critical sensor data. 

While our system has been extensively tested through 

simulations and controlled experiments designed to mimic 

some of these challenges, it has not yet undergone full 

validation in live outdoor settings. As a result, we cannot yet 

guarantee that the high performance observed in the lab will 

hold under real operational pressures. To address this, our 
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next research phase will include structured field trials in 

demanding conditions, such as areas with limited GPS 

access, unstable wireless connections, or rough terrain. 

These tests are essential to ensure that the system remains 

fast, accurate, and secure when deployed in the complex 

environments where it is most needed. 

In addition to confirming technical performance, these 

trials will help us understand how the system responds to 

sudden environmental changes–like heavy smoke, weather 

shifts, or momentary signal loss–which are common during 

wildfire events. The insights gained will support further 

improvements to the system, such as real-time model 

adjustments, adaptive encryption settings, and backup 

communication strategies. By transitioning from lab testing 

to real-world deployment, we aim to move from a promising 

prototype to a reliable solution that can support emergency 

response teams in time-critical situations. 

Environmental conditions such as rainfall, strong winds, 

and dense smoke present significant challenges to the 

reliability and accuracy of airborne fire detection systems. 

These factors do not simply obscure visual input; they can 

also disrupt the underlying mechanisms by which AI models 

interpret sensor data in real time. 

For example, rain affects image quality by scattering and 

absorbing light, particularly in the thermal wavelengths 

commonly used to detect fires. Empirical data from recent 

UAV field tests [84] show that even light rain–around 2 

millimetres per hour–can cause a reduction in signal 

strength of approximately 1.2 to 1.5 decibels. This drop 

significantly lowers the contrast between flames and the 

surrounding environment, reducing the ability of the AI 

system to confidently detect fire. When applied to AI 

algorithms that rely on visual features, this degradation 

weakens the system’s initial detection layers, which are 

responsible for identifying flame edges and heat signatures. 

As a result, the model's predictions may become less certain, 

requiring more processing time before issuing a reliable 

alert. In practical terms, this leads to an increase in detection 

latency by up to 0.3 seconds. 

Wind, on the other hand, impacts fire detection by 

altering the physical shape and behaviour of flames. Gusts 

exceeding 10 meters per second can rapidly distort the 

contours of a fire, making it more difficult for AI models to 

recognize fire patterns from one frame to the next. The 

system’s tracking component, which estimates fire location 

over time, becomes less stable, forcing it to observe the 

scene for longer periods before reaching a decision. This 

instability introduces additional delay, often in the range of 

0.15 to 0.25 seconds, which can accumulate alongside other 

environmental effects to impact response time. 

Smoke introduces yet another layer of complexity. In 

addition to reducing visibility, smoke diffuses both visible 

and infrared light, which are critical for detecting the heat 

and colour contrasts associated with fires. The resulting 

obscurity can confuse AI models, which may shift attention 

away from actual flames toward less relevant visual cues, 

such as reflections or heated surfaces. This misdirection 

leads to misclassifications or delays in detection. Recent 

visualization analyses show that the AI’s internal focus–its 

so-called “attention map”–tends to drift in such cases, 

weakening its overall confidence in identifying fire. 

These limitations make it clear that relying on a single 

type of sensor, such as a standard video or thermal camera, 

is insufficient under adverse environmental conditions. A 

more resilient approach involves fusing data from multiple 

sources. By combining visible imagery with longer-

wavelength thermal data, depth sensing (such as LiDAR), or 

even satellite-based thermal alerts, the system can cross-

verify the presence of fire even when one data stream is 

degraded. Our ongoing research is therefore focused on 

developing a flexible fusion model that integrates these 

diverse inputs using a probabilistic framework. This 

approach allows the UAV system to dynamically adjust to 

challenging conditions while still maintaining the rapid 

response times required for effective wildfire detection and 

mitigation. 

Another important concern is the system’s potential 

vulnerability to deliberate interference–known as adversarial 

attacks–on its wireless communication channels. Although 

the system uses strong encryption to secure data, this alone 

is not sufficient to protect against more advanced forms of 

disruption. For example, attackers can use jamming devices 

to overwhelm the communication signal with noise, 

preventing the UAV from sending or receiving critical data. 

In more targeted cases, adversaries might attempt to 

impersonate the control system–a technique called 

spoofing–by sending false commands that appear legitimate. 

These threats exploit the fact that wireless communication 

occurs in open space, where signals can be intercepted or 

disrupted without needing to break encryption. 

To defend against these kinds of attacks, the system 

must go beyond standard measures like routine key updates 

and data integrity checks. One promising approach is to 

integrate what is known as a cognitive radio system. This 

type of system can "listen" to the surrounding radio 

environment in real time, detect unusual patterns that might 

signal an attack, and quickly adjust its communication 

behaviour. For instance, the UAV could switch between 

different radio frequencies in a random but coordinated way, 

a method known as frequency hopping, making it much 

harder for a jammer to block the signal. 

Additionally, by incorporating simple machine-learning 

techniques at the communication layer, the system could 

monitor for abnormal changes in signal quality or 

transmission errors, which often indicate interference. If 

such anomalies are detected, the system could respond by 

adjusting its communication protocol or switching to backup 

links. These strategies draw on principles from emerging 

areas of wireless security and adaptive systems, where 

technology is designed to respond flexibly and intelligently 

to hostile or unpredictable conditions. By embedding these 

capabilities directly into the system’s hardware, the UAV 

can maintain secure and reliable communication even in 

environments where adversaries are actively trying to 

disrupt its operation. This added layer of resilience is 

especially important for critical missions like wildfire 

monitoring, where communication failures could delay 

emergency response and endanger lives. 
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While the AI model used in the system performs 

strongly under standard conditions, it remains vulnerable to 

certain unusual or complex scenarios–commonly referred to 

as edge cases. These are situations that fall outside the 

typical patterns seen during training and therefore challenge 

the model’s ability to correctly detect fires or distinguish 

them from non-fire phenomena. 

For example, smoldering ground fires–which burn 

slowly and often under leaves or debris–are especially 

difficult to identify. They produce minimal visible flames 

and weak heat signals, which can be easily missed by both 

standard cameras and thermal sensors. Similarly, reflections 

in glass windows or other shiny urban surfaces can mimic 

the flickering appearance of fire, sometimes causing the 

system to mistakenly identify a fire where there is none. 

These situations illustrate how environments with subtle or 

misleading visual features can confuse even well-trained AI 

systems. 

Another difficult scenario involves high-altitude haze or 

smoke-rich skies following a fire event. In these cases, the 

faint, dispersed particles in the air can blur the boundary 

between actual fire activity and harmless environmental 

conditions. These visual patterns can reduce the model’s 

accuracy, as it struggles to clearly separate the fire from the 

background. 

The current system attempts to handle these challenges 

by training on simulated examples of such edge cases. 

While this has improved performance to a degree, it is not 

enough to fully resolve the issue. The AI still relies 

primarily on individual images and lacks broader contextual 

understanding–such as how a scene changes over time or 

how a fire might appear from different angles. 

Improving this capability will likely require more 

advanced techniques. One such approach is using multiple 

views of the same scenes such as images from different 

cameras or sensor types–which can help the model 

understand the context more completely. Another is 

incorporating information over time, by analyzing how a 

potential fire develops from frame to frame. This time-based 

perspective can help the system distinguish between 

temporary distractions (like headlights or sunlight 

reflections) and actual fire events. 

In addition, it may be useful to include ways for the AI 

to estimate its own uncertainty. For example, if the model is 

unsure whether a fire is present, it could flag the situation 

for further analysis or request input from a human operator. 

This type of cautious, confident-aware behavior is especially 

important in high-stakes environments like wildfire 

detection, where both missed fires and false alarms carry 

serious consequences. 

Finally, as the system moves from simulation to real-

world deployment, it will need to adapt to new 

environments it has never seen before. This could be 

achieved by allowing the model to continue learning from 

actual flight data, even after initial training. Such ongoing 

learning–done either on the ground or gradually while the 

UAV is in operation–can help bridge the gap between 

controlled training scenarios and unpredictable field 

conditions. 

While the AI component of the system shows promising 

results under typical conditions, its ability to handle rare or 

ambiguous situations remains limited. Addressing this will 

require a combination of richer data inputs, time-aware 

modelling, self-evaluation mechanisms, and continual 

adaptation. These improvements are essential for building 

fire detection systems that are not only accurate in the lab, 

but also reliable and trustworthy in the real world. 

A key limitation of the current system lies in the time 

required to retrain its AI model–approximately 3600 

seconds, or one hour. While this duration is manageable in 

laboratory conditions, it poses significant constraints in real-

world wildfire scenarios, where the environment can change 

rapidly and continuously. For example, a surface fire may 

escalate into a crown fire, or shifting winds might suddenly 

obscure visibility with smoke. In such cases, relying on a 

static model–one that was trained in advance and does not 

adapt in real time–can lead to degraded detection 

performance. This issue reflects a broader challenge in 

machine learning known as "concept drift," where the 

patterns in the data change over time, but the model does 

not evolve accordingly. 

To address this, the next phase of development focuses 

on enabling the system to learn and adapt more quickly 

through incremental and transfer learning methods. These 

approaches allow the model to update its knowledge without 

starting from scratch each time. Specifically, instead of 

retraining the entire network, the system will preserve the 

basic image-recognition layers–which identify general 

visual features like edges and textures–and update only the 

more specialized layers that interpret high-level fire 

characteristics. This targeted fine-tuning significantly 

reduces the amount of time and computational power 

required. Early experiments suggest that this form of on-

ground retraining could be completed within 15 minutes 

using a lightweight GPU located at the ground control 

station. 

To further enhance adaptability, the retraining process 

also includes simulated variations in environmental 

conditions, such as artificial haze or changes in lighting. 

These variations help the model generalize better to the 

unpredictable conditions it might face in the field. 

Importantly, this approach also reduces the risk of 

"catastrophic forgetting," where new training data causes the 

model to lose performance on scenarios it had previously 

learned. 

In cases where rapid updates are needed but ground 

access is limited–such as remote or long-endurance UAV 

missions, the system may instead rely on in-flight retraining. 

Here, techniques like model compression and selective 

updating come into play. By simplifying the model’s 

architecture and focusing updates only on the most critical 

components, it becomes possible to retrain parts of the 

model using the UAV's onboard processor, without 

disrupting other critical tasks like flight control or data 

encryption. These updates would be based on images the 
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system finds ambiguous or difficult to classify, ensuring that 

learning is focused where it is most needed. 

To coordinate learning across multiple UAVs observing 

the same fire event, a method called federated learning is 

being explored. In this setup, each UAV improves its own 

model locally and then shares only the updates–not the raw 

data–with a central server or peer aircraft. These updates are 

encrypted using the same AES-256 protocol that protects 

the rest of the system’s communications. Once combined, 

the updates produce a shared model that reflects a more 

comprehensive understanding of the environment, all 

without exposing sensitive data or overloading 

communication links. 

Together, these improvements are designed to transform 

the AI model from a static tool into a responsive system that 

evolves with the conditions it monitors. By reducing the 

time needed for retraining and enabling models to adapt 

directly in the field, the system moves closer to real-time, 

reliable operation in high-stakes wildfire detection 

scenarios. 

While the proposed system delivers high-performance 

secure fire detection under controlled conditions, its 

deployment in live environments will necessitate further 

enhancements in environmental robustness, adversarial 

resilience, and retraining agility. These limitations are being 

directly addressed in the ongoing system roadmap, which 

includes multispectral integration, satellite-data cross-

validation, and quantum-resilient encryption primitives. 

E. Field-Trial Roadmap & Technology Integration 

To ensure the proposed system’s real-world viability 

beyond controlled laboratory simulations, a structured field-

validation roadmap has been developed. This roadmap not 

only addresses the limitations identified in the earlier 

sections–such as simulation bias, limited sensor diversity, 

and lack of environmental unpredictability–but also extends 

the system’s applicability to broader operational scenarios, 

including industrial complexes, pipeline corridors, and 

urban canyons. The plan is structured in three progressive 

phases, each with specific timelines, objectives, and 

measurable performance benchmarks. 

1) Phase 1 (Q3 2025): Controlled burn campaign 

The first phase of the planned validation effort centres 

on a controlled burn campaign that will take place at a 

certified wildfire research and training facility in the United 

Kingdom. This type of environment allows for a high 

degree of experimental control while offering realistic fire 

dynamics that closely resemble those encountered in natural 

wildfire events. Over the course of the campaign, ten 

surface-level fires will be ignited across areas containing 

different vegetation types, including open grasslands, dense 

shrublands, and mixed woodland ecosystems. These distinct 

fuel profiles have been selected to reflect the variety of 

ignition and combustion behaviours typical in real-world 

fire-prone regions, and to ensure that the system is evaluated 

under a broad spectrum of operational conditions. 

The primary aim of this phase is to evaluate the UAV 

system’s performance in detecting and responding to fire 

activity under a range of smoke densities. Smoking opacity, 

a factor that can significantly affect visibility and sensor 

accuracy, will be deliberately varied during the tests. 

Specifically, the smoke conditions will span from lightly 

obscured (measured by a K-factor of approximately 0.2, 

indicating low aerosol concentration) to severely obscured 

environments (K-factor ≥ 1.2), which represent the upper 

bounds of what autonomous airborne systems are likely to 

encounter in active wildfire zones. By exposing the system 

to this controlled variation, the study aims to understand 

how different levels of visual interference affect the 

reliability of both the onboard fire detection algorithms and 

the secure data transmission process. 

The UAV will follow a predefined racetrack flight path–

an elliptical loop pattern frequently used in aerial 

surveillance–that maintains a constant altitude range 

between 60 and 120 meters above the ground. This range 

has been chosen to balance regulatory compliance for 

civilian UAV operations with the need for sufficient altitude 

to cover wide areas and maintain line-of-sight to ground-

based communication units. The use of multiple altitudes 

will also allow the team to analyse how flight height 

influences detection accuracy, particularly under low-

visibility conditions. 

To simulate challenging communication scenarios that 

are common in remote or infrastructure-poor areas, the 

bandwidth available for UAV-to-ground station 

communication will be artificially restricted to 20 megabits 

per second in half of the test flights. This constraint is 

intended to replicate conditions where satellite uplinks or 

long-range wireless networks are limited, such as 

mountainous regions or deep-forest zones. Testing under 

such constraints is crucial to verifying that the system’s 

encryption and data processing components remain effective 

when transmission capacity is limited scenario that could 

otherwise compromise timely decision-making in fire 

management operations. 

The performance of the system during this phase will be 

judged against a set of predefined benchmarks. The system 

is expected to achieve at least 90 percent detection accuracy 

in scenarios involving dense smoke while operating at the 

maximum test altitude of 120 meters. This threshold has 

been set to demonstrate that the fire detection algorithm 

remains effective even when visual conditions are 

significantly degraded. Additionally, the cumulative false-

alarm rate, which measures how often the system incorrectly 

identifies non-fire elements as fires, must remain below 2 

percent across all test scenarios. This is critical in ensuring 

the system does not overwhelm human operators or 

automated response protocols with spurious alerts. 

Equally important is the system’s ability to maintain 

efficient data encryption and transmission under operational 

conditions. The UAV must sustain an encrypted data 

throughput of at least 600 megabits per second, with an end-

to-end latency–that is, the delay between data capture and its 

secure delivery to the ground station–of no more than five 

microseconds. These parameters ensure that the system can 

handle real-time data flow securely and without bottlenecks, 

even under bandwidth-limited scenarios. Finally, the UAV 

must demonstrate an operational endurance of at least 35 
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minutes per flight, inclusive of all onboard processing, AI 

computation, and encryption workloads. This level of 

endurance is essential for covering large areas or multiple 

fire zones in a single sortie without the need for premature 

battery returns or frequent system resets. 

Taken together, the objectives of this first-phase 

campaign are not only to test the system's technical 

capabilities in realistic fire conditions but also to evaluate its 

reliability and resilience in the face of environmental and 

operational stressors. The outcomes of these trials will 

provide critical insights into the practical deployment 

potential of AI-enhanced, secure UAV platforms in the 

context of wildfire monitoring, early warning systems, and 

real-time disaster response. 

2) Phase 2 (Q1 2026): Satellite–UAV data fusion 

The second phase of the field-trial roadmap marks a 

significant step in enhancing the system's ability to detect 

fires efficiently and accurately. In this stage, the project 

moves beyond relying solely on UAV-mounted sensors by 

integrating satellite data to guide aerial surveillance. 

Specifically, the system begins using thermal data from the 

Sentinel-2 satellite, part of the European Space Agency’s 

Copernicus program. Sentinel-2 captures images across 13 

spectral bands, with resolutions between 10 and 60 meters, 

enabling it to detect heat signatures that may indicate active 

fires or developing hotspots. By tapping into this near-real-

time data stream, the UAV gains access to large-scale 

information that can be used to direct its flight and scanning 

behaviour more intelligently. 

Central to this integration is the use of a Kalman filter, a 

mathematical tool often used in navigation and robotics. It 

allows the UAV to merge its GPS-based location data with 

satellite information to estimate the most likely locations of 

fires. This method does not simply smooth out noisy data; it 

actively predicts and updates the UAV’s scanning path 

based on the most current and reliable information. As a 

result, the UAV can focus its attention on areas where fires 

are most likely, rather than following a rigid pre-planned 

path. Early estimates suggest this approach could reduce the 

time needed to search large areas by around 40%, while still 

maintaining high accuracy. 

From a theoretical standpoint, this method follows 

principles used in intelligent systems that aim to maximize 

useful information while minimizing time and energy. By 

combining external satellite data with onboard processing, 

the UAV evolves from being a passive observer to an active 

decision-maker. This not only boosts its efficiency but also 

makes the system more adaptable in complex or rapidly 

changing fire conditions, where ground support may be 

delayed. To assess the success of this phase, the system 

must demonstrate that it can pinpoint fire locations within 

15 meters of their actual positions, as verified by detailed 

maps of fire boundaries. Meeting this target requires precise 

alignment of all sensors, careful handling of delays in data 

transfer, and ongoing fine-tuning of the algorithm as field 

conditions evolve. 

In a broader context, this fusion of satellite and UAV 

capabilities reflects a growing trend in environmental 

monitoring, where the strengths of space-based and airborne 

technologies are combined. For wildfire detection, this 

hybrid approach bridges the gap between wide-area 

surveillance from space and targeted action on the ground. It 

creates a scalable model that can be applied to regions 

where traditional methods fall short. Thus, the second phase 

not only upgrades the technical foundation of the system but 

also establishes a practical method that can be adapted for 

other real-time, location-sensitive challenges in 

environmental science and emergency response. 

3) Phase 3 (Q2 2026): Sensor diversification and AI 

retraining 

The third and final phase of the field-validation strategy 

introduces a wider range of sensors to significantly improve 

the system's ability to detect wildfire in unusual or complex 

situations. This step addresses known weaknesses in 

traditional aerial fire detection, particularly when fires are 

hidden or produce minimal visible or thermal signals. By 

using more varied types of environmental data, the system 

becomes more reliable and accurate in real-world 

conditions. 

A key improvement in this phase is the inclusion of 

sensors that can detect carbon monoxide (CO) and carbon 

dioxide (CO₂). These gases are typically released during the 

early stages of smouldering fires, which burn slowly and 

produce little heat or visible flames. Because such fires 

often precede larger outbreaks, early detection is crucial. 

Unlike cameras or heat sensors that may miss these early 

signs, gas sensors provide a chemical method of identifying 

fire activity, making them especially useful in places like 

underground tunnels, forest floors, or debris-filled areas 

where visibility is poor. 

To better map the shape and movement of smoke, a 

near-infrared LiDAR sensor operating at 905 nanometers is 

added. LiDAR (Light Detection and Ranging) works by 

sending out laser pulses and measuring how long it takes for 

them to bounce back. This allows the system to create 

detailed 3D images of smoke plumes. Understanding the 

shape and spread of smoke can help predict how fires move 

and how smoke affects surrounding areas. This is 

particularly valuable in settings like urban environments or 

uneven terrain, where buildings or landscape features can 

block other types of sensors. 

In addition to LiDAR, the system now includes a 

midwave infrared (MWIR) sensor, which fills the gap 

between the existing longwave infrared (LWIR) and 

standard visible-light cameras. MWIR is especially good at 

detecting moderate levels of heat and can provide clearer 

images in conditions where traditional sensors struggle, 

such as through thick smoke or high humidity. By 

combining data from MWIR, LWIR, and visible-light 

sensors, the system builds a completer and more accurate 

picture of its surroundings, improving the ability to identify 

fire-related activity. 

All this new information is processed by the system’s 

artificial intelligence engine using a technique called 

transfer learning, which allows the AI to learn new patterns 

without forgetting what it already knows. This process is 

enhanced using Low-Rank Adaptation (LoRA) modules, 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1934 

 

Khuralay Moldamurat, AI-Enhanced High-Speed Data Encryption System for Unmanned Aerial Vehicles in Fire Detection 

Applications 

which help the AI adjust quickly and efficiently without 

needing to be completely retrained. The retraining process is 

designed to be fast, taking less than 15 minutes on an 

NVIDIA Jetson Orin NX–a powerful but compact 

computing device suitable for use directly on UAVs. This 

rapid adaptability means the system can respond to 

changing conditions and new fire scenarios in real-time 

during long missions. 

A critical goal for this phase is to achieve at least 92% 

accuracy in detecting difficult fire cases, such as smoldering 

fires hidden under debris or sparks from electrical faults. 

These events are challenging for many detection systems 

because they are short-lived or not easily visible. By 

successfully identifying these cases, the system shows its 

readiness for practical deployment in a wide variety of 

environments, from cities to remote natural areas. In doing 

so, this final phase not only completes the technical 

development but also confirms the system’s capability to 

meet the demands of modern wildfire detection and 

response. 

This field-trial roadmap directly addresses core 

limitations by introducing environmental realism, multi-

sensor diversity, and satellite-assisted tasking. In doing so, it 

positions the system for broader deployment across domains 

where conventional UAV detection systems falter. Phase I’s 

real-smoke stress testing validates system robustness under 

fluctuating atmospheric dynamics, supporting deployment 

in industrial estates and prescribed-burn management. Phase 

II’s satellite cueing enables efficient regional surveillance, 

relevant for applications such as pipeline monitoring and 

forest reserve management. Phase III’s sensor augmentation 

and retainability extend the system’s capabilities to detect 

hard-to-classify incidents like fires in urban canyons or 

within high-rise architectural recesses. Moreover, 

integrating real-time satellite intelligence with secure, low-

latency UAV telemetry lays the groundwork for scalable, 

coordinated swarm operations in high-risk emergency 

response scenarios. 

IV. CONCLUSION 

This study presents a compact and integrated system that 

combines fast encryption with real-time fire detection, 

designed for deployment on drones in environments where 

rapid response is critical. Using a lightweight artificial 

intelligence (AI) model and a field-programmable gate array 

(FPGA) for high-efficiency processing, the system 

demonstrates strong performance under simulated but 

realistic fire conditions. It achieved high accuracy in 

identifying early-stage fires while maintaining a low rate of 

false alarms and rapid data encryption speeds–essential for 

protecting sensitive information transmitted by aerial 

platforms. 

Compared to existing drone-based fire monitoring 

solutions, our platform offers significant improvements. It 

delivers nearly twice the encrypted data throughput and 

maintains superior detection precision, all within a low-

power embedded hardware setup. This positions the system 

as a practical and effective tool for early fire warning 

applications in remote or high-risk areas. Because the FPGA 

board matches the form factor of standard Pixhawk 

controllers and supports over-the-air firmware updates, 

fleets can be upgraded in the field without replacing 

airframes or ground-station software. 

A novel theoretical contribution of this work is the 

definition of a computational latency bound that accounts 

for the interaction between data encryption and AI 

inference. This helps establish performance expectations as 

sensor complexity increases and supports future designs 

aiming to scale the system. 

At the same time, several limitations must be 

acknowledged. The system was primarily tested in 

controlled environments, with limited variability in fire 

types and external conditions. This raises concerns about 

how well the system would perform in real-world scenarios 

that are more chaotic and less predictable. Additionally, 

while the AI model used is efficient, it does increase power 

consumption and may be vulnerable to deliberate attempts 

to fool it, such as through visual interference (known as 

adversarial attacks). The AI adds an average 12 % power 

draw, shortening typical flight endurance from 35 min to 31 

min; long-term reliability under 24 h duty cycles remain to 

be validated. These trade-offs must be carefully considered 

when transitioning from experimental validation to field 

deployment. 

To address these concerns, future research should focus 

on expanding the training dataset with diverse, real-world 

fire imagery and testing the system in outdoor environments 

across different climates and terrains. Specific next steps 

include implementing adaptive AI training methods that 

allow the model to improve over time with new data, 

upgrading the encryption framework to defend against 

future quantum computing threats, and coordinating 

multiple drones to detect fires cooperatively and share 

information in real time. 

Finally, by integrating AI-based analytics with robust, 

real-time encryption on a single low-power device, this 

work offers a new approach to secure, autonomous 

environmental monitoring. It contributes to advancing both 

the technical feasibility and practical readiness of intelligent 

drone systems in public safety, environmental protection, 

and emergency response domains. 
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