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Abstract—Accurate angle estimate is crucial for motion 

tracking systems, especially in biomedical applications like 

rehabilitation, prosthesis control, and wearable health 

monitoring. Traditional filters, such as the Kalman filter, 

frequently encounter difficulties with nonlinear noise and 

dynamic variations, hence constraining their resilience. This 

study presents feedforward artificial neural network (ANN) 

models as a highly accurate alternative by utilizing IMU sensor 

data from a gyroscope and accelerometer. The research 

contribution encompasses: (1) the creation of ANN 

architectures of diverse complexity, featuring an innovative 

(4×8) structure with temporal averaging for enhanced noise 

resilience; (2) a simulation-based assessment in comparison to 

the Kalman filter utilizing consistent performance metrics; and 

(3) an evaluation of execution-time viability for embedded 

applications. A dataset including 3,599 samples was acquired 

from an MPU6050 IMU and partitioned into 70% for training, 

15% for validation, and 15% for testing. Model assessment was 

conducted utilizing mean absolute error (MAE) and root mean 

squared error (RMSE). The NN (4×8 + Averaging) model 

produced a minimum MAE of 0.2657 and an RMSE of 0.3691, 

indicating a 68% enhancement compared to the Kalman filter. 

Although compact models (2×4, 2×8) exhibited marginal 

improvements, deeper architectures demonstrated superior 

generalization and resilience, especially during dynamic motion 

phases. These results show that ANN-based estimators offer 

better accuracy and adaptability, making them a good choice for 

real-time biomedical uses. Future research will investigate 

hybrid ANN-Kalman designs and assess their performance 

across diverse motion types, including gait cycles and robotics. 

Keywords—Angle Estimation; Artificial Neural Network 

(ANN); Kalman Filter; Inertial Measurement Unit (IMU); Noise 

Robustness; Real-Time Estimation. 

I. INTRODUCTION 

Precise angle estimate is essential in several engineering 

applications, such as robots, aircraft systems, navigation 

platforms, and biomedical engineering, where accurate 

orientation tracking greatly impacts system performance and 

safety [1]–[3]. Accurate and robust orientation estimation 

techniques, including extended Kalman filters, sensor fusion 

methods, and adaptive controllers, are essential in applications 

such as autonomous drone navigation, indoor localization, and 

aerial robotics, where imprecise estimations may result in 

system instability, navigation errors, or operational failures 

[4]–[9]. These estimation methods were first created for 

robotics and aerospace, but they are now widely used in 

biomedical engineering, especially in robotic-assisted 

surgeries, rehabilitation devices, prosthetic limb orientation, 

and wearable health monitoring systems. This shows how 

useful they are in many engineering fields. 

Traditional techniques for angle measurement frequently 

include inertial sensors, such as gyroscopes and 

accelerometers. These sensors have inherent limitations, 

including drift, susceptibility to high-frequency noise, and 

sensitivity to external disturbances [10]–[12]. A multitude of 

persons have employed sensor fusion systems that integrate 

inertial measuring units (IMUs), vision sensors, and several 

other sensor types to address these challenges. These 

techniques are particularly effective in dynamic 

environments, such as aerial robotics, drone localization, and 

Internet of Things (IoT) applications [13]–[17]. Nevertheless, 

these sensor fusion approaches continue to face challenges, 

particularly with unpredictable dynamics, sensor errors, and 

environmental variations. Several studies [18]–[25] have 

shown that advanced filtering methods, such as Gaussian 

processes, Kalman filters, and complementing filters, make 

signals much more reliable and accurate in these situations. 

These approaches are particularly effective for biomedical 

engineering applications, such as wearable health monitoring, 

gait analysis, and rehabilitation systems that need precise 

angle measurement during human movement and interaction 

with the external environment. 

Sensor fusion methods, like the Kalman Filter (KF) and 

the Complementary Filter (CF), are used in many situations to 

reduce errors caused by sensor limitations. Recent 

improvements highlight its significant relevance, particularly 

in wearable devices for thorough health monitoring, where 

accurate sensor data gathering is crucial for reliable health 

assessments [24]. Research indicates that complementary 

filters are effective in orientation tracking using inertial 

sensors, including full-body motion tracking systems that 

incorporate magnetometer, accelerometer, and gyroscope 

(MARG) detectors [25]. Hybrid filtering methods, including 

bilateral filters, have been employed in several domains, such 

as image processing and recognition, due to their efficacy in 

reducing visual distortions [26]. 
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The Kalman filter employs a probabilistic recursive 

approach and has proven effective in several robotics and 

sensor fusion applications [27]. Innovative methodologies for 

using the filter demonstrate its efficacy in mitigating intricate 

sensor noise and bias [28]. An illustration is the resilient error-

state Kalman filtering utilized for determining the orientation 

of an inertial measurement unit (IMU). A lot of different 

Kalman filter models, dynamic phasor estimates, and 

improvements to Gaussian filtering have been used in 

thorough evaluations, showing that they are useful and 

flexible in nonlinear situations [29]–[31]. There are many 

studies that show the Kalman filter is effective at predicting 

how power systems, robotics, and neuron-based 

autoregressive models will change over time [32]–[34]. While 

SLAM (simultaneous localization and mapping) is important, 

so are factor extraction, robust statistical filtering, and figuring 

out what something is doing in real time when you don't know 

for sure [35]–[38]. Suggested improvements include Extended 

Kalman Filters (EKF), Unscented Kalman Filters (UKF), 

Dual Kalman Filters, and other adaptive Kalman variants 

[39]–[45]. Their strengths and weaknesses in handling 

nonlinear dynamics and non-Gaussian noise have led to the 

development of these methods. These complex methods can 

be used in many areas, such as short-term load forecasting in 

power systems [39], adaptive sliding window methods [40], 

invariant filtering for underwater navigation [41], and 

combining GNSS and INS to improve navigational accuracy 

[42]. To make them work better in dynamic settings, a lot of 

research has been done on advanced Kalman filters that are 

made to deal with parametric uncertainties, nonlinear model 

changes, and measurement errors [43]–[45]. Even though 

these improvements have been made, advanced Kalman-

based filters are still not able to handle sudden changes in 

dynamics and noise fluctuations that were not expected 

because they depend on accurate system modeling. These 

constraints constrain their efficacy in medical applications, 

necessitating real-time and adaptive motion estimation. This 

kind of limitation can be seen in complex biomedical settings, 

as well as in vehicle navigation [46], initial alignment 

problems [47], real-time adaptive learning environments [48], 

environmental hydrological forecasting [49], and strong 

statistical estimation when there are model uncertainties [50]–

[52]. This highlights the necessity for continuous 

advancement in adaptive and model-agnostic estimating 

techniques. 

Recent improvements in estimation and control show that 

we can mix traditional filtering methods with artificial 

intelligence (AI) and machine learning (ML) to manage 

complicated and changing system behaviors. Methods like 

long short-term memory (LSTM) networks, Q-learning, fuzzy 

logic controllers, and Kalman filters have made systems more 

adaptable, leading to better performance in tasks like keeping 

permanent magnet synchronous motor (PMSM), autonomous 

systems, and monitoring the environment in real-time [53]–

[58]. Hybrid methods that combine momentum-based filtering 

with fuzzy control have shown strong performance in tough 

situations, like in aerial robots and assistive technologies such 

as computer-controlled wheelchairs [59], [60]. These findings 

underscore the persistent necessity for enhancements in sensor 

fusion, particularly in fields such as biomedical engineering 

and robotics, where dependability and precision are 

paramount [61]. 

Notwithstanding the progress in filtering and fusion 

techniques, constraints persist. Sudden changes in sensor 

noise, unstable environments, and heavy reliance on models 

continue to weaken the reliability of traditional estimators. 

Additionally, many traditional filters require many changes to 

their settings and can be very demanding on computing 

resources, making them hard to use in situations with limited 

resources. These issues have underscored the increasing 

significance of adaptive, model-agnostic estimating 

frameworks like artificial neural networks (ANNs), which 

provide a robust alternative by facilitating real-time adaptation 

to sensor variability and noise. 

In biomedical applications, inertial measurement unit 

(IMU) sensors have become promising instruments, 

especially for clinical gait analysis. Their mobility, user-

friendliness, and capacity to operate outside laboratory 

settings render them optimal for continuous monitoring [62], 

[63]. At first, research using IMUs showed that they weren't 

excellent at measuring joint angles, especially in movements 

that aren't straightforward, but later studies have indicated that 

they are now more reliable and accurate [64]. A main issue, 

though, is getting the sensors perfectly lined up with the body 

parts, which requires careful setup and mapping of 

movements to a standard reference point [65], [66]. The 

overall performance of the system, including how consistently 

it works for different people and the same person over time, 

heavily depends on excellent calibration methods and 

combining data from multiple sensors [67]–[69]. 

Along with tracking movement, recent studies have 

looked into how IMUs can measure forces and moments in 

joints, like ground reaction forces (GRFs). However, 

calculations based on Newton's laws have limitations during 

times like when both feet are on the ground while walking. 

However, periods such as double support in ambulation 

intrinsically constrain Newtonian-based calculations. 

Machine learning approaches have been employed to infer 

joint dynamics directly from IMU data to solve these 

difficulties [70]–[75]. Previous models concentrated on 

singular components; however, recent methodologies have 

effectively forecasted comprehensive joint angles and forces 

throughout all lower-limb joints [76], [77]. 

Artificial neural networks are especially adept at these 

tasks because of their capacity to represent nonlinear input-

output relationships between IMU data and biomechanical 

parameters. They are often trained on synchronized datasets 

comprising both IMU and 3D motion capture data to 

guarantee anatomical correctness. However, ANN-based 

estimators can be affected by mistakes in how the sensors are 

lined up when making predictions, a problem that might be 

lessened by using different training data that includes various 

alignment situations. Various artificial neural network (ANN) 

designs have been analyzed, including multilayer perceptrons 

(MLPs), convolutional neural networks (CNNs), and 

recurrent neural networks (RNNs), each presenting a distinct 

equilibrium of complexity, data prerequisites, and processing 

demands [78]. 
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Multilayer Perceptrons (MLPs) have been shown to be 

effective for basic regression tasks, offering ease of use and 

low processing requirements [73], [75], [79]. Convolutional 

Neural Networks (CNNs), which were originally made for 

classifying images, have been used in biomechanical time 

series by changing Inertial Measurement Unit (IMU) data into 

two-dimensional images that can work with transfer learning 

systems [72], [80]. Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) models have robust 

temporal learning abilities. However, they need large amounts 

of data and significant computing power, which limits their 

use in embedded systems [63], [79], [81]. 

Conversely, feedforward artificial neural network models 

offer a more efficient option. They are more amenable to 

training, use fewer resources, and are especially appropriate 

for real-time applications where model simplicity and 

inference speed are critical. Unlike deep sequential models 

such as LSTM or complex fuzzy systems, feedforward ANNs 

can give accurate angle estimates in changing situations 

without needing complicated setups or a lot of data 

preparation. As a result, they are a practical and flexible choice 

for analyzing motion using IMUs, particularly in wearable 

health devices and prosthetic limbs that operate under 

everyday conditions. 

The research contribution consists of three components.  

This paper presents feedforward artificial neural network 

models to address the constraints of the Kalman filter in 

dynamic and noisy contexts.  Secondly, the suggested ANN 

models, especially the NN (4×8) model configuration, 

attained a 68% decrease in MAE and a 63% reduction in 

RMSE relative to Kalman filters.  This study introduces an 

adaptive angle estimation system designed for real-time 

applications in prosthetic limb control, wearable health 

monitoring, and balance-assistive robots. The research builds 

on the work of Chotikunnan et al. [61], who looked at Kalman 

and complementary filters for angle estimation but faced 

challenges due to sudden noise changes and nonlinear factors 

in medical settings. The goal is to make angle measurements 

more accurate in both calm and noisy situations, since these 

conditions often cause Kalman-based filters to perform poorly 

when sensor data and noise change quickly. As a result, we 

looked at feedforward artificial neural networks with a (4×8) 

structure, using mean absolute error (MAE) and root mean 

squared error (RMSE) to measure how well they perform. The 

suggested solution addresses current issues without requiring 

extensive datasets or complex membership-function designs, 

facilitating real-time medical applications. This method uses 

noise patterns to build a strong and adaptable way to combine 

sensor data, which is helpful for things like controlling 

prosthetic limbs, monitoring health with wearables, and 

keeping robots balanced. The results show that feedforward 

artificial neural networks work better than traditional filtering 

methods, meaning they are more reliable when sensor 

conditions change. 

 

 

II. RESEARCH METHOD 

This research analyzes the creation and assessment of 

Artificial Neural Network (ANN) models for precise angle 

estimation utilizing inertial sensor data. This study transitions 

from conventional techniques, including the Kalman Filter, 

frequently utilized in previous research (including 

Chotikunnan et al. [61]), to data-driven methodologies. The 

proposed ANN models seek to improve the accuracy of angle 

estimation in noisy environments while ensuring 

computational efficiency for embedded devices. 

Fig. 1 delineates the comprehensive technique 

encompassing sensor design, data acquisition, preprocessing, 

artificial neural network training, and final assessment. The 

procedure starts with the initialization of the MPU6050 at a 

sampling period of 13 milliseconds. During the Preprocessing 

step, data from the gyroscope (𝜔𝑔𝑦𝑟𝑜) and accelerometer 

(𝜃𝐴𝑐𝑐𝑒𝑙𝑒) are utilized to calculate covariance values, perhaps 

employing a moving average window (+Avg). Two principal 

estimation methodologies are employed: a Kalman Filter as a 

benchmark (not illustrated in the flowchart but utilized for 

performance evaluation) and various configurations of 

artificial neural networks (ANNs). The success of the Kalman 

and ANN methods is evaluated by training and testing the 

networks, using metrics such as mean absolute error (MAE), 

root mean squared error (RMSE), and correlation coefficients 

(R-values). The optimal method is determined at the 

conclusion of the pipeline.  

 

Fig. 1. Flowchart of the proposed methodology 
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The utilized sensor platform is the MPU6050, an Inertial 

Measurement Unit (IMU) including a 3-axis gyroscope and a 

3-axis accelerometer. Data are recorded at 13 ms intervals, 

yielding unprocessed angular signals (𝜔𝑔𝑦𝑟𝑜, 𝜃𝐴𝑐𝑐𝑒𝑙𝑒). A 

preprocessing step finds noise patterns by looking at changes 

over time and might use a moving average filter (M=5) to 

reduce sudden noise. The chosen filter size aimed to strike a 

balance between smoothing (about 65 ms delay) and real-time 

responsiveness. The implementation of a 5-point moving 

average (with a 13 ms sampling interval) results in an effective 

delay of around 65 milliseconds, signifying the duration of the 

smoothing window rather than the processing time. Synthetic 

noise injection was not utilized, as the actual sensor data 

exhibited adequate disruption. A total of 3,599 samples were 

collected and allocated in a 70%–15%–15% ratio for training, 

validation, and testing datasets. These attributes are 

subsequently organized as input vectors for the models. This 

phase is essential for capturing real-time sensor variability 

while ensuring minimal latency. 

The basic model uses a feedforward neural network 

structure, improved with the Levenberg–Marquardt (trainlm) 

algorithm, which works well for nonlinear regression tasks. 

Four primary network architectures are employed: (2×4), 

(2×8), (4×4), and (4×8), indicating the quantity of neurons in 

the first and second hidden layers. The utilized activation 

functions are logsig for the initial hidden layer, tansig for the 

subsequent hidden layer, and purelin for the output layer. 

When more smoothing is needed, the study recommends 

adding time-averaged inputs (called +Avg), which reduces 

rapid fluctuations and leads to more reliable predictions. 

Performance metrics such as MAE, RMSE, and R-values 

are employed to evaluate each design. The 4×8 model, without 

averaging, achieves the highest overall correlation coefficient 

(R = 0.99935), indicating remarkable agreement between 

predicted and actual angle targets. Models that use averaging 

handle noise better and adjust well to different situations, 

especially when there are sudden movements; however, they 

experience a slight delay because of the changing window. 

In conjunction with the ANN-based technique, a Kalman 

filter method serves as a comparative benchmark. This filter 

relies on linear-Gaussian assumptions and has adjustable 

settings for process noise (Q) and measurement noise (R), 

which can also be calculated based on changes in the sensors. 

The Kalman filter yields dependable estimates in several 

systems; yet, abrupt noise spikes and complex data might 

diminish its efficacy in real-time biomedical applications. 

Upon data collection, preparation, and model training, the 

final stage involves comparing the outcomes of the Kalman 

filter with the predictions generated by the ANN. Metrics such 

as Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) quantify discrepancies, whereas R-values assess the 

degree of correlation. Metrics like Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) represent 

absolute and squared deviations, respectively, whereas R-

values evaluate correlation. The method further assesses real-

time viability. The (4×8) ANN can process an individual 

sample in around 0.25 ms on microcontroller-class hardware, 

demonstrating its suitability for embedded applications. 

The pipeline shown in Fig. 1 shows that ANN-based 

designs provide a flexible, adjustable, and quick way to 

estimate angles, especially in changing or noisy settings 

common in wearable biomedical devices and robotics. They 

exceed conventional filters like the Kalman Filter in several 

situations, and their versatility, such as including sensor 

covariance or averaging, enhances robust performance among 

real-world sensor disturbances. 

A. Utilization of Gyroscope and Accelerometer in the 

MPU6050 Case Study 

For this research, the MPU6050 sensor module is the main 

source of inertial data used to train and test artificial neural 

network (ANN) models. The MPU6050 is a 6-degree-of-

freedom (6DOF) inertial measurement unit (IMU) that 

combines a 3-axis gyroscope and a 3-axis accelerometer onto 

a small chip. It is economical, easy to calibrate, and 

interoperable with several microcontroller systems via the I2C 

interface. 

 

Fig. 2. MPU6050 

The module's embedded Digital Motion Processor (DMP) 

can concurrently detect angular velocity and acceleration in 

real time. This is achieved using a 16-bit analog-to-digital 

converter (ADC). The gyroscope measures angular velocity 

(𝜔𝑔𝑦𝑟𝑜) up to ±500°/s, whilst the accelerometer records tilt-

related acceleration values up to ±4g. These ranges are 

appropriate for applications requiring moderate to high-speed 

movement, such as balancing robots or wearable tracking 

systems. 

Raw gyroscopic data are transformed into physical values 

by the conventional conversion procedure. 

 

𝜔𝑔𝑦𝑟𝑜 =  
𝐿𝑆𝐵𝑟𝑒𝑎𝑑 − 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (1) 

𝐿𝑆𝐵𝑟𝑒𝑎𝑑  signifies the current sensor measurement, 

𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒  indicates the baseline offset at rest, and 

sensitivity is defined by the sensor's configuration.  

An accelerometer-based tilt estimation derives the angle using 

gravitational acceleration. 

𝜃𝐴𝑐𝑐𝑒𝑙𝑒 =   𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐿𝑆𝐵𝑟𝑒𝑎𝑑 − 𝐿𝑆𝐵𝑍𝑒𝑟𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) (2) 

Angular signals from the MPU6050 that haven't been 

processed are used as inputs for both the basic Kalman filter 

processing and the suggested ANN-based angle estimation 

models. The MPU6050 works reliably in noisy and vibration-

sensitive environments, as shown by tests that simulate shocks 

and surface disturbances. This makes it a good choice for 

building strong machine learning models in embedded 

systems. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1073 

 

Phichitphon Chotikunnan, Enhanced Angle Estimation Using Optimized Artificial Neural Networks with Temporal 

Averaging in IMU-Based Motion Tracking 

B. Kalman Filter as Baseline Model for Angle Estimation 

The Kalman filter acts as a standard for assessing its 

effectiveness compared to ANN-based methods. The filter is 

a recursive method used to determine the state of dynamic 

systems by integrating noisy sensor input across time. It has 

two principal phases: (1) Time Update (Prediction) and (2) 

Measurement Update (Correction). Even though changing Q 

and R helps reduce noise, assuming the system is linear and 

follows a Gaussian pattern can lead to errors in situations that 

are nonlinear or not Gaussian. Moreover, when real-time 

demands are rigorous, the filter's iterative matrix inversions 

must remain computationally feasible, as seen in Fig. 3. 

 

Fig. 3. Process of the Kalman Filter 

The approach utilizes angular velocity data from the 

gyroscope (𝜔𝑔𝑦𝑟𝑜) and angle estimations from the 

accelerometer ((𝜃𝐴𝑐𝑐𝑒𝑙𝑒), received from the MPU6050 inertial 

sensor. The estimate becomes more precise when two critical 

components, process noise covariance (Q) and measurement 

noise covariance (R), derived from signal variance, are 

computed dynamically. This adaptive mechanism enables the 

Kalman filter to react to environmental changes, including 

vibrations or abrupt movements. It is essential to acknowledge 

that the Kalman filter assumes linear system models and 

Gaussian noise distributions. In practical situations 

characterized by highly nonlinear dynamics or non-Gaussian 

noise, performance may deteriorate, necessitating the 

exploration of alternate strategies, such as those based on 

artificial neural networks. 

This document presents the discrete-time formulation of 

the Kalman filter. 

Prediction Step 

𝑥̂𝑘
−

  =  𝐴𝑥̂𝑘−1   +  𝐵𝑢𝑘−1 (3) 

𝑃𝑘
−   =  𝐴𝑃𝑘−1𝐴𝑇   +  𝐵𝑄𝐵𝑇 (4) 

Correction Step  

𝐾𝑘   =   𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 (5) 

𝑥̂𝑘   =   𝑥̂𝑘
−   +  𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) (6) 

𝑃𝑘   =   (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− (7) 

where 𝑥𝑘 represents the expected angle, 𝑢𝑘 = 𝜔𝑔𝑦𝑟𝑜 specifies 

the angular velocity input obtained from the gyroscope, and 

𝑧𝑘 =  𝜃𝐴𝑐𝑐𝑒𝑙𝑒 indicates the angle measurement derived from 

accelerometer data. 

The essential parameters for implementation are specified 

as 𝐴 = 1, 𝐵 = 0.013, 𝑄 = 1 × 10−12,𝑅 = 1 × 10−12, 𝐻 =
1, and 𝐼 = 1. These settings are selected for compatibility 

with real-time embedded applications utilizing the MPU6050 

and Arduino Uno platform. 

Fig. 3 illustrates the formulation of the Kalman filter. 

Furthermore, Fig. 4 presents an improved configuration that 

processes the accelerometer data through an averaging filter 

before it enters the Kalman block. This is implemented to 

reduce transient noise and enhance the stability of the 

estimations. The Kalman filter provides precise angle 

estimations despite variations in noise levels.  

 

Fig. 4. Process of the Kalman Filter 

Figuring out the right values for the Kalman filter settings, 

specifically the process noise covariance (Q) and 

measurement noise covariance (R), is essential for the filter to 

work well. The values are calculated dynamically based on the 

variance of sensor data to represent real-time noise 

characteristics. Q represents the variability of gyroscope 

observations, whereas R shows the variance in accelerometer 

data. This data-driven methodology enables the Kalman filter 

to adjust its assessment of internal uncertainty, thereby 

enhancing the accuracy and dependability of angle estimation 

in dynamic environments. 

The Kalman filter works best with linear models and 

assumes that noise is Gaussian, which makes it less effective 

when there are sudden or very nonlinear changes in sensor 

data. Q and R are initially calculated using previous sensor 

data to establish a baseline. As the system evolves over time, 

particularly at each time step 𝑘<N, the covariance values are 

continuously updated according to the following formulas (8) 

and (9). 

𝐶𝑜𝑣(𝑄) =
1

𝑁 − 1
∑ (𝜔𝑖 − 𝜔̅)2

𝑁

𝑖=1
 (8) 

𝐶𝑜𝑣(𝑅) =
1

𝑁 − 1
∑ (𝜃𝑖 − 𝜃̅)2

𝑁

𝑖=1
 (9) 

This ongoing recalibration guarantees that the Kalman 

filter can adapt to fluctuations in sensor noise over time. This 

capability is essential in practice, as motion and vibration 

patterns are seldom static and may occasionally diverge 

considerably from the linear-Gaussian assumptions that form 

the basis of the Kalman framework. 

C. Artificial Neural Network Models for Angle Estimation 

To improve the precision of angle estimation from noisy 

inertial signals, this study implements several artificial neural 

network (ANN) architectures based on a feedforward neural 

network design. The input dataset consists of four principal 

variables: the angular measurements from the gyroscope 

(𝜃𝑔𝑦𝑟𝑜) and accelerometer (𝜃𝑎𝑐𝑐𝑒𝑙𝑒), and the corresponding 

covariance values from each sensor (𝐶𝑜𝑣𝑔𝑦𝑟𝑜), (𝐶𝑜𝑣𝑎𝑐𝑐𝑒𝑙𝑒). 

These input signals are concatenated into a feature matrix Ι ∈
 ℝ1×𝑁, where 𝑁 is the number of time samples. The target 

output T ∈  ℝ1×𝑁 corresponds to the ground-truth angle used 

for supervised learning. 
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Each ANN is structured with three layers: two hidden 

layers with nonlinear activation functions, log-sigmoid 

(logsig) and tan-sigmoid (tansig), and a final output layer with 

a linear activation function (purelin). The network function 

can be mathematically expressed as 

𝑦̂ = 𝑓3(𝑊3 ∙ 𝑓2(𝑊2 ∙ 𝑓1(𝑊1 ∙ 𝐼 + 𝑏1) + 𝑏2) + 𝑏3) (10) 

Where 𝑦̂ is the predicted angle output obtained from the neural 

network, 𝑊𝑖 and 𝑏𝑖 represent the weight matrices and bias 

vectors of layer 𝑖, respectively, and 𝑓1 = 𝑙𝑜𝑔𝑠𝑖𝑔, 𝑓2 =
𝑡𝑎𝑛𝑠𝑖𝑔, 𝑓3 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 are  the activation functions used at 

each corresponding layer, enabling the network to map input 

data to the desired angle estimation through nonlinear 

transformations and linear output scaling. 

The Levenberg–Marquardt (trainlm) optimization 

technique, a second-order approach, is employed for training, 

particularly effective for smaller datasets in nonlinear least-

squares situations. Even though the Levenberg–Marquardt 

method converges quickly, it can use a lot of memory and may 

overfit when the dataset is too small, so it's important to 

validate the results to reduce this risk. The training parameters 

include a maximum epoch count of 2000 and a performance 

goal of mean squared error (MSE) = 1 × 10⁻¹², ensuring 

convergence toward a highly accurate model. 

Four primary architectures are designed: (2×4), (2×8), 

(4×4), and (4×8), indicating the number of neurons in the first 

and second hidden layers, respectively. These architectures 

are visually represented in Fig. 5 and Fig. 6, where Fig. 5 

shows the basic ANN model with two inputs (𝜃𝑔𝑦𝑟𝑜 and 

𝜃𝑎𝑐𝑐𝑒𝑙𝑒) and Fig. 6 illustrates the extended model that includes 

four inputs by incorporating the covariance values of both 

sensors. This expansion from two to four inputs enables the 

network to account not only for the raw angle measurements 

but also for the uncertainty associated with each sensor, 

thereby enhancing its robustness in noisy conditions. These 

configurations are systematically evaluated to assess how 

network depth and width affect regression accuracy in the 

presence of sensor noise. Notably, the (4×8) architecture 

achieves the highest regression performance, with an overall 

correlation coefficient of R = 0.99935, highlighting its 

superior ability to model complex nonlinear relationships 

among the input signals. 

 

Fig. 5. Basic ANN Model with Angular Inputs from Gyroscope and 

Accelerometer 

 

Fig. 6. Extended ANN Model Including Covariance Inputs for Sensor 

Fusion 

Additionally, the study proposes an extended set of 

architectures that include temporal averaging of each input 

feature (i.e., moving average over a sliding window). These 

are denoted as (2×4+Avg), (2×8+Avg), (4×4+Avg), and 

(4×8+Avg). The averaged inputs provide smoothed versions 

of the raw data, reducing high-frequency fluctuations and 

improving robustness to transient disturbances. Formally, the 

moving average input for signal 𝑥 at time 𝑘 is computed as 

𝑥𝑎𝑣𝑔(𝑘) =  
1

𝑀
 ∑ 𝑥(𝑖)

𝐾

𝑖=𝑘−𝑀+1

 (11) 

Where 𝑀 = 5, which balances smoothing efficiency with a 

latency of around 65 ms and real-time responsiveness. 

Integrating these characteristics increases the input dimension 

to five or more, dependent upon implementation. 

A total of 3,599 sensor samples were gathered at 13 ms 

intervals and allocated into 70% for training, 15% for 

validation, and 15% for testing. No synthetic noise was used, 

as the authentic sensor data exhibited adequate disruption. 

Empirical investigation indicates that models with averaged 

characteristics exhibit superior generalization during testing, 

especially in dynamic or non-stationary motion 

circumstances. This discovery indicates that the ANN can 

learn static correlations and adapt to temporal sensor activity, 

essential for real-time motion tracking. Initial real-time 

evaluations on a microcontroller-class system demonstrate 

that the (4×8) model can process a single sample in around 

0.25 ms, indicating its viability for embedded biomedical or 

robotic applications. 

Overall, these ANN models establish a practical and 

scalable solution for angle estimation tasks in embedded 

systems, especially where conventional filters such as Kalman 

or complementary filters may be limited. 

Summary of ANN Architectures Table I outlines the 

primary ANN configurations assessed, employing the 

optional temporal averaging method (+Avg).  The symbol 

“(m×n)” signifies m neurons in the first hidden layer and n 

neurons in the second hidden layer.  The “+Avg” versions 

employ a moving average with a window size of M = 5 for all 

inputs before their transmission to the network. 

TABLE I. SUMMARY OF ANN ARCHITECTURES AND ADDITIONAL 

PARAMETERS 

Architecture 
Hidden Layer 

1 

(neurons) 

Hidden Layer 
2 

(neurons) 

Averaging 

(M=5) 

NN (2×4) 2 4 No 

NN (2×8) 2 8 No 

NN (4×4) 4 4 No 

NN (4×8) 4 8 No 

NN (2×4+Avg) 2 4 Yes 

NN (2×8+Avg) 2 8 Yes 

NN (4×4+Avg) 4 4 Yes 

NN (4×8+Avg) 4 8 Yes 

III. RESULTS AND DISCUSSION 

This part talks about the results of the artificial neural 

network (ANN)-based angle estimation system and compares 
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them to the results of the traditional Kalman filter method. The 

efficacy of several ANN designs is evaluated for accuracy and 

noise resilience. The preprocessing techniques and noise 

characteristics of gyroscope and accelerometer data are 

evaluated as well. 

Fig. 7 depicts the mechanical apparatus employed for 

angle measurement. The configuration guarantees precise data 

collection through regulated rotating motions. A steady 

support secures the IMU sensor to mitigate undesirable 

interferences. The data acquired from this configuration 

underpins the training and evaluation of the ANN models. 

Nevertheless, the generalizability of these discoveries to 

intricate, real-world scenarios may be restricted by the 

controlled character of the experimental setup. 

Due to the limitations of Kalman filtering in addressing 

nonlinear noise fluctuations, ANN models were investigated 

as a substitute method for angle estimation. This investigation 

includes signal preprocessing, ANN training, and 

performance evaluation in contrast to conventional filtering 

methods. The results illustrate the efficacy of neural networks 

in enhancing the precision of estimation and mitigating sensor 

noise. The subsequent sections provide a critical analysis of 

the computational considerations, practical implications, and 

model trade. 

 

Fig. 7. Experimental Setup for Angular Measurement Using IMU Sensors 

A. Signal Analysis and Noise Characteristics 

This section looks at the noise patterns and signal features 

of accelerometer and gyroscope data, which are important for 

training and evaluating the ANN in predicting angles. The 

datasets comprise raw angle values from the gyroscope and 

accelerometer, along with a reference signal denoting the real 

angle, as seen in Fig. 8 and Fig. 9. The datasets were carefully 

divided into training (70%), validation (15%), and testing 

(15%) subsets to ensure thorough ANN training and unbiased 

performance assessment.  Five variables provide the principal 

inputs of the neural network: the reference angle, the 

gyroscope angle, the accelerometer angle, the gyroscope 

covariance, and the accelerometer covariance. The gyroscope 

and accelerometer angles yield orientation measurements, 

while the covariance values reveal the uncertainty and noise 

characteristics of each sensor. 

In contrast to the more steady gyroscope signals, 

accelerometer readings exhibit greater fluctuation, 

particularly during motion transitions, as seen by a study of 

the raw signals. Analyzing the noise covariance graphs 

clarifies the volatility. The accelerometer displays distinct 

pulses, signifying its sensitivity to external forces and 

motions. The gyroscope has little and consistent covariance, 

signifying enhanced dependability during uniform motion 

conditions. Temporal drift compromises the gyroscope's 

stability over time. The problem highlights the need for fusion 

systems that combine the benefits of both sensors and a fusion 

approach for the effective integration of sensor data. Fig. 8 

illustrates the training phase, whereas Fig. 9 depicts the 

evaluation phase. Both demonstrate the effect of noise on the 

raw sensor data. The variance plots demonstrate the need to 

incorporate these properties during training to provide reliable 

performance under diverse signal conditions.      

 
Fig. 8. Training Dataset for ANN: Gyroscope, Accelerometer, and 

Reference Angle Signals 

 

Fig. 9. Testing Dataset for ANN: Gyroscope, Accelerometer, and Reference 

Angle Signals 
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A fusion model was created employing artificial neural 

networks and various feedforward architectures to 

amalgamate sensor data, as seen in Fig. 10.  The selected 

architectures (2×4, 2×8, 4×4, 4×8) provide a systematic 

assessment of the model's performance across different 

difficulties. Each neural networks consists of three layers 

utilizing nonlinear activation functions (logsig and tansig) in 

combination with a linear output layer. The chosen 

architectural changes are meant to see what happens to the 

model's ability to predict angles when things aren't going as 

planned when the hidden layer complexity changes.  

 

Fig. 10. ANN-Based Sensor Fusion Architectures for IMU Angle Estimation 

Fig. 11 to Fig. 14 demonstrate the effectiveness of each 

ANN construction in regression tasks. Four subplots within 

each image depict the outcomes of training, validation, testing, 

and total regression. The graphs depict the anticipated output 

(calculated angle) with the actual data (target angle), in 

addition to a fitted linear regression line. The correlation 

coefficient (R-value) is a crucial performance metric in these 

diagrams, since it measures the linear connection between 

expected and actual outcomes. Estimates with values 

approaching 1 demonstrate more accuracy. 

The feedforward neural networks with a (2×4) 

architecture, as seen in Fig. 11, achieved an R-value of 

0.99704 for training, 0.99675 for validation, 0.9967 for 

testing, and an overall R-value of 0.99695. In many data 

contexts, these outcomes provide strong predictive accuracy 

with negligible variance. 

The (2×8) design works because the regression results are 

better across all subgroups (0.99746 for training, 0.99743 for 

validation, 0.99731 for testing, and 0.99743 overall) (Fig. 12). 

The augmentation of neurons in the second layer enhanced 

learning and generalization. This resulted in improved angle 

calculations for both known and unknown data. 

The (4×4) configuration depicted in Fig. 13 achieved an 

outstanding R-value of 0.99755 for training and 0.99752 

overall, with both validation and testing values at 0.99745. 

This design proposes a configuration that achieves an ideal 

equilibrium between computational complexity and depth. 

This diminishes the likelihood of overfitting and improves 

predictive accuracy. 

The regression performance of the (4×8) design, seen in 

Fig. 14, is ideal, with R-values of 0.99934 for training, 

0.99935 for validation, and 0.99935 overall. The documented 

R-value diminishes somewhat to 0.99337. Notwithstanding a 

little reduction in generalization, the model exhibits 

exceptional performance throughout both training and 

validation. This may result from overfitting or heightened 

sensitivity to variations in the test data. 

The R-values rise from Fig. 11 to Fig. 14. By adding more 

neurons and input dimensions, the network may be better able 

to figure out complex, nonlinear connections between random 

sensor outputs and reference angles. The regression results 

show that the ANN model works well and is right for systems 

that need to accurately integrate sensors and estimate angles 

in real time.  

 

Fig. 11. Regression Performance of Feedforward Neural Network with 2×4 

Architecture 

 

Fig. 12. Regression Performance of Feedforward Neural Network with 2×8 

Architecture 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1077 

 

Phichitphon Chotikunnan, Enhanced Angle Estimation Using Optimized Artificial Neural Networks with Temporal 

Averaging in IMU-Based Motion Tracking 

 

Fig. 13. Regression Performance of Feedforward Neural Network with 4×4 

Architecture 

 

Fig. 14. Regression Performance of Feedforward Neural Network with 4×8 

Architecture 

B. ANN Output Comparison for Small Network 

Architectures 

This section evaluates the effectiveness of artificial neural 

networks with simplified topologies.  The estimation results 

utilizing ANN models with two hidden layers and diverse 

neuron topologies are presented in Fig. 15, Fig. 16, and Fig. 

17. The results demonstrate that both models surpass the 

Kalman filter by diminishing noise and more adeptly 

capturing motion dynamics, while the averaging technique 

also improves stability. 

Notwithstanding commendable overall performance, 

smaller ANN structures (2×4, 2×8) can fall short in accurately 

capturing swift beginning motion dynamics in comparison to 

the Kalman filter.  Nonetheless, ANN models ultimately align 

more closely with the reference line over time, signifying 

enhanced adaptability to various motion patterns. 

Fig. 15 presents a comprehensive comparison of Kalman 

filtering and neural network models with two hidden layers 

(2×4, 2×8). The results indicate that while the Kalman filter 

efficiently mitigates noise, neural networks provide a more 

reliable and accurate prediction over time, particularly during 

dynamic transitions. 

Fig. 16 provides a comprehensive analysis of the first 

motion phase, concentrating on the duration from 2 to 10 

seconds. Initially, the Kalman filter has higher performance 

relative to the neural networks since it responds more rapidly 

to early oscillations. Over time, the neural network models 

increasingly converge toward the intended reference line. This 

indicates that they can acquire knowledge and adjust to 

various motion patterns more effectively than the Kalman 

filter.  

Fig. 17 illustrates the steady-state transition phase 

happening between 30 and 40 seconds. At this juncture, neural 

networks emerge as the superior choice due to their ability to 

maintain a more consistent trajectory with less departure from 

the reference angle. The Kalman filter, while effective in noise 

reduction, has considerable inaccuracies, particularly during 

transitional periods. The neural network models demonstrate 

increased adaptability, consistently aligning with the expected 

values. 

Compared to Kalman filtering, the results show that neural 

networks are a more reliable and accurate way to estimate 

angles, especially when there are big changes in motion and 

noise. Averaging algorithms enhance the stability of neural 

network predictions, making them very suitable for practical 

applications. 

 

Fig. 15. Full-Time Comparison of Kalman Filter and Neural Networks (2×4, 

2×8) for Angle Estimation 
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Fig. 16. Zoomed-in Analysis (2s-10s): Initial Motion Phase with NN (2×4, 

2×8) and Kalman Filter 

 

Fig. 17. Zoomed-in Analysis (30s-40s): Steady-State Transition with NN 

(2×4, 2×8) and Kalman Filter 

C. ANN Output Comparison for Larger Network 

Architectures 

Artificial neural network architectures with larger hidden 

layers (4×4, 4×8) provide improved estimation accuracy, as 

seen in Fig. 18, Fig. 19, and Fig. 20. Augmented neural 

networks improve robustness by stabilizing predictions and 

reducing estimation error in both static and dynamic 

environments. However, increased model complexity results 

in greater computation requirements that must be carefully 

assessed in real-time embedded system applications. 

The neural network model (4×8 with averaging) 

effectively reduces angle errors caused by noisy inputs, 

resulting in accurate angle predictions. However, it's 

important to note that averaging adds a slight delay of about 

65 milliseconds to processing time. It is essential to 

acknowledge that averaging incurs a little delay in processing 

time, around 65 milliseconds. Despite its advantages, the little 

processing delay caused by averaging (~65 ms) must be 

acknowledged. 

The full-time comparison of Kalman filtering and neural 

network models with four hidden layers (4x4, 4x8) is shown 

in Fig. 18. The results show that larger neural networks are 

always better than the Kalman filter, especially when it comes 

to getting rid of signal noise and keeping smooth transitions. 

 

Fig. 18. Full-Time Comparison of Kalman Filter and Neural Networks (4×4, 

4×8) for Angle Estimation 

The initial motion phase is comprehensively examined in 

Fig. 19, with a particular emphasis on the period extending 

from 2 to 10 seconds. As evidenced by the results, the neural 

network (4×8) and neural network (4×8 plus averaging) 

models demonstrate superior stability in the presence of rapid 

motion changes. In contrast to the Kalman filter, which 

displays moderate oscillations, the larger ANN models 

effectively monitor the reference trajectory while suppressing 

undesirable fluctuations. 

Fig. 20 illustrates the steady-state transition phase, which 

has a duration of 30 to 40 seconds. The neural network (4×8 

plus averaging) model is very good at reducing the angular 

disturbances caused by high-noise signals. In addition to 

guaranteeing high accuracy and preventing abrupt deviations, 

the averaging technique further smoothes the approximated 

angles. In comparison to other models, the NN (4×8 + 

Averaging) model approach is particularly well-suited for 

applications that necessitate precision angle surveillance, as it 

offers a more refined estimation. 
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These results show that adding more complexity to ANN 

models makes them much more useful in changing 

environments, especially when they are combined with 

techniques for averaging. The NN (4×8 + averaging) model is 

very strong; it can reduce noise-induced angle deviations 

better than both the standard Kalman filter and less-

sophisticated ANN configurations. 

 

Fig. 19. Zoomed-in Analysis (2s-10s): Initial Motion Phase with NN (4×4, 

4×8) and Kalman Filter 

 

Fig. 20. Zoomed-in Analysis (30s-40s): Steady-State Transition with NN 

(4×4, 4×8) and Kalman Filter 

D. Error Metrics Comparison 

Estimation strategies were evaluated quantitatively using 

mean absolute error (MAE) and root mean squared error 

(RMSE). Table II summarizes the results, demonstrating the 

superior accuracy of all ANN models relative to the Kalman 

filter. The NN (4×8 + Averaging) model had the lowest MAE 

(0.2657) and RMSE (0.3691).  

TABLE II. ERROR METRICS COMPARISON 

Method MAE RMSE 

Kalman Filter 0.8354 1.0055 

NN (2x4) 0.5125 0.681 

NN (2x8) 0.5915 0.7397 

NN (4x4) 0.4411 0.5901 

NN (4x8) 0.2849 0.4112 

NN (2x4+Avg) 0.5105 0.6773 

NN (2x8+Avg) 0.5878 0.7335 

NN (4x4+Avg) 0.4307 0.5672 

NN (4x8+Avg) 0.2657 0.3691 

 

The NN (4×8 + Averaging) model has outstanding 

predictive ability, with a minimum MAE of 0.2657 and an 

RMSE of 0.3691. This means that making the model more 

complicated lowers the effects of noise on variations, which 

improves the accuracy of estimates, especially when used with 

an averaging method. 

The results indicate that neural networks offer 

significantly enhanced accuracy, although Kalman filtering 

continues to be a fundamental approach. The superiority of 

models with larger hidden layers (4×8) over those with 

smaller configurations (2×4, 2×8) underscores the 

significance of neural networks depth in enhancing angle 

estimation. Averaging methods consistently decrease errors 

across diverse ANN configurations.  

The findings indicate that deep learning methods provide 

a reliable substitute for conventional filtering techniques, 

particularly in situations where sensor noise poses a 

constraint. The NN (4×8 + Averaging) model did very well, 

showing that ANN topologies can be changed to lower noise 

and improve real-time angle estimation.    

E. Discussion on ANN Advantages and Future 

Improvements 

The findings unequivocally indicate that artificial neural 

networks (ANNs) much surpass conventional Kalman filters, 

especially in dynamic or high-noise environments. Kalman 

filters depend on linear assumptions and established noise 

models, but artificial neural networks may adjust to 

nonlinearities and sensor uncertainties via learnt 

representations. This capability enhances the robustness of 

ANNs in situations with intricate motion dynamics. 

However, ANN models pose practical challenges, 

particularly in real-time embedded systems that face 

constraints in processor power, memory, and energy 

consumption. The NN (4×8 averaging) methodology, while 

precise, necessitates around 0.25 milliseconds per sample on 

microcontroller-class hardware. This delay is permissible in 

several real-time systems but may remain a limitation in ultra-

low-power biomedical equipment. 
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Future research should explore hybrid methodologies that 

integrate ANN models with Kalman filters in either cascaded 

or parallel configurations to address these problems. An 

artificial neural network (ANN) may be employed for noise 

modeling or prediction, whereas a Kalman filter is utilized for 

real-time correction. These hybrid systems can offer the 

flexibility and adaptability of artificial neural networks in 

conjunction with the speed and reliability of traditional filters. 

Furthermore, the generalizability of ANN models must be 

corroborated using a broader range of datasets. Recent tests 

were performed under regulated rotation utilizing a singular 

IMU sensor. Testing these models in real-life situations, such 

as different walking styles, fall detection scenarios, and 

unpredictable movement settings, will improve how we 

measure their strength and reliability. 

Methods like as transfer learning, online learning, and 

network pruning can diminish training overhead and resource 

consumption, enhancing the practicality of deploying ANN 

models. Researchers may investigate sophisticated designs 

such as recurrent neural networks (RNNs) or transformer-

based models to improve sequential motion tracking and 

temporal forecasting. 

The proposed ANN-based models are very adaptable, 

reliable, and accurate, making them highly suitable for using 

IMUs in tracking movement for health monitoring, self-

driving systems, and robotics that operate in real-time. Future 

endeavors must confront limits of scalability, dataset variety, 

and hardware feasibility to guarantee wider use in actual 

systems.  

IV. CONCLUSION 

This research demonstrated the effectiveness of artificial 

neural networks (ANNs) in accurately calculating angles 

using inertial measurement unit (IMU) data. The suggested 

ANN models did much better than the old Kalman filter, 

particularly when using bigger network designs and averaging 

over time. The neural network (4×8 + averaging) achieved the 

lowest error rates, exhibiting enhanced stability and 

robustness in handling noisy and dynamic conditions. These 

discoveries are very relevant to biomedical engineering 

(BME), particularly in gait analysis, prosthetic limb 

management, rehabilitation robots, and wearable health 

monitoring systems. Accurate angle measurements improve 

motion tracking, posture assessments, and real-time feedback, 

hence increasing patient care and assistive technology. Even 

though the ANN approach has many benefits, it needs a lot of 

computing power and takes a long time to train, which makes 

it difficult to use in real-time medical devices. Future research 

ought to concentrate on addressing these issues by developing 

systems that operate efficiently with constrained resources, 

employing a combination of various filtering techniques (such 

as integrating artificial neural networks with Kalman filters), 

and investigating more sophisticated deep learning 

architectures (including recurrent neural networks or 

transformer models). In summary, using ANN for angle 

estimation is a better option than traditional filtering methods 

because it shows better accuracy, is less affected by 

interference, and has potential uses in biology and 

engineering. Addressing computational and data-related 

limitations through targeted future research will enhance the 

use and effectiveness of ANN techniques in real-world 

applications. 
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