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Abstract—This study develops a control strategy for the 

flexible beam linked to a moving hub utilizing input shaping 

control. The input shaping control technique is an open-loop 

control approach that employs a shaped command to suppress 

the undesired vibration. This command is formed by convolving 

the original command with input shapers (a sequence of 

impulses with amplitude and temporal location). Unlike the 

conventional input shaping control, which calculates the input 

shapers based on the system's natural frequencies and 

attenuation ratios, a metaheuristic input shaper searcher based 

on the self-adaptive differential evolution algorithm is employed 

in this paper to identify the optimal input shapers. Using this 

algorithm, the specifications of input shapers, including the 

amplitudes and time locations, can be optimized to ensure that 

the cost function corresponding to the position error and beam’s 

vibration approaches the global minimum value. The control 

performance is proved via the numerical simulation. The 

simulation results demonstrate that input shaping control 

utilizing optimized input shapers can significantly reduce 

residual vibrations in the beam. While this control strategy 

requires substantial computational resources and longer 

computation times to develop the optimal input shapers 

compared to traditional techniques, the effectiveness of the 

optimal input shapers in attenuating vibrations is remarkable. 

Keywords—Flexible Cantilever Beam; Input Shaping 

Control; Self-Adaptive Differential Evolution; Vibration Control; 

JADE. 

I. INTRODUCTION  

Automobile engineering frequently uses systems with a 

cantilever beam connected to a moving hub. Examples of 

such systems include CNC EDM (electrical discharge 

machining) drilling machines [1], gantry manipulators [2], 

and cartesian palletizers [3] (Fig. 1). A cantilever beam may 

be either rigid or flexible, depending on its stiffness and the 

specific aspect under consideration. The Cartesian palletizer 

with a lightweight arm can be represented as a flexible 

cantilever beam for the robotic arm, while the trolley is seen 

as a translating hub. During the placement operation, the 

trolley's movement induces undesirable transverse vibrations 

in the robotic arm. This undesirable vibration is a factor 

constraining the machine's productivity. Therefore, this 

undesirable vibration must be mitigated.  

A flexible beam linked to a moving hub comprises two 

primary elements: the beam and the hub. The dynamic model 

of an elastic beam, represented by the Euler-Bernoulli beam 

theory, is defined by a partial differential equation (PDE) [4]-

[13]. Conversely, the governing equation of the hub is an 

ordinary differential equation (ODE). Furthermore, if a 

payload is attached to the beam’s tip, the payload dynamic 

will be described by another ODE. Dynamic models of the 

beam-hub system have been established in the literature [14]-

[20]. As a result, the hub’s movement influences the 

dynamics of the beam's vibration and vice versa. The 

vibration control of a flexible beam mounted on a rigid 

moving base has been the subject of extensive research [5], 

[21]-[23]. He et al. [21] dealt with the vibration control of a 

rigid-flexible wing system. Additionally, Pham et al. [14], 

[22] explored the boundary control challenges associated 

with a flexible beam in three-dimensional space, examining 

two distinct scenarios: one involving a beam of constant 

length and the other featuring a beam with variable length. 

Most research on flexible beams typically employs the Euler-

Bernoulli beam theory to model the beam. Some studies 

further expand this by utilizing Timoshenko beam theory 

[24]-[26]. In [24], the authors modeled a flexible beam 

clamped to a rigid rectilinearly mobile frame on an elastic 

foundation using the Timoshenko beam theory. According to 

this model, a discrete-time sliding mode controller is 

designed for tracking control and vibration suppression in the 

presence of actuator bandwidth limitation and control input 

saturation. 

 Vibration suppression of flexible beams can be executed 

via feedback control methodologies [27]-[44]. Displacement 

data from multiple points on the beam is obtained using 

sensors, including strain gauges or lasers. The control signal 

is created and applied to actuators based on the feedback 

signals. Despite its effectiveness in suppressing vibrations in 

flexible beams, the feedback control approach has 

drawbacks. Installing sensors on beams is a significant 

challenge in certain circumstances. Feed-forward control 

techniques, including input shaping control, may be 

implemented in these situations [45]-[57]. Input shaping 

control is a method that employs a suitably designed 

command signal to reduce the residual vibrations of the beam. 

This approach has been used for many vibrational issues, 

including overhead cranes [58], [59], MEMS [60], [61], and 

spacecraft [62]. Shah and Hong [63] employed input shaping 
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control to mitigate vibrations in an underwater flexible beam 

mounted to a moving trolley, while Pham et al. [64] 

performed an experimental investigation to validate the 

efficacy of various input shaping control methods. The 

shaped command signal is fundamental to input shaping 

control. Generating an appropriate command signal is 

essential for enhancing control efficacy. From an engineering 

perspective, input shaping control shows that a shaped 

command signal can reduce the system’s vibration. The 

traditional methodology considers the flexible beam a single-

mode system represented by a second-order harmonic 

oscillator model. The input shapers are established according 

to this second-order harmonic oscillator’s natural frequency 

and damping ratio. However, the flexible beam is a system 

with an infinity vibrational mode. The expected control 

efficiency might not be attained if the system is assumed to 

have only one or two modes. The input shaping controller 

exhibits high sensitivity to the estimated error in natural 

frequency and damping ratio. Therefore, the natural 

frequency and damping ratio must be carefully estimated to 

achieve high control performance. To overcome this 

problem, we can establish an optimization problem by 

finding the best-shaped command signal for minimizing the 

vibrational energy of the system. 

The optimization problem can be addressed utilizing a 

metaheuristic algorithm, namely the Differential Evolution 

(DE) algorithm [65]-[77]. Differential evolution is a subset of 

evolutionary algorithms derived from the natural evolution of 

species. This algorithm was initially presented by Storn and 

Price [78]. The primary advantages of this algorithm are its 

ease of implementation and favorable convergence 

characteristics. Owing to these advantages, it is becoming 

increasingly popular and extensively utilized across various 

issues [79]. The DE algorithm has been utilized in vibration 

control to optimize the controller control settings. Saad et al. 

[80] developed a closed-loop control method for a flexible 

beam utilizing PID control. The authors employed the DE 

method to optimize the tuning of the PID controller for 

effective vibration suppression. Marinakis et al. [81] created 

a fuzzy control system to suppress vibrations in smart 

structures, with the parameters of the fuzzy control system 

tuned by differential evolution (DE). Given the advantages of 

differential evolution, it is evident that DE is a good approach 

for optimizing active vibration control.  

 

Fig. 1. Linear palletizer (www.medicalexpo.com/prod/flg-automation-ag/ 

product-111920-974512.html) 

To the best of the authors' knowledge, the majority of 

studies exploring the application of JADE for vibration 

control in flexible beams have predominantly centered on 

feedback controllers. However, it is essential to recognize 

that feedforward controllers, such as input shaping, possess 

distinct advantages of their own. This study proposes a 

control strategy for a flexible beam connected to a moving 

hub, employing input shaping control to effectively mitigate 

undesirable vibrations. The proposed approach uses a 

metaheuristic search based on a self-adaptive differential 

evolution algorithm to identify and optimize input shapers’ 

properties—specifically their amplitudes and time 

locations—minimizing the cost function related to position 

error and beam vibrations. Numerical simulations are 

conducted to validate the effectiveness of the proposed 

control scheme. The main contribution of this study is to 

propose an optimization method for the input shaping 

controller for a flexible cantilever beam system attached to a 

moving base based on self-adaptive differential evolution 

algorithm. 

The remainder of this paper is organized as follows: 

Section 2 introduces methodologies, including the input 

shaping control and metaheuristic shaper search scheme. 

Section 3 develops the dynamic model essential for the search 

scheme. Section 4 shows the simulation results, whereas 

Section 5 gives some conclusions. 

II. METHODOLOGIES 

A. Input Shaping Control 

The control objectives of the beam-hub system (i.e., Fig. 

2) are to position the hub at a designated location yd and to 

eliminate the beam’s vibrations using a control force f. While 

relocating the hub to a specified position can be executed via 

a PD controller, expressed as 𝑓 =  𝐾𝑃 . 𝑦 + 𝐾𝐷(𝑑𝑦/𝑑𝑡), 

suppressing the beam’s vibration is conducted by integrating 

the input shaping control technique with the PD controller. 

The input shaping control technique produces a shaped 

command by convolving the original command with input 

shapers, which are defined as a sequence of impulses 

characterized by amplitude Ai and time location ti (refer to 

Fig. 3). Appropriate input shapers can significantly suppress 

vibration when utilizing the shaped command. Identifying the 

input shapers to implement the input shaping technique is 

essential [82].  

 

Fig. 2. System of a flexible beam attached to a moving hub 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1085 

 

Phuong-Tung Pham, Optimizing Input Shaping for Flexible Beam Vibration Control Using Self-Adaptive Differential 

Evolution 

B. Metaheuristic Input Shaper Search Scheme 

This paper introduces a novel control scheme for a flexible 

beam attached to a moving base. The optimum input shapers 

are determined using a metaheuristic technique. Fig. 4 

illustrates the control scheme. The mathematical model of the 

actual system is initially established using data-driven or 

physics-based methods. The computer solves the 

optimization problem, which involves tuning and selecting 

the control parameters and the optimal input shapers (i.e., 

determining the amplitude and time location, Ai and ti) to 

minimize the discrepancy between the system response and 

the desired response, according to a developed mathematical 

model. After that, the optimal input shapers are implemented 

in the actual system. The optimization problem can be 

summarized as follows: 

Find the vectors of the amplitude and time location of input 

shapers, i.e., 𝐴𝐼𝑆 = [𝐴1, 𝐴2, … , 𝐴𝑀] and 𝑇𝐼𝑆  =
 [𝑡1, 𝑡2, … , 𝑡𝑀], where 𝑀 is the number of the input shapers, 

and the control parameter 𝐾𝑃 and 𝐾𝐷, such that the following 

objective function is minimized. 
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Fig. 3. Input shaping control 
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Fig. 4. The control scheme is based on input shaping and differential 

evolution methods 

𝐹Obj = ∫ 𝑒𝜗𝑡[𝑦(𝑡) + 𝑤(𝑙, 𝑡)]2𝑑𝑡
𝑡

0
, (1) 

where 𝜗 = 0.2 is the weighting factor.  

C. Self-Adaptive Differential Evolution Algorithm 

A self-adaptive differential evolution algorithm, JADE, is 

employed to resolve the optimization problem in the 

proposed scheme [83]-[91]. The concept of differential 

evolution is based on the species evolution theory. Each 

candidate solution of the optimization problem, 𝑥 =
 [𝐴1, 𝐴2, … , 𝐴𝑀, 𝑡1, 𝑡2, … , 𝑡𝑀, 𝐾𝐷 , 𝐾𝑃], is considered an 

individual. A population 𝑷, consisting of 𝑁 individuals, is 

generated randomly for the first generation. Population 𝑃 will 

undergo mutation, crossover, and selection processes to meet 

the minimum requirements of the objective function. This 

continuous process occurs over multiple generations, 

allowing individuals within population 𝑃 to progressively 

enhance their performance, ultimately enabling them to 

minimize the objective function effectively. The efficacy and 

effectiveness of the algorithm are significantly influenced by 

two parameters in DE: 𝐹 (scale factor) during the mutation 

phase and 𝐶𝑟 (crossover rate) during the crossover phase. 

𝐶𝑟 maintains the equilibrium between exploration and 

exploitation in the search space, whereas 𝐹 affects 

convergence speed. It is imperative to tune these parameters 

appropriately to achieve optimal performance in particular 

optimization problems. The conventional DE involves 

manual tuning of these parameters. A variant of the DE, 

called JADE, was introduced to enhance DE. The scale factor 

and crossover rate in JADE are self-adaptive, enabling the 

algorithm to dynamically modify and learn about them during 

optimization. In addition, JADE introduces the “current-to-

p-best” strategy [83], which involves the mutant vector being 

influenced by the best solutions in addition to random 

vectors. This helps balance exploration and exploitation. 

In this problem, the 𝑗-th individual in the population of 

the 𝐺-th generation is shown as follows. 

𝐱𝑗
𝐺 = [𝑥1,𝑗

𝐺 , 𝑥2,𝑗
𝐺 , 𝑥3,𝑗

𝐺 , . . . , 𝑥(2𝑀+2),𝑗
𝐺 ] (2) 

For each generation, each individual in the population is 

selected as a parent vector.  Each parent vector undergoes an 

evolution process, including the mutation, crossover, and 

selection steps.  

Mutation: A mutant vector 𝐦𝑗
𝐺 = [𝑚1,𝑗

𝐺 , 𝑚2,𝑗
𝐺 , 

𝑚3,𝑗
𝐺 , . . . , 𝑚(2𝑀+2),𝑗

𝐺 ] is generated corresponding to the parent 

vector 𝐱𝑗
𝐺 via the following formula. 

𝐦𝑗
𝐺 = 𝐱𝑗

𝐺 + 𝐹𝑗(𝐱𝑎
𝐺 − 𝐱𝑏

𝐺) + 𝐹𝑗(𝐱best
𝐺 − 𝐱𝑗

𝐺), (3) 

where 𝐱𝑎
𝐺 and 𝐱𝑏

𝐺 are distinct individuals selected randomly 

from the population, additionally, 𝑎, 𝑏 ≠ 𝑗; 𝐹𝑗 is the scaling 

factor of each individual 𝐱𝑗
𝐺, 𝐹𝑗 ∈ [0,1] . The scale factor 𝐹𝑗  

is independently generated according to the Cauchy 

distribution with location parameter 𝜇𝐹  and standard 

deviation parameter 0.1, namely, 
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𝐹𝑗 = randc𝑗(𝜇𝐹 , 0.1). (4) 

The location parameter 𝜇𝐹 of the Cauchy distribution is 

initially set to 0.5 and subsequently updated at the conclusion 

of each generation: 

𝜇𝐹 = (1 − 𝛿) ⋅ 𝜇𝐹 + 𝛿 ⋅ mean𝐿(𝑆𝐹), (5) 

where 𝛿 is the learning rate 𝑐 ∈ [0,1], 𝑆𝐹 denotes the set of 

all successful mutation factors in the 𝐺-th generation, and 

𝑚𝑒𝑎𝑛𝐿(·) is the Lehmer mean. 

Crossover: A trial vector 𝐮𝑗
𝐺 = [𝑢1,𝑗

𝐺 , 𝑢2,𝑗
𝐺 , 𝑢3,𝑗

𝐺 , 

. . . , 𝑢(2𝑀+2),𝑗
𝐺 ] is determined based on the crossover of the 

parent vector 𝐱𝑗
𝐺 and the mutant vector 𝐦𝑗

𝐺 . The i-th element 

of 𝐮𝑗
𝐺 has a 𝐶𝑟 × 100% chance of getting the value of the 

corresponding element of 𝐦𝑗
𝐺 ; otherwise, it gets the value of 

the i-th element of 𝐱𝑗
𝐺.  

𝑢𝑖,𝑗
𝐺 = {

𝑚𝑖,𝑗
𝐺    if 𝑟𝑎𝑛𝑑(0,1)  ≤  𝐶𝑟,

𝑥𝑖,𝑗
𝐺     otherwise

 (6) 

where 𝐶𝑟 is the crossover probability, which is generated 

based on normal distribution of mean 𝜇𝐶𝑟   and standard 

deviation parameter 0.1, i.e., 

𝐶𝑟𝑗 = randn𝑗(𝜇𝐶𝑟 , 0.1), (7) 

 𝜇𝐶𝑟 = (1 − 𝛿) ⋅ 𝜇𝐶𝑟 + 𝛿 ⋅ mean𝐴(𝑆𝐶𝑟), (8) 

where 𝑆𝐶𝑟  denotes the set of all successful crossover 

probabilities in G-th generation, and 𝑚𝑒𝑎𝑛𝐴(·) is the usual 

arithmetic mean. 

Selection: The fitness value of the trial vector 𝐮𝑗
𝐺is 

compared with one of the parent vector 𝐱𝑗
𝐺. The one with 

worse fitness is eliminated, whereas the remaining one 

survives to the next generation. 

𝐱𝑗
𝐺+1 = {

𝐮𝑗
𝐺   if 𝐹Obj(𝐮𝑗

𝐺) ≤ 𝐹Obj(𝐱𝑗
𝐺),

𝐱𝑗
𝐺   otherwise.

 (9) 

Through these steps, the good individuals are retained in 

the population, whereas the flawed individuals are replaced 

by the better ones (i.e., those with better fitness values). The 

evolution process is repeated, and the population gets better 

and better with each generation. When a predefined 

termination criterion is satisfied, the evolution stops, and the 

individuals of the current generation can be chosen as the 

solution to the optimal problem. 

The self-adaptive nature of the JADE algorithm, while 

offering significant adaptability and optimization 

capabilities, presents certain drawbacks. A primary concern 

is the risk of premature convergence, where the algorithm 

may stop exploring potential solutions too early and settle on 

a suboptimal result. This hinders the identification of better 

solutions that may exist outside the current search area. 

Additionally, the algorithm’s performance can diminish 

in high-dimensional search spaces, which often contain 

multiple local optima. As dimensionality increases, 

maintaining diversity among candidate solutions becomes 

challenging, further exacerbating the likelihood of premature 

convergence. 

To mitigate these issues, it is crucial to incorporate 

strategies that enhance exploration, such as maintaining a 

diverse population of solutions or employing multi-objective 

optimization techniques. 

III. DYNAMIC MODEL 

As shown in Fig. 3, the dynamic model of the beam-base 

system is essential for tuning the input shaping controller. 

This system consists of a flexible beam of length 𝑙, which is 

securely clamped to a translating base with mass 𝑚, as 

illustrated in Fig. 2. beam can be used to modeling the beam. 

In this research, assuming that the beam is both elastic and 

uniform. Furthermore, it is postulated that the cross-sections 

of the beam remain planar and perpendicular to the beam's 

axis following deformation, thereby neglecting shear 

deformations. Consequently, the Euler-Bernoulli beam 

theory is employed for modeling the beam. A payload, also 

with mass 𝑚𝑝, is attached to the tip of the beam. In Fig. 2, 

𝑤(𝑥, 𝑡) represents the transverse vibrations of the beam, 

while 𝑦(𝑡) indicates the position of the base. The mass 

density ρ defines the beam’s properties, Young’s modulus 𝐸, 

the first moment of area 𝐼, and the cross-sectional area 𝐴. The 

system’s kinematic and potential energies and work done can 

be described, respectively, as follows: 

𝐾 =
1

2
𝜌𝐴∫ (𝑦̇ + 𝑤𝑡)

2𝑑𝑥
𝑙

0

+
1

2
𝑀𝑦̇2 +

1

2
𝑚𝑝(𝑦̇ + 𝑤𝑡)

2|𝑥=𝑙 , (10) 

𝑈 =
1

2
∫ 𝑃(𝑥, 𝑡)𝑤𝑥

2𝑑𝑥
𝑙

0

+
1

8
∫ 𝐸𝐴𝑤𝑥

4𝑑𝑥
𝑙

0

+
1

2
∫ 𝐸𝐼𝑤𝑥𝑥

2𝑑𝑥
𝑙

0

, 
(11) 

𝛿𝑊 = 𝑓𝛿𝑦 − 𝑐 ∫ 𝑤𝑡
2𝛿𝑤𝑑𝑥

𝑙

0
, (12) 

where 𝑃(𝑥, 𝑡)  =  𝜌𝐴(𝑙 –  𝑥)𝑔 is the axial force generated by 

the gravitational acceleration 𝑔. In this study, 𝑤𝑡  and 𝑤𝑥 

indicate the partial derivative of 𝑤(𝑥, 𝑡) concerning 𝑡 and 𝑥, 

respectively, whereas 𝑦̇ is the total derivative of 𝑦(𝑡). 

According to Halminton’s principle, 

∫ (𝛿𝐾 − 𝛿𝑈 + 𝛿𝑊)𝑑𝑡
𝑡2
𝑡1

= 0, (13) 

the dynamic model for the considered system can be 

developed as follows 

𝜌𝐴(𝑦̈ + 𝑤𝑡𝑡) + 𝑐𝑤𝑡 − 𝑃𝑥𝑤𝑥 − 𝑃𝑤𝑥𝑥

−
3

2
𝐸𝐴𝑤𝑥𝑥𝑤𝑥

2 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 = 0, (14) 

with boundary conditions: 

𝑤(0, 𝑡) = 0, 
(0, )

0,
w t

x


=


 (15) 
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𝑚𝑝(𝑦̈ + 𝑤𝑡𝑡(𝑙, 𝑡)) + 𝐸𝐴(𝑤𝑥(𝑙, 𝑡))
3/2 − 𝐸𝐼𝑤𝑥𝑥𝑥(𝑙, 𝑡) = 0, (16) 

𝑀𝑦̈ − 𝑐 ∫ 𝑤𝑥𝑑𝑥
𝑙

0

+ 𝐸𝐼𝑤𝑥𝑥𝑥(0, 𝑡) = 𝑓, 
(17) 

IV. NUMERICAL SIMULATIONS 

The objective of this numerical simulation is to verify the 

efficiency of the control system that was developed in the 

previous sections. The control target is to move the payload 

to a desired position yd and minimize its vibration. MATLAB 

is employed to execute simulation. The approximate 

solutions for the equations of motion are determined using 

the finite difference method, wherein the time step is 𝛥𝑡 = 

0.0001, and the space step is 𝛥𝑥 = 0.04. 

The metaheuristic input shaper search scheme shown in 

Fig. 4 is used to determine the amplitude and time location 

vectors of input shapers, i.e.,   

[
𝐴𝐼𝑆

𝑡𝐼𝑆
] = [

𝐴1 𝐴2 𝐴3 𝐴5 𝐴5

0 𝑡2 𝑡3 𝑡4 𝑡5
], (18) 

where the amplitude vector is constrained by condition: 𝐴1  +
 𝐴2  +  𝐴3  +  𝐴4  +  𝐴5  =  1.  

System parameters used in numerical simulation are 

shown in Table I, whereas the parameters for JADE are 

introduced in Table II. It is noted that the individual in the 

JADE algorithm is an 11-dimensional vector, i.e., 

𝐱 = [𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝐾𝑃 , 𝐾𝐷]. (19) 

Fig. 5 illustrates the convergence profile of the seft-

adaptivelf differential evolution method. A minimal value of 

𝐹𝑂𝑏𝑗 is reached by the fitness of 50 individuals in the 

population after 95 generations. The optimum values for 

control parameters, the shaper’s amplitudes, and the time 

location are shown as follows: 

[𝐾𝑃 𝐾𝐷] = [185.16 166.21] (20) 

[𝐴𝐼𝑆 𝑡𝐼𝑆] =

[
 
 
 
 
0.2533 0
0.7093 0.008
0.0095 1.0666
0.0010 1.1171
0.0269 2.0335]

 
 
 
 

. (20) 

Fig. 6 depicts the system response for three scenarios: an 

unshaped command signal, an optimally shaped command, 

and a conventionally shaped command. The conventional 

command utilizes a zero-vibration shaper created based on 

the system's approximate natural frequency and damping 

ratio. The optimal command signal effectively and rapidly 

suppresses residual vibrations in the system, as illustrated in 

Fig. 6. A direct comparison of the response of conventional 

input shaping control with that of the proposed input shaper 

reveals that the latter offers significantly enhanced control 

performance. Additionally, Fig. 7 demonstrates the vibration 

of the payload in detail, whereas Fig. 8 shows the vibration 

along the beam.  

TABLE I.  SYSTEM PARAMETERS 

Parameter Value Unit 

ρ 2700 kg/m3 

E 70×109 N/m2 

A 6×10-5 m2 

I 1.25×10-10 m4 

l 0.4 m 

M 10 kg 

mp 2 kg 

c 0.001 Ns/m 

yd 0.4 m 

TABLE II.  PARAMETERS OF JADE 

Parameter Value 

Dimension of the individual 11 

Population size N 50 

Maximum generation Gmax 100 

Initial value of μF 0.5 

Initial value of μCr 0.5 

Learning rate δ 0.08 
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Fig. 6. Response of the payload position (i.e., 𝑦(𝑡)  +  𝑤(𝑙, 𝑡)) 

The sensitivity analysis has been included in the study. 

The simulation results show that the system remains robust 

despite modeling errors. The controller was developed using 

the model parameters listed in Table I. Even with variations 
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in system parameters, the controller consistently performs 

well in suppressing vibrations. Fig. 9 presents the results for 

actual payload masses of 2, 3, 4, and 5 kg, while the controller 

is based on a payload mass of 2 kg. Additionally, Fig. 10 

illustrates the controller’s robustness when there are errors in 

the material properties of the beam during the modeling 

process. 
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Fig. 7. Vibration of the payload 𝑤(𝑙, 𝑡) 
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Fig. 8. Vibration of the beam 𝑤(𝑥, 𝑡) 
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Fig. 9. Robustness of the proposed controller under the variation of the 

payload mass 

Additionally, a comparison of the effectiveness of the 

proposed controller with a feedback-based controller utilized 

in previous studies [27][14] is conducted. The results 

presented in Fig. 11 indicate that the control performance of 

both controllers is quite similar. While the feedback 

controller demonstrates a slightly improved control 

effectiveness, the proposed control law also exhibits 

commendable performance. Notably, the developed 

controller does not rely on feedback sensors for measuring 

beam deformation when calculating the control force. 

The simulation results underscore the effectiveness of 

JADE in designing input shapers, demonstrating that JADE-

based input shapers can efficiently eliminate unwanted 

vibrations. 
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Fig. 10. Robustness of the proposed controller under the variation of the 

material properties 
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Fig. 11. Comparision of the proposed controller with the feedback control 

While this control solution demands complex 

computational capabilities, which may present challenges for 

its implementation in industrial settings, it is important to 

note that in automated production lines, the structures and 

system parameters generally do not change significantly over 

extended periods. Consequently, it is adequate to employ the 

algorithm for calculating the shapers only during the system's 

calibration phase, thereby alleviating the need for continuous 

complex computations throughout the operational lifetime of 
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the machinery. Furthermore, implementing the proposed 

control method in practical scenarios presents challenges 

such as the need for high-precision sensors, as inaccuracies 

from sensor noise or calibration errors can lead to ineffective 

control decisions and positioning errors. Additionally, 

external disturbances like environmental noise and friction 

can significantly impact control performance and stability. 

V. CONCLUSIONS 

A control scheme for the flexible translating beam with a 

payload was proposed in this paper, which employs the input 

shaping control technique. This work employs a 

metaheuristic input shaper search methodology utilizing a 

self-adaptive differential evolution algorithm, unlike 

traditional input shaping control, which computes input 

shapers based on natural frequency and damping ratio. The 

proposed control technique autonomously identifies the 

optimal input shaper to reduce the position error of the 

payload. The efficacy of the proposed control strategy is 

validated by simulation. The command signal generated by 

the optimal input shapers guarantees that the payload reaches 

the target position while minimizing oscillation rapidly. 

In addition, the proposed control strategy has certain 

limitations related to modeling. While the simulation results 

indicate that the controller is robust against variations in 

model parameters, creating a mathematical model for 

complex systems presents a considerable challenge. 

Moreover, the issue of computational complexity is another 

factor that restricts the practical application of the proposed 

algorithm. 

In the future, experimental research should be conducted 

to validate the robustness of the controller against 

uncertainties encountered during actual operational 

conditions. Additionally, exploring the application of the 

algorithm to more complex systems, such as flexible beams 

with variable lengths, presents another avenue for future 

research. 
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