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Abstract—This study focuses on analyzing and evaluating 

the performance of three types of Extended State Observers 

(ESOs)—Linear ESO (LESO), Nonlinear ESO (NESO), and 

Fractional-Order ESO (FOESO)—within a flexible joint robotic 

system. ESOs are a key component of Active Disturbance 

Rejection Control (ADRC) due to their ability to estimate 

system states and internal and external disturbances without 

requiring an accurate system model, making them particularly 

suitable for nonlinear and complex systems. This research aims 

to provide a quantitative comparison among the three observer 

types under parameter uncertainties and external disturbances 

using MATLAB/SIMULINK simulations. By  reducing the 

RMSE, a Genetic Algorithm (GA) finds the optimal observer 

parameters. The results indicate that FOESO significantly 

outperforms the other observers in terms of estimation 

accuracy, achieving a remarkably low RMSE of 1.06×10⁻¹⁶ for 

position estimation, compared to 9.16×10⁻¹³ for NESO and 

2.17×10⁻¹¹ for LESO. These findings highlight FOESO's 

superior robustness in managing nonlinearities and 

disturbances, making it a promising solution for high-precision 

robotic applications. 

Keywords—Flexible Joint System; Extended State Observer; 

RMSE; Disturbance Rejection; Active Disturbance Rejection 

Control. 

I. INTRODUCTION 

Robotics has evolved into a multidisciplinary field that 

has witnessed remarkable advancements over time, driven by 

developments in electronics, control theory, system 

modeling, simulation techniques, brain–machine interfaces, 

and cognitive sciences. The continuous integration of these 

technologies has significantly shaped modern robotic 

research and applications. 

The application of robotics has markedly increased. 

Robots are becoming increasingly vital across diverse 

domains, including medicine, haptics, nuclear power 

facilities, space exploration, automation, and industry, as well 

as in underwater operations, target tracking, and tethering 

applications. In the medical domain, robotic systems have 

shown substantial potential in diverse areas such as 

rehabilitation [23], motion assistance [24]–[25], anesthesia 

management [26], and the enhancement of patient mobility 

[27]. 

The locomotion subsystem of robots mainly consists of 

links, legs, wheels, or combinations. Consequently, the 

control community has been involved in proposing creative 

solutions for mobile robots and link-based operations. Both 

linear [36]-[37] and non-linear control approaches [38]-[39] 

have been successfully applied to the ensuing constructions. 

Flexible joint systems are a vital area of research in 

robotics and mechanical engineering. These systems consist 

of a flexible link connected to an actuator by a flexible joint, 

affecting the dynamics and control of the entire system [40]. 

Flexible joint robotic manipulators (FJRMs) have attracted 

significant research interest due to advancements in the 

industry and the rising desire for lightweight, energy-efficient 

robots in modern society. Robotic manipulators are complex, 

non-linear systems employed across various industries, 

including beverage production, automotive assembly, 

aerospace, underwater vehicles, agriculture, automation, and 

medical applications. FJRMs offer several advantages over 

traditional heavy-weight and rigid-link robotic manipulators 

(RRMs), such as reduced size, decreased weight, enhanced 

maneuverability, improved transportability, lower power 

consumption, diminished control effort, reduced cost, 

expansive work volume, increased motion speed, more 

miniature actuators, and heightened operational velocity due 

to minimized inertia [46]-[51]. 

In specific controllers, the control mechanism is classified 

into two categories: state feedback and output feedback. The 

output feedback demonstrated by Active Disturbance 

Rejection Control (ADRC) requires incorporating an 

observer, making this control method primarily observer-

focused [52]-[55]. An observer is a mathematical and 

technical apparatus employed in contemporary control 

methodologies to deduce internal state variables from 

quantifiable inputs and outputs. Improving system 

performance and monitoring is essential, particularly when 

certain internal states are unmeasurable. Observer-based 

control systems have been widely employed in several 

engineering fields to enhance performance and save costs. To 

reduce the impact of chatter and vibration, machine tool 

control observers measure the motion of the cutting tool and 

the workpiece [56]. 

 Researchers in the literature have utilized several types 

of observers to assess the states of the FJRMs. In [57], 

Léchevin proposed the development of two distinct observer 

designs: (1) a variable structure observer that relies on link 
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position measurements to estimate the complete state of a 

flexible joint manipulator, and (2) a reduced-order adaptive 

observer that requires both link and motor position 

measurements for accurate state estimation. In [58], 

Abdollahi presented a stable observer utilizing neural 

networks for flexible-joint manipulators. In [59], Ullah 

utilizes the High Gain Observer alongside output feedback 

control to manage single-link flexible-joint robot 

manipulators (SFJRMs) in the presence of matched 

disturbances and parametric uncertainties. In [60], Ma 

develops an adaptive neural control approach for n-link 

flexible-joint electrically driven robots, utilizing an adaptive 

observer to forecast the velocities of the links and motors. In 

[61], Talole proposed a feedback linearization (FL)-based 

control law, executable via an extended state observer (ESO), 

for the trajectory tracking control of a flexible-joint robotic 

system. Bortoff suggests a resilient observer-based control 

technique for flexible joint robots [58]. 

This paper proposes an extended state observer (ESO) to 

estimate the states of Flexible Joint Robotic Manipulators 

(FJRMs), considering the lumped uncertainty present in the 

system. This observer signifies a fresh methodology, 

differing from those previously documented in the literature, 

save for the study of Talole [61]. An optimization technique 

is established to ascertain the observer gain values, and a 

novel observer, the Fractional-Order Extended State 

Observer (FOESO), is presented. A comparative examination 

is performed among the three types of ESO. The calculated 

states encompass the angular location, velocity, acceleration, 

and jerk of the FJRMs, while the observer also assesses the 

total uncertainties stemming from external disturbances and 

nonlinearities in spring characteristics. The research 

examines three variants of the Extended State Observer 

(ESO): the Linear Extended State Observer (LESO), the 

Nonlinear Extended State Observer (NESO), and the 

Fractional-Order Extended State Observer (FOESO). These 

principal contributions can be encapsulated as follows: 

• The design of LESO, NESO, and FOESO. 

• A comparative performance assessment of LESO, NESO, 

and FOESO utilizing the Root Mean Square Error 

(RMSE) statistic. 

II. MATHEMATICAL MODEL 

In this work, a mathematical model is presented for a 

single-link manipulator with a revolute joint, actuated by a 

DC motor. The flexibility of the joint is modeled as a linear 

torsional spring with stiffness K, as illustrated in Fig. 1. 

 

Fig. 1. Flexible-joint manipulator system 

The equations of motion for this system [63] are given by: 

𝐼𝑞̈1 +𝑀𝑔𝐿𝑠𝑖 𝑛(𝑞1) + 𝐾(𝑞1 − 𝑞2) = 0

𝐽𝑞̈2 − 𝐾(𝑞1 − 𝑞2) =𝑢
 (1) 

For this context, 𝑞1 and 𝑞2 are the link and motor angles, I 

and J are the link and motor inertia, K and u are the spring 

stiffness and input torque, and M and L are the mass and 

length of the link, respectively. Designating the state 

variables as 𝑥1 = 𝑞1, 𝑥2 = 𝑞̇1, 𝑥3 = 𝑞2, 𝑥4 = 𝑞̇2. The 

nonlinear dynamics (1) can be expressed in a state space 

model as: 

𝑥̇1 = 𝑥2

                         𝑥̇2 = −
𝑀𝑔𝐿

𝐼
𝑠𝑖 𝑛(𝑥1) −

𝐾

𝐼
(𝑥1 − 𝑥3) 

𝑥̇3 = 𝑥4

𝑥̇4 =
𝐾

𝐽
(𝑥1 − 𝑥3) +

1

𝐽
𝑢

 (2) 

The system's output can be described as: 

𝑦 = ℎ(𝑥) = 𝑥1 (3) 

It should be noted that a nonlinear system can be turned 

into the "normal form" of interest by making the right 

changes to the coordinates in the state space. In this form, 

many important aspects can be revealed. None of the three 

equations in the nonlinear dynamic system (1) are in standard 

form. A nonlinear coordinate transformation will normalize 

the system and simplify the control design. Using the form's 

nonlinear coordinate transformation on it. Using the 

converted new coordinates, one can rewrite the unique 

dynamics (1)–(3) as: 

𝑍 =

[
 
 
 
 
𝐿𝑓
𝑜ℎ

𝐿𝑓
1ℎ

𝐿𝑓
2ℎ

𝐿𝑓
𝑛−1ℎ]

 
 
 
 

 (4) 

The   𝐿𝑓ℎ(𝑥) =  
𝜕(ℎ)

𝜕𝑥
𝑓(𝑥)   Lie derivatives of the system. 

𝑧1 = ℎ(𝑥) = 𝑥1
𝑧2 = 𝐿𝑓

1ℎ = 𝑥2

𝑧3 = 𝐿𝑓
2ℎ = −

𝑀𝑔𝐿

𝐼
𝑠𝑖𝑛(𝑥1) −

𝐾

𝐼
(𝑥1 − 𝑥3)

𝑧4 = 𝐿𝑓
3ℎ = −

𝑀𝑔𝐿

𝐼
𝑐𝑜𝑠(𝑥1)𝑥2 −

𝐾

𝐼
(𝑥2 − 𝑥4)

 (5) 

Being a global diffeomorphism, the transformation z=T(x) is 

a smooth, bijective mapping with a smooth inverse. This 

preserves the smoothness of the original system and 

guarantees a clear definition of the changed coordinates. The 

changed variables z1, z2, z3, and z4 match, respectively, the 

position, velocity, acceleration, and jerk of the connection, as 

reported. Consequently, reformulating the original dynamics 

(2)-(3) concerning these new coordinates helps to simplify 

analysis and control design. 

𝑧̇1 = 𝑧2 

𝑧̇2 = 𝑧3 

𝑧̇3 = 𝑧4 

𝑧̇4 = 𝑎(z) + 𝑏𝑢 

(6) 

where a(z) (all the non-linearized) and 𝑏 are given by: 

  𝑎(𝑧) =
𝑀𝑔𝐿

𝐼
𝑠𝑖𝑛(𝑧1) (𝑧2

2 −
𝐾

𝐽
) − (

𝑀𝑔𝐿

𝐼
𝑐𝑜𝑠(𝑧1) +

𝐾

𝐽
+

𝐾

𝐼
) 𝑧3 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1334 

 

Hakam Marwan, Fractional Order Extended State Observer Enhances the Accuracy of Estimation for Flexible Joint Single-

link Robot 

b =
k

IJ
 

III. ESO DESIGN 

An observer, an ESO, can determine a system's 

uncertainties and states, enabling it to compensate for or 

reject disruptions. It treats uncertainties, nonlinear dynamics, 

coupling effects, and external disturbances as full-blown 

disturbances. Regardless of the plant's mathematical model, 

ESO is easier to implement and produces superior results. In 

many different domains, it finds use. The LESO, NLESO, 

and FESO approach is laid forth in this research. Here is an 

explanation of ESO's fundamental idea: 

Consider an 𝑛𝑡ℎorder, single single-output nonlinear 

dynamical system described by:  

𝑧(𝑛) = 𝑎(𝑧, 𝑧̇, … , 𝑧𝑛+1, 𝑤) + 𝑏𝑢      (7) 

According to equation (7), 𝑎 (.) denotes the plant dynamics, 

u signifies the control signal, z represents the measured 

output, and w(t) indicates an unknown disturbance. 

Furthermore, 𝑎 (.) is expressed as 𝑎𝑜 (.) + ∆ 𝑎, and b is 

defined as b_0 + ∆b, where 𝑎𝑜 (.) and 𝑏𝑜 These are the most 

accurate estimates of 𝑎𝑜and 𝑏𝑜, respectively, while ∆ 𝑎 and 

∆b denotes their corresponding uncertainties in Equation (7) 

can be reformulated in state-space representation by defining 

the uncertainty as d≡Δ𝑎+Δbu and identifying it as an 

extended state, 𝑧𝑛+1The dynamics (7) can be expressed in 

state-space representation as: 

 

𝑧̇1 = 𝑧2
𝑧̇2 = 𝑧3
⋮

𝑧̇𝑛 = 𝑧𝑛+1 + 𝑎𝑜 + 𝑏𝑜𝑢
𝑧̇𝑛+1 = ℎ
𝑦 = 𝑧1

 (8) 

The uncertainty's rate of change, denoted as h=𝑑̇, is a 

bounded, unknown function that can be estimated using a 

state estimator once d is transformed into a state. 

A. Linear Extended State Observer 

It is the simplest type of ESO. The equations of LESO are 

given in equation (9). 

𝑧̇̂1 = 𝑧̂2 + 𝛽1(𝑒)

𝑧̇̂2 = 𝑧̂3 + 𝛽2(𝑒)

⋮
𝑧̇̂𝑛 = 𝑧̂𝑛+1 + 𝛽𝑛(𝑒) + 𝑏𝑜𝑢

𝑧̇̂𝑛+1 = 𝛽𝑛+1(𝑒)

 (9) 

Where 𝑒 = 𝑦 − 𝑧̂1.The observer’s states (z1, . . , zn) work to 

estimate the actual states of the system (x1, .. , xn) 

respectively, while the state of the observer zn+1 is 

responsible for estimating the lumped uncertainties h(x). The 

parameters [𝛽1, . . , 𝛽𝑛+1] are positive constants. The values of 

the coefficients are determined using optimization methods 

to verify that a given polynomial is Hurwitz. In this context, 

a Genetic Algorithm (GA) will be utilized as the optimization 

technique to find the appropriate coefficient values, ensuring 

that the polynomial satisfies the Hurwitz criterion. Meaning 

all its roots have negative real parts. the following goal from 

the designed observer z1 ⟶ x1, z2 ⟶ x2, z3 ⟶ x3, z4 ⟶
x4, z5 ⟶ h(x)as t ⟶ ∞. 

B. Nonlinear Extended State Observer  

The second version of ESO is NESO. This type is 

considered more complex than the first version because it 

contains more variables. NESO type can be expressed by the 

following equations (10). 

𝑧̇̂1 = 𝑧̂2 + 𝛽1𝑔1(𝑒)

𝑧̇̂2 = 𝑧̂3 + 𝛽2𝑔2(𝑒)

⋮
𝑧̇̂𝑛 = 𝑧̂𝑛+1 + 𝛽𝑛𝑔𝑛(𝑒) + 𝑏𝑜𝑢

𝑧̇̂𝑛+1 = 𝛽𝑛+1𝑔𝑛+1(𝑒)

 (10) 

Where 𝑒 = 𝑦 − 𝑧̂1   and 𝑧̂𝑛+1 It is an estimate of the 

uncertainty. The quantities are the observer gains, while 𝑔𝑖(.) 
are the set of suitably constructed nonlinear gain functions 

that are satisfying 𝑒𝑔𝑖(𝑒) > 0, ∀𝑒 ≠ 0 and 𝑔𝑖(0) = 0. If one 

chooses the nonlinear functions, 𝑔𝑖(.) and their related 

parameters are properly estimated, it is anticipated that the 

estimated state variables 𝑧̂𝑖 converge to the corresponding 

system states. 𝑧𝑖, i.e., 𝑧̂𝑖→ 𝑧𝑖; i=1, 2…, n+1. An essential 

component of ESO design is the selection of the nonlinear 

function. These functions' general formulation was chosen 

empirically based on experimental findings [64-67] is  

𝑔𝑖(𝑒, 𝛼𝑖 , 𝛿) = {
|𝑒|𝛼𝑖sign(𝑒),    |𝑒| > 𝛿
𝑒

𝛿1−𝛼𝑖
,     |𝑒| ≤ 𝛿

 𝑖 = 1,2,… , 𝑛 + 1 (11) 

where 𝛿 is greater than zero. As can be seen, 𝑔𝑖(.) is a 

nonlinear function with a linear interval close to the origin. 

Avoid going close to the origin. One crucial characteristic of 

these functions is that for 0<𝛼𝑖<1. The function 𝑔𝑖 (.) 

generates a small gain when the error is large and a significant 

gain when the error is minor, with the benefit being limited 

by a small constant. The error range corresponds to high gain 

and is established in the vicinity of the origin. 

C. Fractional Order Extended State Observer 

The remaining version of ESO, Fractional-order extended 

country observers (FOESO) have shown promising results in 

diverse control packages. They offer advanced performance 

and higher estimation accuracy compared to integer-order 

observers [68]-[70]. An extension of integration and 

differentiation to a non-integer order operator is the fractional 

calculus:  

𝐷𝛼 =  

{
 

 
𝑑𝛼

𝑑𝑡
𝛼      for 𝛼 ≻ 0

1     for 𝛼 = 0

∫  
𝑡

𝑎
(𝑑𝑡)−𝛼      for 𝛼 ≺ 0

  (12) 

The fractional order (α) ranges from 0 to 1, and 𝑎 and 𝑡 
represent the operation's limitations, allowing for the 

derivative in all estimate states of the observer. 𝑥̂ =
[𝑥̂1, 𝑥̂2, …… , 𝑥̂𝑛 , 𝑥̂𝑛+1]. Expresses equations of this type. 

        𝐷𝛼𝑓𝑥̂1 = 𝑥̂2 + 𝛽1(𝑦 − 𝑥̂1)

𝐷𝛼𝑓𝑥̂2 = 𝑥̂3 + 𝛽2(𝑦 − 𝑥̂1)

        𝐷𝛼𝑓𝑥̂𝑛 = 𝑥̂𝑛+1 + 𝑏𝑢 + 𝛽𝑛(𝑦 − 𝑥̂1)

𝐷𝛼𝑓𝑥̂𝑛+1 = 𝛽𝑛+1(𝑦 − 𝑥̂1)                 

𝑦̂1 = 𝑐𝑥̂1

 (13) 

The parameters 𝛼 and observer's gains [𝛽1,. 𝛽𝑛+1,] are 

positive  
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IV. RESULTS AND DISCUSSION 

Three observer classifications—LESO, NESO, and 

FOESO—were evaluated using MATLAB/Simulink via a 

numerical simulation. Thanks to its connection with strong 

analytical and computational tools, this platform has 

enormous possibilities in system monitoring, control, and 

other technical disciplines. The recommended tool for 

precisely running complex computations and differential 

equation solutions is MATLAB/Simulink. Moreover, it 

provides a lot of programming freedom so control engineers 

can create MATLAB scripting, Simulink block diagrams, or 

integrated control algorithms. This adaptability enables one 

to create exact models of dynamic systems and build control 

rules. Table I lists the physical parameters of the flexible joint 

system applicable to all kinds of observers. 

TABLE I.  PARAMETERS OF THE MAGLEV SYSTEM 

Parameters Values 

MgL 10N−m 

K 100N−m/rad 

I 1kg−m2 

J 1kg−m2 

input Sin(t) 

X (0) [0 0 0 0] 

Z (0) [0 0 0 0 0] 

 

The Genetic Algorithm (GA) is applied to the three types 

of Extended State Observer (ESO) to decrease the Root Mean 

Squared Error (RMSE) as the objective feature, as given in 

Eq. (14) [71]-[73]. 

𝑅𝑀𝑆𝐸 = √
∑ ‖𝑥(𝑖)−𝑥(𝑖)‖2𝑁
𝑖=1

𝑁
  (14) 

The effects verified that the usage of GA significantly 

advanced estimation accuracy and reduced errors caused by 

outside disturbances and system uncertainties. The 

optimization process was conducted with the following GA 

parameters of: 

• Number of generations: 25 

• Population size: 50    

The range of the design variables of each observer is 

given in Table II, Table III, and Table IV. The best value of 

each observer is given in Table V. 

TABLE II.  THE UPPER AND LOWER OF LESO 

Parameter Lower bound Upper bound 

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 0 1018 

TABLE III.  THE UPPER AND LOWER OF NESO 

Parameter Lower bound Upper bound 

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 0 1018 
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 0 1 

TABLE IV.  THE UPPER AND LOWER OF FOESO 

Parameter Lower bound Upper bound 

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 0 1018 
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 0 1 

𝛿 0 0.5 

 

TABLE V.  THE OUTPUT OF GA PARAMETERS 

Typer of ESO Parameter Value 

LESO 

𝛽1 

𝛽2 
𝛽3 
𝛽4 

𝛽5 

1.25 ∗ 103 

799368 

1.28 ∗ 108 

1.62 ∗ 1010 
9.48 ∗ 1011 

NESO 

𝛽1 

𝛽2 
𝛽3 
𝛽4 

𝛽5 
𝛿 

𝛼1 

𝛼2 

𝛼3 

𝛼4 

𝛼5 

2.079∗ 103 

8.87∗ 105 

2.345∗ 108 

3.77∗ 1010 
2.59∗ 1011 
0.107 

0.998 

0.5 

0.25 

0. 125 

0.0625 

FOESO 

𝛽1 

𝛽2 
𝛽3 
𝛽4 

𝛽5 
𝛼1 

𝛼2 

𝛼3 

𝛼4 

𝛼5 

1.4 ∗ 104 
5.52∗ 107 

1.68 ∗ 1011 
3.34 ∗ 1014 
1.91 ∗ 1017 
0.9979 

0.9974 

0.9930 

0.9955 

0.9890 

 

The flexible joint system's actual and estimated states and 

uncertainties are shown in Fig. 2, Fig. 3, and Fig. 4, 

respectively, utilizing LESO, NESO, and FOESO. The 

corresponding RMSE-based performance evaluations for 

each type of ESO are included in Table VI, Table VII, and 

Table VIII. 

TABLE VI.  RMSE OF THE ESTIMATION ERROR OF THE LESO 

Estimation Error RMSE 

𝑥1 − 𝑥1 2.1749e-11 

𝑥2 − 𝑥2 2.7330e-08 

𝑥3 − 𝑥3 1.7361e-05 

𝑥4 − 𝑥4 0.0028 

𝑥5 − 𝑥5 0.3499 

TABLE VII.  RMSE OF THE ESTIMATION ERROR OF THE NESO 

Estimation Error RMSE 

x1 − x̂1 9.1624e-13 

x2 − x̂2 1.9046e-09 

x3 − x̂3 2.5694e-06 

x4 − x̂4 0.0012 

x5 − x̂5 0.2585 

TABLE VIII.  RMSE OF THE ESTIMATION ERROR OF THE FOESO 

Estimation Error RMSE 

𝑥1 − 𝑥1 1.0632e-16 

𝑥2 − 𝑥2 2.1190e-05 

𝑥3 − 𝑥3 1.0303e-05 

𝑥4 − 𝑥4 6.8519e-04 

𝑥5 − 𝑥5 0.0429 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2. The output of LESO: a) angular position, b) angular velocity, c) 

angular acceleration, d) jerk, e) total uncertainty 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 3. The output of NESO: a) angular position, b) angular velocity, c) 

angular acceleration, d) jerk, e) total uncertainty 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4. The output of FOESO: a) angular position, b) angular velocity, c) 

angular acceleration, d) jerk, e) total uncertainty 

The most important estimating the error is the state 𝑥1 

because it is the output of the system. For comparison, it can 

be seen from Fig. 5 that FOESO is better than the rest because 

it has the lowest RMSE value than the rest, then NESO comes 

in second place, and the last one is LESO. The second thing 

we will compare is which one is better at assessing 

uncertainty and which one is less valuable. Based on Fig. 6, 

it is clear to us that FOSEO is also better than the rest, NESO 

comes in second, and LESO comes last. We conclude from 

these results that the FOESO is the best type that can be used 

for the flexible joint system.  

 

Fig. 5. Estimating the error of 𝑥1 for LESO, NESO and FPSEO 

 

Fig. 6. Estimating the error of 𝑥5 for LESO, NESO and FPSEO 

V. CONCLUSION 

Three different Extended State Observers (ESOs)—

LESO, NESO, and FOESO—were evaluated in this 

comparative study for their ability to estimate the states and 

uncertainty of flexible joint robotic systems. All observer 

versions accomplished reliable state tracking using 

MATLAB/SIMULINK simulations and optimization based 

on Genetic Algorithm (GA). Compared to its competitors, 

FOESO achieved the best results regarding angular position 

and uncertainty estimation, as measured by Root Mean 

Square Error (RMSE). Additionally, NESO demonstrated its 

capacity to deal with nonlinear dynamics by producing 

dependable results. On the other hand, LESO showed greater 

estimating mistakes, notwithstanding its effectiveness. The 

results show that FOESO is the best solution for real-time 

control applications in flexible joint systems, especially when 

optimized with GA. It is robust and precise. This study 

concludes that fractional-order techniques should be 

implemented in modern control frameworks to improve 

system performance, resilience to disruptions, and estimation 

accuracy. 
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