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Abstract—This paper illustrates a proportional-integral-

derivative based neural network (PID-NN) controller to 

manipulate the angular position of the two-link robot 

considering the load variation on the system. The two-link robot 

system's dynamic equations were derived using the Lagrange 

method. To improve the tuning process of the design coefficients 

of the controller, the learning process was framed as an 

optimization task. Subsequently, to determine the optimal 

weight values, the honey badger algorithm (HBA) was 

introduced. To analyze how well the proposed controller 

performs, Simulations in MATLAB were carried out to 

compare the PID-NN controller against a PI-PD controller. The 

findings revealed superior performance of the PID-NN 

controller in standard conditions. Furthermore, the PID-NN 

demonstrated a substantial enhancement when a load variation 

was augmented. 

Keywords—Robotic Manipulators; Neural Network 

Controller; PID Controller; PI-PD; Honey Badger Algorithm. 

I. INTRODUCTION 

A key element of the current manufacturing sector is the 

two-link robot arm system [1]. Furthermore, people who have 

trouble doing physical tasks can benefit from the medical use 

of robotic arms [2]. Such multi-input multi-output (MIMO) 

system is strongly linked, nonlinear, and has time-dependent 

behaviors. The uncertainties brought on by the unknown 

loads that the robot arm must manage (such as pick and place 

jobs) are one of the main obstacles to using the robot arm 

structure with two connections [3]. Regarding control design, 

the two-link robot arm system is a double pendulum system, 

where the Lagrange equation can be used to determine the 

equation of motion [4]. In addition to its complicated 

nonlinear framework, the two-link robot arms model can be 

utilised as a reference framework for evaluating and testing 

numerous control techniques [5].  

In particular, Guechi et al. compared the performance of 

two distinct control strategies—Linear Quadratic (LQ) 

control and Model Predictive Control (MPC)after applying 

feedback linearization to a two-link robotic arm [6]. It has 

been noted that the MPC control strategy performs better than 

the LQ control approach. Similarly, Mohammed and Eltayeb 

[5] explored how dependable Sliding Mode Control (SMC) 

is when compared to a conventional PID-based approach. 

The results of this investigation showed that the SMC's 

performance is more robust and responds more quickly than 

the PID controllers. However, SMC discovered a superior 

control signal. The fuzzy logic controller (FLC) was used by 

[2] as an alternate control method. A robust PID controller 

was proposed by Baccouch and Dodds [1]. Bendimrad [7] 

recently presented an SMC method for two-link robot arm 

control. Long et al. [8] introduced a dynamic framework PID 

control technique for the two-link robotic arm system, 

utilizing the robustness of the SMC and the straightforward 

structure of the PID. The results demonstrate that the 

suggested strategy maintained the same steady-state accuracy 

while increasing the rate of convergence by over 80% when 

compared to the traditional PID control method. Shen [9] 

suggested a Fuzzy Neural Network (FNN) controller as an 

intelligence controller. The provided control design 

parameters have been optimised using the backpropagation 

(BP) approach and particle swarm optimisation (PSO). 

Applying the control structure, the research findings illustrate 

that the system has outstanding detecting efficiency, 

adaptability, and robustness. 

Unlike previous studies, this research combines two 

advanced control methods for the two-link robotic system: a 

neural network governed by PID logic and a PI–PD scheme 

that separates integral and derivative actions. The PID-NN 

and PI-PD controllers can be thought of as upgraded versions 

of the classical PID controller. Different swarm optimization 

techniques have been presented in the literature to obtain an 

optimal performance of the controllers, as compared to 

finding the accurate value of each controller modified 

configurations by trail and error. The ability to solve 

multivariate, high-dimensional engineering problems has 

significantly improved because to swarm optimization 

techniques, which are very simple to use [10]–[23]. In order 

to adjust the two controllers according to the error 

performance index, this work presents the honey badger 

algorithm (HBA). 

This paper subsequently is divided into several sections: 

Section 2 defines the basic concept of the two-link robotic 

arm system. Section 3 reviews the suggested control methods, 

and Section 4 provides details on the Honey Badger 

Optimization technique. Section 5 analyzes and discusses the 

simulation outcomes. Finally, Section 6 provides concluding 

remarks and findings. 
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II. MATHEMATICAL MODEL 

This section covers in-depth description of the two-link 

robot technique mathematical structure. The system can be 

simplified to a dual pendulum containing two masses, as 

shown in Fig. 1, 𝑀1 and 𝑀2, coupled by two rigid, weightless 

rods of lengths, 𝐿1 and 𝐿2 [1]. The angle that rotates around 

the origin (𝜃1) and the angle that rotates at the first 

pendulum's endpoint (𝜃2) indicate the two degrees of 

freedom of the two-link robot arm method. The couple input 

torques (𝜏1 and 𝜏2) control the two angles (𝜃1 and 𝜃2), which 

are the system's outputs [1]. 

One needs to initially identify the system Kinetic Energy 

(KE) and Potential Energy (PE) to be able to execute the 

Lagrangian approach to formulate the models of motion. This 

fundamental step in Lagrangian mechanics requires precise 

determination of these energy components before 

establishing the dynamic equations. 

For the first mass, the equation of the mass in x direction 

and y direction is given by: 

𝑥1 = 𝐿1𝑐𝑜𝑠 (𝜃1) (1) 

𝑦1 = 𝐿1𝑠𝑖𝑛 (𝜃1) (2) 

For the second mass, the equation of the mass 

in 𝑥 direction and y direction is presented by: 

𝑥2 = 𝐿1 𝑐𝑜𝑠(𝜃1) + 𝐿2𝑐𝑜𝑠 (𝜃2) (3) 

𝑦2 = 𝐿1 𝑠𝑖𝑛(𝜃1) + 𝐿2𝑠𝑖𝑛 (𝜃2) (4) 

The rate of motion of the two masses is given by: 

𝑣1 = √�̇�1² + �̇�1²  (5) 

𝑣2 = √�̇�2² + �̇�2²  (6) 

where: 

�̇�1 = −𝐿1�̇�1𝑠𝑖𝑛 (𝜃1) (7) 

�̇�1 = 𝐿1�̇�1𝑐𝑜𝑠 (𝜃1) (8) 

�̇�2 = −𝐿1�̇�1 𝑠𝑖𝑛(𝜃1) − 𝐿2�̇�2𝑠𝑖𝑛 (𝜃2) (9) 

�̇�2 = 𝐿1�̇�1 𝑐𝑜𝑠(𝜃1) + 𝐿2�̇�2𝑐𝑜𝑠 (𝜃2) (10) 

The Lagrangian equation is presented by: 

𝐿 = 𝐾𝐸 − 𝑃𝐸 (11) 

The kinematic energy of the system can be obtained as 

follows: 

𝐾𝐸 =
1

2
 𝑀1𝑣1 +

1

2
 𝑀2𝑣2 (12) 

Substitute 𝑣1 and 𝑣2 as given in Eq. (5) and Eq. (6) 

respectively yields: 

𝐾𝐸 =
1

2
 𝑀1 (�̇�1

2 + �̇�1
2) +

1

2
 𝑀2 (�̇�2

2 + �̇�2
2) (13) 

 

Fig. 1. Double-link robot arm framework 

Substitute �̇�1, �̇�1, �̇�2 and �̇�2 as given in Eqs. (7) – (10), the 

KE can be rewritten as:   

𝐾𝐸 =
1

2
 𝑀1  ((−𝐿1�̇�1 𝑠𝑖𝑛(𝜃1))

2
+ (𝐿1�̇�1 𝑐𝑜𝑠(𝜃1))

2
 )

+
1

2
 𝑀2  ((−𝐿1�̇�1 𝑠𝑖𝑛(𝜃1)

− 𝐿2�̇�2 𝑠𝑖𝑛(𝜃2))
2

+ (𝐿1�̇�1 𝑐𝑜𝑠(𝜃1)

+ 𝐿2�̇�2 𝑐𝑜𝑠(𝜃2))
2

) 

(14) 

Eq. (14) can be rearranged as follows:  

𝐾𝐸 =
1

2
 (𝑀1 + 𝑀2)𝐿1

2�̇�1
2

+
1

2
 𝑀2𝐿2

2�̇�2
2

+ 𝑀2𝐿1𝐿2�̇�1�̇�2 𝑐𝑜𝑠( 𝜃1 − 𝜃2) 

(15) 

The following explains the potential energy: 

𝑃𝐸 = 𝑀1𝑔 𝑦1 + 𝑀2𝑔 𝑦2 (16) 

Substitute y1 and y2 as given in Eq. (2) and Eq. (4) 

respectively obtains: 

𝑃𝐸 = 𝑀1𝑔 (𝐿1𝑠𝑖𝑛 (𝜃1) ) + 𝑀2𝑔 (𝐿1 𝑠𝑖𝑛(𝜃1) + 𝐿2𝑠𝑖𝑛 (𝜃2)) (17) 

Eq. (17) can be simplified as: 

𝑃𝐸 = (𝑀1 + 𝑀2) 𝑔𝐿1 𝑠𝑖𝑛(𝜃1) + 𝑀2𝑔𝐿2 𝑠𝑖𝑛(𝜃2) (18) 

Substitute Eq. (15) and Eq. (18) into Eq. (11) 

𝐿 = (
1

2
 𝑀1  ((−𝐿1�̇�1 𝑠𝑖𝑛(𝜃1))

2
+ (𝐿1�̇�1 𝑐𝑜𝑠(𝜃1))

2
 )

+
1

2
 𝑀2  ((−𝐿1�̇�1 𝑠𝑖𝑛(𝜃1)

− 𝐿2�̇�2 𝑠𝑖𝑛(𝜃2))
2

+ (𝐿1�̇�1 𝑐𝑜𝑠(𝜃1) + 𝐿2�̇�2 𝑐𝑜𝑠(𝜃2))
2
))

− ((𝑀1 + 𝑀2) 𝑔𝐿1 𝑠𝑖𝑛(𝜃1)
+ 𝑀2𝑔𝐿2 𝑠𝑖𝑛(𝜃2)) 

(19) 

The following is the outcome to the Euler-Lagrange 

formula: 

d

dt
 [∂L/ ∂θ̇i] −

∂L

∂θi

= τi, i = 1,2 (20) 

The partial derivatives of Eq. (20) 𝑤. 𝑟. 𝑡  𝑡𝑜 𝑖 = 1 obtains: 

𝜕𝐿

𝜕�̇�1

=  (𝑀1 + 𝑀2) 𝐿1
2�̇�1 + 𝑀2 𝐿1𝐿2 �̇�2 𝑐𝑜𝑠( 𝜃1 − 𝜃2) (21) 
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𝜕𝐿

𝜕𝜃1
= − 𝑀2 𝐿1𝐿2�̇�1 �̇�2 𝑠𝑖𝑛( 𝜃1 − 𝜃2) − (𝑀1

+ 𝑀2) 𝑔𝐿1 𝑐𝑜𝑠(𝜃1) 
(22) 

Then: 

𝑑

𝑑𝑡
[

𝜕𝐿

𝜕�̇�1

] = (𝑀1 + 𝑀2) 𝐿1
2�̈�1

+ 𝑀2 𝐿1𝐿2 �̈�2 𝑐𝑜𝑠( 𝜃1−𝜃2)  

−  𝑀2 𝐿1𝐿2�̇�2(�̇�1 −  �̇�2) 𝑠𝑖𝑛( 𝜃1

− 𝜃2) 

(23) 

Substitute Eq. (22) and Eq. (23) into Eq. (20) 𝑤. 𝑟. 𝑡 𝑖 = 1 

obtains: 

((𝑀1 +  𝑀2) 𝐿1
2�̈�1 + 𝑀2 𝐿1𝐿2 �̈�2 𝑐𝑜𝑠( 𝜃1−𝜃2)  

− 𝑀2 𝐿1𝐿2�̇�2(�̇�1 − �̇�2) 𝑠𝑖𝑛( 𝜃1

− 𝜃2))

− ((𝑀1 + 𝑀2) 𝐿1
2�̇�1

+ 𝑀2 𝐿1𝐿2 �̇�2 𝑐𝑜𝑠( 𝜃1 − 𝜃2)) = 𝜏1  

(24) 

In the same way, the partial derivatives of Eq. (20) 

𝑤. 𝑟. 𝑡   𝑖 = 2 obtains: 

𝜕𝐿

𝜕�̇�2

=  𝑀2𝐿2
2 �̇�2 + 𝑀2 𝐿1𝐿2 �̇�1 𝑐𝑜𝑠( 𝜃1 − 𝜃2) (25) 

𝜕𝐿

𝜕𝜃2
=  𝑀2 𝐿1𝐿2�̇�1 �̇�2 𝑠𝑖𝑛( 𝜃1 − 𝜃2) − 𝑀2𝑔𝐿2 𝑐𝑜𝑠(𝜃2) (26) 

𝑑

𝑑𝑡
[

𝜕𝐿

𝜕�̇�2

] = 𝑀2𝐿2
2 �̈�2 + 𝑀2 𝐿1𝐿2 �̈�1 𝑐𝑜𝑠( 𝜃1−𝜃2)

− 𝑀2 𝐿1𝐿2�̇�1(�̇�1 − �̇�2) 𝑠𝑖𝑛( 𝜃1 − 𝜃2) 
(27) 

Substitute Eq. (25) and Eq. (26) into Eq. (20) 𝑤. 𝑟. 𝑡 𝑖 = 2 

obtains: 

(𝑀2𝐿2
2 �̈�2 + 𝑀2 𝐿1𝐿2 �̈�1 𝑐𝑜𝑠( 𝜃1−𝜃2)  

− 𝑀2 𝐿1𝐿2�̇�1(�̇�1 − �̇�2) 𝑠𝑖𝑛( 𝜃1

− 𝜃2))

− (𝑀2 𝐿1𝐿2�̇�1 �̇�2 𝑠𝑖𝑛( 𝜃1 − 𝜃2)

− 𝑀2𝑔𝐿2 𝑐𝑜𝑠(𝜃2)) = 𝜏2 

(28) 

Solving Eq. (24) and Eq. (28) for �̈�1and �̈�2 respectively 

yields: 

�̈�1 = 𝑔1(𝑡, 𝜃1, 𝜃2, �̇�1, �̇�2, 𝜏1, 𝜏2) (29) 

�̈�2 = 𝑔2(𝑡, 𝜃1, 𝜃2, �̇�1, �̇�2, 𝜏1, 𝜏2) (30) 

Where (31)(32): 

𝑔1 =
 
𝑀  𝜏1 
𝑀2 𝐿1

−  𝑀 𝐿2�̇�2² 𝑠𝑖𝑛( 𝜃1 − 𝜃2) − 𝑔𝑐𝑜𝑠(𝜃1) − 𝑀 𝑐𝑜𝑠( 𝜃1 − 𝜃2) [
  𝜏2 

𝑀2 𝐿2
+   𝐿1�̇�1² 𝑠𝑖𝑛( 𝜃1 −  𝜃2) − 𝑔𝑐𝑜𝑠(𝜃2)]

𝐿1(1 − 𝑀 𝑐𝑜𝑠2(𝜃1 − 𝜃2))
 (31) 

𝑔2 =
 

 𝜏2 
𝑀2 𝐿2

+   𝐿1�̇�1² 𝑠𝑖𝑛( 𝜃1 −  𝜃2) − 𝑔𝑐𝑜𝑠(𝜃1) − 𝑐𝑜𝑠( 𝜃1 − 𝜃2) [
 𝑀 𝜏1 
𝑀2 𝐿1

+   𝑀𝐿2�̇�2² 𝑠𝑖𝑛( 𝜃1 − 𝜃2) − 𝑔𝑐𝑜𝑠(𝜃1)]

𝐿2(1 − 𝑀 𝑐𝑜𝑠2(𝜃1 − 𝜃2))
 (32) 

𝑀 =
𝑀2

𝑀1 + 𝑀2

 (33) 

Let 𝑥1 represents 𝜃1, 𝑥2 represents 𝜃2, 𝑥3 represents �̇�1 

and 𝑥4 represents �̇�2. The differential equations is the 

behaviour of the two-link robot arm system: 

�̇�1 = 𝑥3 (34) 

�̇�2 = 𝑥3 (35) 

�̇�3 = 𝑔1(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝜏1, 𝜏2) (36) 

�̇�4 = 𝑔2(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝜏1, 𝜏2) (37) 

III. CONTROLLER DESIGN  

In addition to its durability and effectiveness, a 

conventional PID controller is widely used in control 

construction [24]-[28]. Many authors developed different 

structures of the classical PID controller. In this direction, this 

paper presents designing PID-NN controller, The two-link 

robot system angular position is capable of controlled using a 

PI-PD controller. Neural networks have emerged as 

promising solutions for nonlinear control applications, owing 

to their inherent adaptive capabilities, ability to handle 

nonlinear systems, and self-learning properties [29]-[36]. 

These networks consist of interconnected processing units 

known as neurons (n), which work together to process 

information, which are connected with each other via 

interconnections known as the weights (w) [37]. The 

network's weights possess adaptive learning properties that 

enable them to establish meaningful connections between 

system inputs and outputs. Optimizing these weight values 

directly enhances the neural network's overall performance. 

A. PID-NN Controller 

Three forward layers make up the architecture of the 

suggested PID-NN controller: the input (n), the hidden (h), 

and the output (o) layers. Based on the concept of the PID 

controller, The network's input layer processes three signal 

components: instantaneous error, its time integral, and time 

derivative, all using linear activation functions. A hidden 

layer with three processing nodes employs hyperbolic tangent 

activation. The architecture completes with a single-node 

output layer featuring linear activation. Fig. 2 illustrates the 

complete PID-NN controller structure. 

 

Fig. 2. Layout of PID-NN controller 
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Specifically, the PID-NN controller's control law is 

presented by: 

hidden layer ℎ𝑗: 

ℎ𝑗 = 𝑡𝑎𝑛ℎ (∑ 𝑤𝑖

3

𝑖=1

𝑛𝑖) , 𝑗 = 1,2,3 (38) 

output layer (o): 

𝑜 = ∑ 𝑤𝑗

3

𝑗=1

 ℎ𝑗 (39) 

B. PI-PD Controller 

In this part, a PI–PD controller is presented as an 

upgraded form of the conventional PID controller. This new 

configuration enhances control efficiency in unstable 

processes and increases resilience to changes in system 

parameters [38]. Fig. 3 shows the diagram of the PI-PD 

control structure [39]-[40]. The PI-PD controller's control 

law (u) can be obtained by [41]: 

𝑢 = 𝐾𝑝1𝑒 + 𝐾𝑖 ∫ 𝑒 − (𝐾𝑝2𝑦 + 𝐾𝑑

𝑑𝑦

𝑑𝑡
) (40) 

In this context, e corresponds to the error  and 𝑦  to the 

process output. The gains are defined as follows: 

𝐾𝑝1 and 𝐾𝑝2 are the proportional terms, 𝐾𝑖  is the integral 

term, and 𝐾𝑑  is the derivative term.  

 

Fig. 3. Block diagram of PI-PD controller 

The simplicity of the PI–PD controller's structure does not 

diminish the importance of its tuning process. For the 

controller to function efficiently, the best configuration of its 

parameters must be accurately determined. 

IV. HONEY BADGER ALGORITHM 

Optimizations algorithms help identify the best possible 

solution from multiple available options for specific 

problems. These methods serve as crucial instruments across 

various practical applications, particularly in engineering and 

industrial sectors to improve the quality of the solution [42]-

[44]. In this direction, the choice of design variables for the 

controller significantly influences its performance [45]-[46]. 

Many researchers in the field of controller design adopt 

optimization techniques to identify suitable controller 

parameters. The Honey Badger Algorithm (HBA), originally 

proposed by Hashim et al. in 2022, will be discussed in this 

study [47]. The honey badger detects food sources in the 

surroundings by moving slowly and by using its keen sense 

of smell. It first employs excavation to discover the 

prey approximate place prior catching it. It may drill up to 

fifty trenches in a forty-kilometer radius or more in a single 

day while looking for food. Conversely, while the 

honeyguide bird can pinpoint beehives, it lacks the ability to 

reach the honey inside. This interdependence fosters a 

mutualistic partnership—the bird directs the badger to the 

hive location, enabling both species to benefit, and the badger 

uses its long claws to open them, allowing both to benefit 

from their collaborative effort [47]. 

The honey badger's approaches to seeking food act as a 

guide for the HBA. In the natural world, this substantial 

technique for seeking food serve is considered as an 

inspiration for the HBA. In nature, this resilient mammal 

employs two key hunting techniques to locate nourishment. 

Employs two key hunting techniques to locate nourishment: 

tracking the honeyguide bird or using the sense of smell when 

looking for prey. The digging method is a term used for the 

first method and the honey method to the second. While in 

the digging method, the honey badger discovers its prey 

through its keen sense of smell. After arriving, it examines 

the surrounding area to determine the ideal place for 

excavating and gathering the prey. The honey badger 

performs alongside with the honeyguide bird in the honey 

strategy, which directs it directly to beehives so it can locate 

and approach the hive successfully. 

Modeled after the honey badger's natural hunting 

strategies, the HBA mimics this creature's food-searching 

patterns. Its success largely stems from maintaining an 

optimal balance between broad search capabilities and 

targeted resource utilization. which is crucial for efficient 

search processes. HBA incorporates dynamic search 

strategies, allowing it to tackle complex optimization 

problems with numerous local optima. By preserving 

sufficient population diversity throughout the search process, 

HBA can explore a wide range of areas within the solution 

space, making it well-suited for addressing challenging 

optimization tasks. As a global optimization method, HBA 

incorporates dual search strategies—exploration and 

exploitation—to efficiently navigate solution spaces. See 

Algorithm 1 for the detailed pseudocode. 

The population of potential solutions in HBA can be seen 

as follows: The population of probable solutions. 

= [

𝑋11 𝑋12 𝑋13 … 𝑋1𝐷

𝑋21 𝑋22 𝑋23 … 𝑋2𝐷…
𝑋𝑛1

…
𝑋𝑛2

…
𝑋𝑛3

…
…

…
𝑋𝑛𝐷

] (41) 

ith position of the honey badger 

𝑋𝑖 = [𝑋𝑖
1, 𝑋𝑖

2, … , 𝑋𝑖
𝐷] 

The algorithmic steps are given as follows: 

Step 1: The period for initialization. Using Equation (42), 

determine the very first population size (N) of honey badgers 

and their localities.  

𝑋𝑖 = 𝐿𝐵𝑖 + 𝑅1 × (𝑈𝐵𝑖 − 𝐿𝐵𝑖), (42) 

where 𝐿𝐵𝑖  and 𝑈𝐵𝑖  are the upper and lower limits of the 

search area, 𝑋𝑖 is ith location of honey badger position that 
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represents a probable solution in a population, and  𝑅1 is an 

arbitrary number between zero and one. 

Step 2: Describe the intensity (I) , which depends on how 

concentrated and how close the prey is to the honey badger.  

𝐼𝑖  represents the strength of the scent emitted by the prey. A 

stronger scent indicates a closer or more prominent target, 

prompting faster movement; if the scent is weaker, the 

movement slows down this behavior follows the Inverse 

Square Law [48]. 

𝐼𝑖 = 𝑅2 ×
𝑆

4𝜋𝐷𝑖
2, (43) 

where 𝑅2 is a random number between 0 and 1, 𝑆 is source 

strength or concentration strength given by   𝑆 = (𝑋𝑖 −
𝑋𝑖+1)2, and 𝐷𝑖 = 𝑋𝑝𝑟𝑒𝑦 − 𝑋𝑖. 

Algorithm 1 Pseudo code of HBA. 

Set parameters 𝑇𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝛽, 𝑐. 
The population is Initialized with random positions. 

The cost function of each position 𝑥𝑖 is evaluated and assign 

to 𝐹𝑖 , 𝑖 ∈ [1, 2, … , 𝑁]. 
The best position 𝑥𝑝𝑟𝑒𝑦 is saved and assigned the fitness 

to𝑓𝑝𝑟𝑒𝑦. 

 

While 𝑇 ≤ 𝑇𝑚𝑎𝑥𝑖𝑚𝑢𝑚 do 

       Update the decreasing factor 𝛼 using Eq. (44). 

       for 𝑖 = 1 to 𝑁 do 

              Using Eq. (43) to calculate the intensity 𝐼𝑖 

              if 𝑅 < 0.5 then 

                   Using Eq. (45) to update the position 𝑋𝑛𝑒𝑤 

              else 

                   Using Eq. to update the position 𝑋𝑛𝑒𝑤  

              end if 

              Evaluate new position and assign to 𝐹𝑛𝑒𝑤 . 

              if 𝐹𝑛𝑒𝑤 ≤ 𝐹𝑖 then 

                   Set 𝑋𝑖 = 𝑋𝑛𝑒𝑤 and 𝐹𝑖 = 𝐹𝑛𝑒𝑤 . 

              end if 

              if 𝐹𝑛𝑒𝑤 ≤ 𝐹𝑝𝑟𝑒𝑦 then 

                   Set 𝑋𝑝𝑟𝑒𝑦 = 𝑋𝑛𝑒𝑤 and 𝐹𝑝𝑟𝑒𝑦 = 𝐹𝑛𝑒𝑤 . 

              end if 

       end for   

 end while Stop criteria satisfied. 

 Print 𝑋𝑝𝑟𝑒𝑦 and 𝐹𝑋𝑝𝑟𝑒𝑦
 

 

Step 3: Modify the density factor (𝛼). From exploration 

to exploitation, it guarantees a seamless transition by 

managing the time-varying randomization process. By using 

Eq. (44) to modify the decreasing factor α, which lowers with 

repetitions, randomization can be reduced over time [49]: 

𝛼 = 𝑐 × 𝑒𝑥𝑝 (
−𝑇

𝑇𝑚𝑎𝑥𝑖𝑚𝑢𝑚

), (44) 

where 𝑇𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = maximum number of iterations and  𝑐 is 

a constant ≥ 1 (i.e. c=1). 

Step 4: To prevent the algorithm from converging to a 

local optimum, it uses a control flag (F) that alters the 

direction of the search. This mechanism improves the 

algorithm’s exploratory behavior, enabling the agents to 

more effectively scan the solution space in search of optimal 

results. 

Step 5: Updating the agents’ positions 𝑋𝑛𝑒𝑤  where this 

process is divided into two parts named “digging phase” and 

“honey phase”. Eq. (45) provides an illustration of the 

cardioid motion. 

𝑋𝑛𝑒𝑤 = 𝑋𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼 × 𝑋𝑝𝑟𝑒𝑦

+ 𝐹 × 𝑅3 × 𝛼 × 𝐷𝑖

× |𝑐𝑜𝑠(2𝜋𝑅4) × [1 − 𝑐𝑜𝑠(2𝜋𝑅5)]| 
(45) 

𝑋𝑝𝑟𝑒𝑦 represents the position of the prey, which 

corresponds to the globally best solution identified up to the 

current iteration. 𝛽 ≥  1 (i.e. 𝛽 = 1) is the ability of the 

honey badger to get food. 𝑅3, 𝑅4, and 𝑅5 are three different 

random numbers between 0 and 1. The variable 𝐹 functions 

as a flag to switch the search direction and is calculated using 

Eq. (46): 

𝐹 = {
1 𝑖𝑓 𝑅6 ≤ 0.5 

−1 𝑒𝑙𝑠𝑒
 (46) 

where 𝑅6 is a random number between zero and one.   

The interaction described by Eq. (47) simulates how a 

honey badger is guided by a honeyguide bird toward a 

beehive. 

𝑋𝑛𝑒𝑤 = 𝑋𝑝𝑟𝑒𝑦 + 𝐹 × 𝑅7 × 𝛼 × 𝐷𝑖 (47) 

Where the random number 𝑅7  ranges between zero and one. 

V. NUMERICAL SIMULATIONS   

This section presents simulation findings based on a 

MATLAB program to assess the efficiency of the PI-PD and 

PID-NN controllers to control the dual-link robot framework. 

The controller aim is to ensure that the dual-link robot 

framework angular position follow a step input. The 

simulation is performed using the characteristics of the dual-

link robot arm framework, which is described by Equations 

(34), (35), (36) and (37). Table I displays the 

system parameters [1]-[5]. 

TABLE I.  KEY PHYSICAL PARAMETERS OF THE TWO-LINK ROBOTIC ARM 

Parameters Values 

First link mass (𝑀1) 1 kg 

Second link mass (𝑀2) 1 kg 

First link length (𝐿1) 1 m 

Second link length (𝐿2) 1 m 

Gravitational acceleration (𝑔) 9.81 m/s2 

 

To achieve optimum controller efficiency, the weights of 

each controller are modified through the HBA. The Integral 

Time of Absolute Errors (ITAE) index can be found using 

equation (48) [50]-[54] in the optimization process. 

𝐼𝑇𝐴𝐸 = ∫ 𝑡𝑡|𝑒(𝑡)|𝑑𝑡
𝑡𝑡=𝑡𝑠𝑖𝑚

𝑡𝑡=0

 (48) 

where 𝑡𝑡 is the time and  𝑡𝑠𝑖𝑚 is the total simulation time. 

Table II presents the configuration settings used for the 

Honey Badger Algorithm (HBA). 

The time response of the angular angles 𝜃1 and  𝜃2when 

the system is exposed to a unit step input is illustrated in Fig. 

4. Measuring the settling time (𝑡𝑠), steady state error ((𝑒𝑠𝑠), 

maximum overshoot, and ITAE index is the way the response 

is assessed. Table III lists these specifications' numerical 
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values for the two responses. It is evident from Fig. 4 that the 

two controllers are capable of successfully of stabilizing and 

controlling the system with zero 𝑒𝑠𝑠, and zero overshoot 

response. In terms of 𝑡𝑠 and the ITAE index, the dynamics of 

the PID-NN controller perform better than the dynamics of 

the PI-PD controller. Table III shows that the settling time 𝑡𝑠 

improves with the use of the PID-NN controller. Compared 

to the PI–PD controller, the times for 𝜃1 and 𝜃2 responses 

decrease from 2.3 sec and 1.2 sec to 0.8 sec and 0.55 sec, 

respectively. This means that the value of 𝑡𝑠 is improved by 

65.21% and 54.17% for 𝜃1 and 𝜃2 respectively. A further 

improvement is observed in the ITAE index, which drops 

from 59.19 for 𝜃1 and 29.3 for 𝜃2 using the PI–PD controller, 

to 11.6 for both responses under the PID-NN controller. This 

means that the value of the ITAE index  is improved by 

80.4% and 60.4% for 𝜃1 and 𝜃2 respectively. 

TABLE II.  CONFIGURATION SETTINGS FOR THE HONEY BADGER 

OPTIMIZATION 

Parameters Values 

Number of individuals (Npop) 25 

Maximum iterations (Tmax) 50 

Coefficient  𝛽 1 

Coefficient   c 1 

 

Fig. 4. Response of 𝜃1 and 𝜃2 for unit step input 

TABLE III.  SPECIFICATION PERFORMANCES OF SYSTEM WITHOUT 

DISTURBANCE 

Controller 𝜽 
Settling 

Time (s) 

Error 

Steady 

State 

(rad) 

Maximum 

Overshoot 

(%) 

ITAE 

PI-PD 
𝜃1 2.3 0 0 59.19 

𝜃2 1.2 0 0 29.3 

PD-NN 
𝜃1 0.8 0 0 11.6 

𝜃2 0.55 0 0 11.6 

 

To evaluate the two controllers against load variation, it 

was assumed that the value of the first mass has increased by 

20% and the value of the second mass has increased by 50% 

after 4 seconds of simulation. The same designed variables of 

the controllers were used in the simulation. The time response 

for the controlled system under mass variation is shown in 

Fig. 5. The system's recovery time and the percentage of 

undershoot have been adopted to evaluate the performance of 

the system as given in Table IV. Fig. 5 highlights that the 

PID-NN controller outperforms the PI-PD controller in the 

mass variation scenario. For example, Table III shows that 

the recovery time is reduced from 3.25 sec and 2.24 sec for 

θ1 and θ2 response respectively in the case of the PI-PD 

controller to 1.3 sec and 0 sec for 𝜃1 and 𝜃2 response 

respectively in the case of the PID-NN controller. This means 

that the value of the recovery time is improved by 60% and 

100% for 𝜃1 and 𝜃2 respectively. Additionally, the maximum 

undershoot index is reduced from 20% and 8.7% for 𝜃1 and 

𝜃2 response respectively in the case of the PI-PD controller 

to 4% and 2% for 𝜃1 and 𝜃2 response respectively in the case 

of the PID-NN. This means that the maximum undershoot is 

improved by 80% and 77% for 𝜃1 and 𝜃2 respectively. 

Additionally, the ITAE index's value has declined. from 

215.1 and 106.87 for 𝜃1 and 𝜃2 response respectively in the 

case of PI-PD controller to 21.188 and 21.188 for θ1 and 

𝜃2 response respectively in the case of PID-NN. This means 

that the value of ITAE index  is improved by 89.96% and 

80.17% for 𝜃1 and 𝜃2 respectively. The comprehensive 

overview of the performance of both controller structures 

indicates that the PID-NN outperforms of the PI-PD across 

the two considered scenarios. 

 

Fig. 5. Response of 𝜃1 and 𝜃2 for unit step input with mass variation 

TABLE IV.  SPECIFICATION PERFORMANCES OF THE SYSTEM WITH MASS 

VARIATION 

𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 𝜽 Recovery Time (s) 
Maximum 

Undershoot (%) 
ITAE 

PI-PD 
𝜃1 3.25 20% 215.1 

𝜃2 2.24 8.7% 100.7 

PID-NN 
𝜃1 1.3 4% 82.6 

𝜃2 0 2% 82.6 

VI. CONCLUSION 

This paper presents controlling the two-link robot system 

based on two control structures named PI-PD and PD-PID 

controllers.  The behavior of the system was modeled using 

Lagrange mechanics. HBA was used to tune the controllers' 

design parameters in order to guarantee that each controller 

operated at its optimal performance. According to the 

simulation results, which were obtained using a MATLAB 

program, the two controllers optimized by the HBA were able 

to successfully stabilize and regulate the two angular 
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positions of the robot system with a 0% error steady state and 

0% overshoots. The outcomes also demonstrate that the PID-

NN controller works faster than the PI-PD controller in terms 

of lowering the ITAE index and settling time. Based on the 

numerical results, the settling time has been improved by 

65.21% and 54.17% for θ1 and θ2 respectively whereas the 

ITAE index has been improved by 80.4% and 60.4% for θ1 

and θ2 respectively. Additionally, the PID-NN controller 

shows an outstanding improvement in reducing the impact of 

load variation. Based on the results, undershoot was 

improved by 80% and 77% for θ1 and θ2 respectively 

whereas the ITAE index has been improved by 89.96% and 

80.17% for θ1 and θ2 respectively. For future work of this 

research, another swarm optimization could be applied for 

selecting the controller's development configurations. 

Another extension of this study could be by applying a hybrid 

nonlinear controller. 
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