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Abstract—Overtourism has emerged as a critical issue in 

popular tourist destinations, often leading to environmental 

strain, reduced visitor satisfaction, and safety concerns. 

Traditional methods such as ticket counts, or vehicle estimation 

fail to provide real-time insights or adapt effectively to dynamic 

outdoor environments. This study proposes a privacy-aware, 

real-time visitor capacity monitoring system for smart tourism, 

utilizing YOLOv8-based head detection and Centroid Tracking 

to ensure accurate, non-intrusive people counting in dense and 

complex crowd scenarios. Head detection is employed 

specifically to preserve personal privacy without compromising 

on detection performance. The system was trained on a custom 

dataset comprising over 3,000 annotated frames with diverse 

lighting conditions, occlusion levels, and viewing angles. 

Deployment at Wana Wisata Kawah Putih, an open-air tourist 

destination in Indonesia, demonstrated strong performance 

with 94.2% accuracy, 95.1% precision, and 90.6% recall, while 

sustaining >60 FPS for real-time execution. The integration of 

Centroid Tracking enables lightweight, frame-to-frame identity 

association with minimal computational overhead, making the 

system suitable for deployment on moderate-performance 

hardware. Despite its robustness, the system's performance 

slightly degrades under extreme weather (e.g., fog, direct glare) 

and rapid lighting transitions, which remain challenges for 

visual models. Moreover, the current model requires further 

evaluation for cross-location generalizability. Future research 

will explore the integration of predictive analytics for visitor 

flow forecasting, and further optimization of energy efficiency 

and adaptive detection under environmental uncertainty. This 

work contributes a scalable, ethical solution for real-time crowd 

monitoring to support informed, sustainable tourism 

management. 

Keywords—YOLOv8; Head Counting; Overtourism 

Mitigation; Centroid Tracker; Real-Time Visitor Monitoring. 

I. INTRODUCTION 

The rise in tourist numbers at various destinations in 

recent years has presented new challenges for area managers. 

The rise in tourist numbers, when not aligned with sustainable 

development practices, can lead to overtourism. This 

phenomenon occurs when visitors perceive that a destination 

has been excessively frequented, resulting in a loss of its 

original authenticity [1]. Overtourism, as defined by 

UNWTO, occurs when visitor numbers exceed a 

destination’s capacity, leading to overcrowding, pressure on 

infrastructure, and rising tensions between tourists and local 

communities-while also triggering environmental damage 

and cultural erosion[2]. The implementation of this system is 

concentrated in the Kawah Putih tourist forest, as illustrated 

in Fig. 1.  

 

Fig. 1. Kawah Putih forest tourism 

The Kawah Putih tourist forest, recognized as a popular 

destination, has surged in recent years, straining the site’s 

capacity and environment. This forest faces significant 

challenges associated with overtourism stemming from the 

influx of uncontrolled visitors [3]. Uncontrolled crowds can 

lead to various issues, including discomfort, a decline in the 

quality of the tourism experience, environmental 

degradation, and heightened risks to tourist safety stemming 

from overcrowding [4].  

During the 2023 Eid holiday week alone, over 48,000 

domestic tourists visited in just ten days (a 44% increase from 

the previous year)[5]. Peak daily visits exceeded 7,300 

people [5], far above what the area can sustainably 

accommodate. A 2022 carrying capacity analysis estimated 

that the crater’s ecosystem and facilities could realistically 

support only about 255 visitors per day, with effective 

capacity as low as 98 per day given transport limitations [6]. 

This uncontrolled tourist influx contributes to environmental 

degradation, such as soil erosion, damage to endemic flora, 

and increased unmanaged waste, posing a serious threat to the 

long-term sustainability of the site[7]. Moreover, overtourism 

causes overcrowding, reduces visitor satisfaction, and 

stresses local ecosystems. Waste management is also 

challenged, as many tourists leave behind litter (especially 

plastic waste) that degrades the site’s natural beauty [8]. 

These overtourism pressures threaten both the ecosystem 

integrity and visitor experience at Kawah Putih, underscoring 

the need for better real-time monitoring and management of 

visitor numbers. As noted in [7], continuous exposure of 
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volcanic areas like Kawah Putih to high-intensity tourism 

accelerates ecological disruption and can lead to irreversible 

environmental changes. Therefore, these urgent challenges 

highlight the necessity of implementing a robust system real-

time crowd detection system to support effective and 

responsive tourism management strategies, ensuring the 

protection of both ecological and cultural values of Kawah 

Putih.  

Accurate crowd monitoring is crucial for mitigating 

overtourism impacts, but traditional methods are often 

inadequate. Currently, the traditional approaches employed 

to quantify visitor numbers at tourist attractions involve 

tracking entrance ticket sales, estimating the number of 

vehicles in parking lots, or conducting manual counts by 

personnel. Nonetheless, these methods exhibit multiple 

shortcomings, including inaccuracies in real-time 

calculations, challenges in managing dynamic situations, and 

constraints in identifying visitors already present in the 

tourist area. Moreover, sensor-based counting systems, 

including infrared or RFID sensor [9] necessitate 

supplementary infrastructure and frequently exhibit 

inflexibility when utilized in outdoor settings characterized 

by dynamic conditions. 

In recent years, computer vision-based solutions have 

emerged to automate visitor counting. Early approaches 

included classical techniques like frame differencing or 

background subtraction, which struggle with complex 

outdoor scenes and moving crowds. More robust solutions 

leverage object detection models. For example, the YOLO 

(“You Only Look Once”) family of detectors (v3 through v7) 

has been applied to count people in real time by detecting 

individuals in video feeds. Prior studies showed that a 

YOLOv3 model could detect people in live video, but without 

any tracking it risked counting the same person multiple 

times [10]. Subsequent implementations improved on this by 

combining detectors with multi-object tracking algorithms 

(e.g. SORT or IOU trackers) to follow people across frames. 

Using trackers with YOLOv4 reduced double-counting and 

enabled basic crowd analytics [11]. However, even state-of-

the-art detectors like YOLOv5 have faced challenges in very 

dense crowds and occluded conditions, sometimes missing 

individuals or yielding duplicate counts. Furthermore, many 

vision-based counting systems have overlooked ethical 

concerns such as visitor privacy, since identifying or 

recording individuals can raise data protection issues. 

Alternative crowd counting techniques using density 

estimation (regression on crowd density maps) avoid tracking 

each person, but they require extensive training data and often 

cannot operate in real time [12]. This background highlights 

the gap for a more accurate, real-time, and privacy-preserving 

crowd monitoring approach in tourist environments. 

To address these challenges, this study proposes a real-

time, privacy-preserving visitor monitoring system that 

leverages the YOLOv8 object detection model alongside a 

centroid-based tracker to address the shortcomings of prior 

solutions. This system utilizing computer vision is essential 

for the automatic and real-time detection and counting of 

visitors. A rapidly developing approach involves utilizing 

computer vision technology for the automatic detection and 

counting of visitors. This approach employs cameras to 

gather visual information that is subsequently examined by 

algorithms powered by artificial intelligence [13]. The 

advancement of deep learning technology has led to the 

development of methods like You Only Look Once (YOLO), 

which demonstrate remarkable effectiveness in detecting 

objects with both speed and accuracy, even in challenging 

scenarios involving overlapping objects, low lighting, and 

high density. 

This system has the potential to supplant traditional 

methods or restricted ticket sales that demand significant 

human resources and often lack precision, while offering 

rapid, precise, accurate, and cost-effective outcomes [14], 

[15]. Another technology that can be incorporated with 

YOLO is the head counting method. This approach is among 

the most widely utilized techniques for assessing crowd 

numbers. This approach emphasizes identifying the human 

head as a key indicator of a person, distinguishing it from 

methods that involve counting the whole body. The 

application of bounding boxes for head counting, as opposed 

to body counting, presents benefits regarding data ethics. 

This method avoids the collection of intricate details 

concerning an individual's face or identity, thereby enhancing 

privacy protection. In certain data privacy regulations like 

GDPR (General Data Protection Regulation), employing 

monitoring technology that can directly identify individuals 

is deemed a breach of privacy unless explicit consent is 

obtained. Consequently, the head counting method is favored 

as it solely identifies the presence of individuals while 

maintaining their anonymity. 

Utilizing the head counting method allows the YOLOv8 

algorithm to enhance its efficiency in tallying individuals in 

densely populated spaces, all while maintaining a strong 

commitment to privacy and ethical considerations in 

monitoring. Moreover, this approach demonstrates greater 

efficiency in intricate settings, including crowds with 

overlapping objects, low lighting conditions, or rapid motion 

[16]. This method enhances the accuracy and real-time 

capabilities of the crowd detection system while ensuring a 

greater sense of ethical responsibility in its use within tourist 

attractions and other public spaces. 

YOLOv8 was chosen as the algorithm due to its superior 

performance regarding speed and detection accuracy 

compared to earlier versions. YOLOv8 offers improved 

accuracy and speed over earlier YOLO versions, which is 

crucial for handling the challenging conditions at Kawah 

Putih [17]. This study focusses the detection on human heads 

(rather than full bodies or faces) to maintain privacy – an 

approach inspired by prior “privacy-preserving” counting 

methods that count people without uniquely identifying them. 

Each detected head is assigned a unique ID and tracked across 

successive frames using a Centroid Tracker, which performs 

lightweight frame-to-frame association by calculating the 

distance between object centroids. This simple yet effective 

approach ensures that a single individual moving through the 

camera field is only counted once, without the need for heavy 

computation or deep feature matching. The YOLOv8-and-

tracker framework significantly reduces double counting and 

enhances count accuracy in real time. Compared to YOLOv5-

based detectors, YOLOv8 provides greater tolerance to 

occlusion and small, distant objects, offering more reliable 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1987 

 

Kurnia Wijayanti, Non-Intrusive Real-Time Tourist Crowd Monitoring for Overtourism Mitigation using YOLOv8-Based 

Head Detection and Tracking 

detection even for partially visible or far-off visitors. The 

system operates on a moderately powered device and 

displays the live count of visitors, giving park managers a 

real-time view of crowd levels without compromising 

personal privacy. 

This model is engineered to identify a range of objects 

with minimal latency, rendering it suitable for real-time 

applications [18]. Furthermore, the capacity of YOLOv8 to 

modify the model according to specific datasets, like those 

from a distinct tourist environment, enables the system to 

tailor itself to the unique conditions encountered in the field 

[19]. The detection outcomes from YOLOv8 will undergo 

processing through the OpenCV library, enabling the image 

to be manipulated to showcase the detection results by 

highlighting each identified head with a box notation. 

OpenCV was selected due to its capability to handle a range 

of frame processing and image manipulation that align with 

the requirements of the system. This system can be utilized to 

tally visitor numbers, track density levels, and issue early 

alerts when capacity nears a predetermined limit in the realm 

of tourist attractions. 

Despite these advancements, there are key limitations of 

deploying an AI-powered counter in the field. Real-time 

vision models like YOLOv8 require substantial computing 

power, which can be challenging to provide on energy-

efficient or battery-operated hardware in remote sites. 

Ensuring the system runs on a low-power device (e.g. an 

NVIDIA Jetson) may necessitate optimizing the model or 

sacrificing some accuracy for speed. The outdoor 

environment of Kawah Putih also introduces unpredictable 

factors – lighting can vary from bright glare to shadow, and 

the crater is often shrouded in fog or mist that can obscure 

cameras [20]-[22]. These conditions can degrade detection 

performance, as the model might miss people in low-contrast 

or foggy scenes. Furthermore, the camera placement is 

constrained by the terrain and infrastructure, potentially 

leading to occlusions (e.g. tourists blocked from view by 

others or by objects) and reduced accuracy for very distant 

individuals. These constraints are also taken into account in 

designing and evaluating the system.  

This study focuses on creating a capacity monitoring 

system for tourist attractions that utilizes real-time head count 

through the YOLOv8 algorithm. This study also seeks to 

address challenges by creating a crowd count and detection 

system that incorporates automatic data annotation, enhances 

accuracy through the addition of diverse dataset models, and 

achieves robustness and generalization across various 

datasets  [12], [23]. This system aims to aid the managers of 

Kawah Putih Tourism Forest in effectively and accurately 

monitoring and regulating visitor numbers, thereby fostering 

a safer, more comfortable, and well-managed tourism 

experience.  

The main contribution of this study is to integrate the head 

counting method with YOLOv8 to improve the accuracy of 

detecting individuals in dynamic environments, even under 

changing lighting conditions and high visitor density. This 

study addresses the challenges in crowd detection by utilizing 

automatic data annotation, enhancing accuracy with a 

broader range of datasets, and strengthening the model's 

robustness across different environmental scenarios. In 

contrast to earlier investigations that typically concentrate on 

single detection under optimal circumstances, this study 

introduces a system capable of functioning consistently 

across diverse real-world environmental settings. This study 

introduces a significant innovation by employing Centroid 

Tracker to address the challenge of double counting, a 

common issue arising from individuals moving within 

overlapping frames. By incorporating this approach, the 

system can monitor and tally individuals with greater 

precision, thus preventing inaccuracies caused by detection 

overlap. This study not only offers solutions for tourist 

attractions but also holds promise for broader applications, 

such as monitoring human traffic in public spaces, managing 

queues in shopping centers, and optimizing capacity in open 

areas. The proposed approach enhances crowd management 

effectiveness while facilitating data-driven strategic decision-

making, including visit scheduling, tourist route 

optimization, and the implementation of real-time capacity 

restriction policies. 

Overall, this study hypothesizes that a YOLOv8-based 

head detection system with centroid tracking can provide 

accurate and real-time visitor counts at Kawah Putih while 

preserving individual privacy, thus offering a viable tool for 

managing overtourism. The research problem addressed in 

this work is how to effectively monitor and quantify tourist 

crowds in challenging outdoor environments – characterized 

by high density, variable weather, and limited infrastructure 

– using modern computer vision. By testing this system at 

Kawah Putih, it aims to determine to what extent such an AI-

driven approach can improve current crowd monitoring 

methods and support sustainable tourism management at an 

over touristed natural attraction. This study aims to fill the 

gap between theoretical carrying capacity assessment and 

practical on-site visitor monitoring, by providing a smart, 

ethical, adaptable monitoring and technological solution to 

help local governments measure and mitigate the impacts of 

overtourism in real-time [6]. 

In the next chapter, specifically chapter two, the Research 

and Methodology section will provide a more detailed 

explanation of the system architecture, the methods 

employed, and the test scenarios implemented in Kawah 

Putih tourism area. In chapter three, the assessment of system 

performance derived from test results will be detailed, 

covering aspects such as accuracy levels, detection 

efficiency, and the challenges encountered in various 

environmental conditions. This chapter will emphasize the 

advantages of the developed system in assisting tourism area 

managers with visitor control, ultimately enhancing capacity 

management, security, and the comfort of tourists. 

Ultimately, the Conclusion will be outlined in chapter 4. 

II. RESEARCH METHODOLOGY 

This section provides a comprehensive overview of the 

methodology employed to attain the intended outcomes. This 

study employs an experimental approach utilizing advanced 

techniques in Computer Vision and Deep Learning. It 

encompasses several stages, including an extensive literature 

review, the design of a system leveraging YOLOv8 and 

Centroid Tracker, the collection of image and video data 
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across diverse scenarios, the training of models with 

annotated datasets, and the testing and evaluation of system 

performance. The assessment was conducted utilizing a 

Confusion Matrix, incorporating metrics like accuracy, 

precision, recall, and F1-score across different test scenarios 

to gauge the system's efficacy in identifying and quantifying 

the number of individuals. The analysis results serve to 

pinpoint the strengths and weaknesses of the system, leading 

to the formulation of recommendations for future 

development in the discussion and conclusion sections. 

A. Literature Review 

This section provides a comprehensive overview of the 

methodology employed to attain the intended outcomes. This 

study employs an experimental approach utilizing Computer 

Vision and Deep Learning. It encompasses several stages, 

including an extensive literature review, system design 

utilizing YOLOv8 and Centroid Tracker, collection of image 

and video data across diverse scenarios, training of models 

with annotated datasets, and thorough testing and evaluation 

of system performance. The assessment was conducted 

utilizing a Confusion Matrix, incorporating metrics like 

accuracy, precision, recall, and F1-score across different test 

scenarios to gauge the system's efficacy in identifying and 

quantifying the number of individuals. The analysis results 

are utilized to pinpoint the strengths and weaknesses of the 

system, leading to the formulation of recommendations for 

future development in the discussion and conclusion sections 

[12]. 

The increasing popularity and advancement of computer 

vision led to its broader implementation in enhancing various 

facets of life. Many experts are interested in developing this 

technology because it has advantages in terms of speed 

efficiency. One of the initiatives focuses on the tourism 

sector, aiming to track visitor numbers in real time, thereby 

reducing the manual labor that is often time-consuming and 

energy-intensive [24]. The system operates efficiently with 

just a camera and a PC as its primary processor, eliminating 

the necessity for extensive manual effort [25].  

In object detection, the YOLOv8 deep learning model is 

utilized within computer vision, demonstrating its 

effectiveness for high-speed real-time object detection. A 

study emphasizes the use of object detection technology and 

distance measurement to enhance the mobility of blind 

individuals, employing YOLOv8 for object detection and 

OpenCV for measuring distances. The study demonstrated 

that YOLOv8 achieved a detection accuracy of 94.2%, 

surpassing the 92.5% accuracy of YOLOv5. The distance 

measurement technique utilizing OpenCV exhibits an 

average error rate of 3.15% across a range of objects, 

including cars, doors, chairs, trees, humans, and motorbikes. 

This study pertains to our investigation utilizing YOLOv8 

deep learning for object detection, showcasing its diverse 

models that exhibit competitive inference performance, 

making it appropriate for scenarios with differing 

computational speeds. Object detection identifies the head of 

the person in the image and highlights it with a bounding box 

when accurately detected. Utilizing OpenCV to compute the 

distance between the bounding boxes created, ensuring that 

undetected objects are not mistakenly counted more than 

once [26]-[29].  

A recent study introduced the YOLOv8 deep learning 

algorithm designed to effectively count individuals in both 

still images and dynamic videos. The scenario employed in 

this study featured a video lasting about one minute, depicting 

numerous individuals entering and exiting a specific location. 

Following the implementation of the YOLOv8 deep learning 

algorithm, the initial step involved segmenting the video's 

area of interest to enable the system to compute the 

movement of individuals entering and exiting the location. 

The testing outcomes revealed that the model successfully 

identified every object in each frame with complete clarity in 

the results. The model effectively identified and quantified 

individuals accurately utilizing YOLOv8 [30]. The suggested 

system aligns with the one that will be introduced for 

counting individuals utilizing YOLOv8 deep learning. The 

YOLOv8 algorithm has undergone testing in multiple studies 

conducted earlier [31], [32]. His study utilized YOLOv8 to 

identify human head objects amidst different crowd densities 

in a tourist location, delivering real-time results.  

Prior studies have highlighted the difficulties encountered 

by the crowded detection system. When individuals are in 

close proximity, overlapping objects can lead to frequent 

errors in the detection model's ability to differentiate between 

them. Inconsistent lighting due to its location in an outdoor 

environment. Non-ideal camera angle placement poses a 

challenge for those in the field. Real-time systems necessitate 

hardware with significant computing capabilities, posing 

challenges for implementation on power-efficient devices 

[33], [34].  

The establishment of a crowd detection system in tourist 

attractions is a significant consideration for enhancing visitor 

capacity management. Numerous studies highlighted in the 

literature review have demonstrated the effectiveness of the 

YOLOv8-based crowd detection system [35]. Nonetheless, 

numerous innovations remain unexamined. Few studies have 

focused on creating systems capable of operating 

autonomously with energy-efficient devices [36]-[38]. Some 

individuals in the field do not discuss system integration for 

real-time monitoring. There remain limited implementations 

in tourist destinations characterized by dynamic settings. This 

literature indicates that the YOLOv8-based crowd detection 

system holds significant promise for application and 

advancement in the management of visitor crowds. 

Nonetheless, creating a system that can function 

autonomously and integrate with the Open CV interface 

necessitates additional investigation. This study seeks to 

address this gap by creating a real-time crowd detection 

system suitable for use in tourist attractions.  

Therefore, the table below offers a comparison of various 

approaches in crowded counting, highlighting their 

respective advantages and disadvantages. Table I indicates 

that the proposed system delivers precise and rapid 

calculations while enhancing privacy. Table I presents a 

comparative analysis of various crowd counting methods 

along with their supporting technologies, benefits, and 

limitations. Manual counting approaches, such as observation 

and ticket recording, are easy to implement and require no 
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advanced technology [39], [40] however, they lack real-time 

capability and are prone to human error. Sensor-based 

systems using RFID or infrared can provide accurate results 

in controlled environments without relying on cameras [40]-

[42], but they are costly and generally ineffective for 

monitoring large, dynamic outdoor areas. Methods based on 

density maps—such as CSRNet and SCNN—leverage CNN-

based density estimation to provide effective crowd size 

approximation without needing bounding boxes [43], [44]. 

Despite their efficiency, these methods cannot count 

individuals directly, limiting their applicability in scenarios 

where exact headcounts are required. Object detection 

techniques like Faster R-CNN, YOLO, and SSD are capable 

of real-time individual detection using bounding boxes [45],  

but their performance is often hindered in high-density scenes 

due to occlusion and overlapping objects. The proposed 

method in this study, which integrates YOLOv8 with head 

counting and Centroid Tracking, addresses these gaps by 

providing a real-time, accurate, and privacy-conscious 

solution. Head-based detection reduces privacy risks 

compared to full-body detection. However, it requires a well-

annotated, domain-specific dataset to improve detection 

performance under diverse environmental conditions. 

Meanwhile, Table II presents the comparison of the 

YOLO method in crowd application findings indicating that 

the implementation of YOLOv8 is the quickest and most 

precise for the proposed system, which is fundamentally 

grounded in real-time performance. Table X presents a 

comparative analysis of several deep learning-based object 

detection models in terms of detection speed (FPS), accuracy 

(mAP50), strengths, and limitations. Faster R-CNN [46] 

offers the highest accuracy at 96%, making it ideal for 

applications requiring precise detection. However, its slow 

processing speed of 5–10 FPS renders it unsuitable for real-

time scenarios. On the other hand, SSD (Single Shot 

MultiBox Detector) [47] achieves faster detection speeds 

ranging from 15 to 25 FPS, making it more applicable for 

real-time use, though its accuracy is lower at 88% compared 

to Faster R-CNN. YOLOv5 [48]  presents a balanced 

approach with 50–60 FPS and an accuracy of 92.5%, offering 

a good trade-off between speed and precision. However, it 

still lags behind in processing speed when compared to its 

successor. The proposed method using YOLOv8 

demonstrates as shown in TABLE I, might demonstrates the 

best overall performance and making it highly suitable for 

real-time applications such as visitor monitoring and crowd 

detection. Nevertheless, it requires a well-structured and task-

specific dataset, particularly for head detection, to ensure 

optimal performance. 

Table III indicates that employing head counting may 

prove to be more efficient in delivering insights on crowded 

situations, though it remains vulnerable to variations in 

camera angles. Nonetheless, this system is capable of 

preserving privacy as it does not recognize the identity of the 

visitor's face or body. 

B. Architecture System 

This section will delve into the system architecture crafted 

to track the real-time visitor count at tourist attractions. This 

system combines advanced computer vision technology 

based on YOLOv8 with centroid tracker algorithms to 

effectively detect and count individuals within a specified 

area. This approach allows for the optimization of visitor 

capacity management, enhancement of tourist experience, 

and assurance of security in crowded locations within the 

Kawah Putih tourist forest. 

 THE COMPARISON OF CROWD METHODS 

Method Technology Advantages Disadvantages 

Manual Counting[39], [40] 
Observation & ticket 

recording 

Easy to implement, does not require 

advanced technology 
Not real-time, prone to human error 

Sensor-based (RFID/Infrared) 
[40]-[42] 

Motion sensors, RFID, 

IoT 

Accurate in specific environments, works 

without a camera 

Expensive, ineffective for large outdoor 

areas 

Density Map (CSRNet, 

SCNN)[43], [44] 

CNN + Density 

Estimation 

Accurate for crowd estimation, does not 

require bounding boxes 

Cannot count individuals, only estimates 

crowd density 

Object Detection (Faster R-CNN, 

YOLO, SSD)[45] 

Deep Learning + 

Bounding Box 
Real-time, directly detects individuals 

Struggles with occlusion (overlapping 

objects) 

YOLOv8 + Head Counting 
(Proposed Method) 

YOLOv8 + Centroid 
Tracker 

Accurate, fast, and better privacy 
protection compared to body 

Requires specialized head detection dataset 
for improved accuracy 

 YOLO COMPARISON METHODS 

Model 
Speed 

(FPS) 

Accuracy 

(mAP50) 
Advantages Disadvantages 

Faster RCNN [46] 5-10 FPS 96% High accuracy 
Slow, not suitable for real-time 

applications 

SSD (Single Shot MultiBox 

Detector)[47] 
15-25 FPS 88% Fast, suitable for real-time detection Less accurate than Faster R-CNN 

YOLOv5 [48] 50-60 FPS 92.5% Balanced between accuracy and speed Slower than YOLOv8 

YOLOv8 (Proposed Method) 70-90 FPS 94.2% 
Fastest and most accurate for real-time 

detection 

Requires a specialized dataset for optimal 

performance 

 HEAD COUNTING VERSUS BODY COUNTING 

Method Advantages Disadvantages Privacy 

Body Counting More accurate in low-density conditions 
Struggles in crowded conditions, 

overlapping objects 
Poor, as it detects the entire body 

Head Counting 

(Proposed Method) 

More effective in crowded conditions, 

computationally lighter 
Sensitive to camera angle positioning 

Better, as it does not detect facial 

identity or full body 
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The block diagram illustrated in Fig. 2 represents a system 

architecture that comprises three primary components. The 

input layer utilizes the camera as the primary sensor, 

capturing real-time video from the tourist area. In the 

processing layer, the acquired video data is transformed into 

video streaming, with adjustments made to the frames per 

second to align with the system's processing capabilities. 

Processing improved with acceleration based on CUDA 12.6 

to increase the performance of GPU-based computing. The 

gear used consists of an Nvidia GTX 1650 GPU and an Intel 

i5-11300h CPU with 16GB of RAM [38], enhancing the 

execution speed of the YOLOv8 model for detecting 

individuals within the frame. Furthermore, the centroid 

tracker algorithm is utilized to monitor individual movements 

and tally the number of visitors in each video frame [49]. 

Subsequently, the output layer serves as the final stage where, 

upon completion of processing, the detected number of 

visitors is presented through OpenCV.  

All devices are interconnected through physical cable 

connections to guarantee the transmission of data. The 

decision to opt for a cable connection instead of a wireless 

one is influenced by the environmental factors present in 

Kawah Putih, characterized by dense fog, towering 

vegetation, and irregular geographical features. The use of 

cables enhances the system's operational reliability and 

provides resistance to environmental interference, thereby 

ensuring dependable data communication. 

 

Fig. 2. Diagram block of proposed system 

The design of the crowd detection system depicted in Fig. 

2 demonstrates the continuous video capture by the camera, 

which operates at an adjusted FPS [50]. The frame rate 

significantly influences the quantity of frames handled each 

second by OpenCV. YOLOv8 handles each frame on its own, 

meaning that if the frames per second exceed the model's 

processing capability, there may be instances of frame drops, 

resulting in some frames being overlooked and not processed. 

To prevent data loss, the frame rate is set between 10-30 FPS 

[51], striking a balance between processing speed and 

detection accuracy. Once the videos have been processed, 

individuals within the crowd will be identified utilizing the 

identical dataset for every test scenario. The dataset includes 

a variety of lighting and weather conditions, including sunny, 

cloudy, and foggy weather in the Kawah Putih tourist area. 

These variations were used to test the robustness of the model 

in various real environmental situations. When YOLOv8 

identifies a person, OpenCV will outline the individual's head 

with a blue bounding box, along with a confidence score that 

reflects the model's certainty in the detection [52].  

The Centroid Tracker is employed to monitor the 

movement of individuals across successive frames. This 

algorithm establishes a threshold for movement distance, 

ensuring that a single moving individual is not counted 

multiple times across different detections [53]. In the final 

stage, the system calculates the number of bounding boxes 

formed to estimate the total number of visitors in the Kawah 

Putih tourist area. The findings from this detection are 

subsequently presented in the OpenCV visual interface, 

enabling managers to observe the visitor count in real-time 

and with precision [54].  

C. Flowchart System 

The system flowchart is presented in Fig. 3, depicting the 

comprehensive functionality of the system in alignment with 

the employed algorithm. This model is crafted to execute 

crowd counting through the re-identification of individuals 

across video frames [55]. The system is composed of multiple 

interconnected components that collaborate to produce 

precise outcomes.  

 

Fig. 3. Flowchart of the proposed system 
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Fig. 3 illustrates the complete process of the crowded 

detection system from beginning to end. The initial phase of 

the system is activated, leading to the initialization of both 

the software and hardware components involved. During this 

process, parameters including video resolution, the detection 

model employed, and tracking configuration are established 

to ensure optimal system operation. The webcam captures 

video through streaming, and this video is transmitted to the 

system as image frames for the individual detection process 

utilizing YOLOv8. The YOLOv8 object detection model is 

utilized for each frame to detect the presence of individuals 

[56]. Upon detection of an individual by YOLOv8, a 

bounding box is created around the head of each person, 

proceeding to the subsequent stage. If no individuals are 

identified, the system will revert to the video capture phase to 

acquire the subsequent frame.  

The designed bounding box serves to indicate the 

individual's position in the video and acts as a reference for 

the subsequent tracking phase. In the subsequent phase, the 

identified object will be monitored using the centroid tracker 

algorithm to ensure that it is not counted more than once. A 

unique ID will be assigned to each individual to differentiate 

them from others. This identifier is utilized to guarantee that 

the system can identify the same person in later video frames. 

The centroid tracker has been implemented, followed by 

YOLOv8, which will determine the quantity of bounding 

boxes created and the corresponding IDs, representing the 

current number of visitors in the crater area [57]. The Open 

CV display will showcase the processed video, indicating the 

current number of individuals in the crater and the total 

number of visitors to the white crater while the system 

operates [51]. The count of visitors will be consistently 

refreshed as long as the system operates and records 

fluctuations in visitor density patterns. 

D. Ethical Considerations 

Our methodology is deliberately designed to be privacy-

preserving and ethically compliant. All detections and 

analyses focus on anonymous features – specifically, only 

heads are detected, and no facial recognition or personally 

identifying information is used or stored at any point. The 

bounding boxes drawn during annotation and detection do 

not capture facial details, and the system does not attempt to 

re-identify individuals across different sessions or camera 

views. This ensures that visitors remain essentially 

anonymous in the data. By restricting the computer vision 

task to head counting, the design aligns with privacy 

principles such as those outlined in GDPR (General Data 

Protection Regulation) [58], which prohibits identifying 

individuals in surveillance footage without consent.  

The data gathered by this system is limited to aggregate 

metrics (e.g. the number of people present over time) and 

non-sensitive observations like movement patterns. No video 

recordings or images are stored long-term with identifiable 

information. The processing is done in real-time and only 

summary statistics (total counts, dwell times) are retained for 

management use. This system consciously avoids any form 

of profiling – there is no attempt to determine a visitor’s 

identity, demographics, or behavior beyond their presence 

count. The ethical approach was also communicated to the 

park management as stakeholders to maintain transparency 

about the system’s purpose and limitations. In summary, the 

method provides a privacy-aware solution for crowd 

monitoring, focusing solely on operational needs (crowd size 

and flow) without infringing on personal privacy. Therefore, 

it can be ensured that the deployment of AI for smart tourism 

is conducted responsibly, respecting individuals’ rights while 

still providing valuable data for managing tourist areas. 

E. Environmental Conditions and Challenges 

Outdoor deployment introduces several environmental 

challenges for vision-based detection. Variations in weather 

and lighting can significantly affect the reliability of the head 

detection. In Kawah Putih resort area, fog and mist were 

common in the early morning, which tended to lower image 

contrast and obscure distant individuals. The YOLOv8 

detector’s confidence dropped for heads that appeared faint 

or partially transparent due to dense fog. Similarly, harsh 

glare from the sun (especially during morning hours when 

sunlight hits the camera at a low angle) sometimes washed-

out parts of the image, making it difficult for the model to 

detect heads in those overexposed regions. Another challenge 

was heavy rain that might be occurred during intense rainfall, 

the disturbance from rain streaks and water droplets on the 

camera lens occasionally led to false detections or missed 

detections. This system is mitigated some of these issues by 

collecting training data in such conditions and by using image 

preprocessing such as adjusting contrast or applying filters in 

software when needed, but performance naturally dips in 

extreme weather. 

Overall, the system maintained accurate detection in mild 

to moderate environmental conditions, but under very 

adverse conditions (thick fog, direct glare, downpour) the 

detection reliability is reduced. Future improvements could 

include incorporating thermal imaging or radar in such 

conditions, but those are beyond the scope of this research’s 

vision-based approach. 

In terms of subject dynamics, the model showed 

resilience to partial occlusion and rapid motion. Because only 

the head needs to be visible for detection, a person half-

obscured by foliage or another person can still be counted as 

long as their head (or part of it) is exposed. This condition is 

observed that YOLOv8 could detect heads even when visitors 

wore hats or when only the upper part of the head was visible. 

The detector also kept up with visitors moving quickly 

through the frame – at 60 FPS, even a person jogging was 

usually detected in most frames. However, severe occlusions 

and overlapping groups of people remain challenging. If a 

visitor’s head is fully behind another person or an object (e.g. 

a large signboard or tree branch), the model will naturally 

miss that detection[59].  

Similarly, when tourists cluster very tightly, their heads 

can overlap in the camera’s 2D view, effectively appearing as 

a single blob. In such cases, the detector might count them as 

one or miss some heads, leading to an undercount. 

Overlapping heads can also confuse the tracker. For instance, 

two individuals walking side by side might be detected as one 

combined object, or a person passing directly in front of 

another can momentarily merge their detections. These 

scenarios sometimes caused the centroid tracker to switch 
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IDs or generate a short-term duplicate count. This situation is 

addressed by fine-tuning the tracking parameters (as noted, 

the distance threshold) and by implementing a logic to ignore 

implausibly large jumps in count within one or two frames. 

The tracker smooths identities over a few frames, meaning if 

a detection vanishes for one frame and reappears, it is likely 

to be treated as the same person rather than a new entrant. 

This helped reduce flicker in the visitor count. 

Nonetheless, in very dense and dynamic crowds, the 

system can still experience occasional ID switches or 

momentary miscounts. For example, in a crowd scenario 

where many people enter the scene at once, the tracker may 

not perfectly maintain individual identities, causing a person 

to be counted twice or two people to momentarily share one 

ID. Such edge cases are inherent limitations of using only 

vision-based sensing with a single camera view. It will 

quantify these effects in the evaluation step by examining 

instances of counting errors during peak crowd conditions. 

Generally, the errors were small (on the order of a few 

individuals) and infrequent relative to the total count, but they 

underscore the need for continued improvements in multi-

object tracking under heavy occlusion. 

F. Human Detection Using YOLOv8 

YOLOv8 transforms the challenge of object detection by 

reframing it as a single regression problem rather than a 

classification task. This algorithm allows the system to 

analyze the image a single time to identify the objects present 

and their respective locations. The system [60] divides the 

image into a 𝑆 𝑥 𝑆 grid. A bounding box will be created to 

indicate the object's location, accompanied by a confidence 

score that reflects the certainty of the box containing the 

object and the predicted accuracy of the box's estimation [61]. 

In every cell of the image grid, YOLOv8 forecasts the 

bounding box (𝐵_(𝑖, 𝑗)) comprising several key components. 

One of these metrics is the confidence score (𝐶𝑖, 𝑗), which 

indicates the likelihood of an object's presence within a cell 

and the alignment of the prediction with the actual ground 

truth. The calculation of this score is based on the following 

formula (1) and (2). 

𝐼𝑜𝑈(𝐵𝑖,𝑗 , 𝐺𝑇) =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
=  

|𝐵𝑖,𝑗 ∩ 𝐺𝑇| 

|𝐵𝑖,𝑗 ∪ 𝐺𝑇|
 (1) 

𝐶𝑖,𝑗 = Pr(𝑂𝑏𝑗𝑒𝑐𝑡)  × 𝐼𝑜𝑈(𝐵𝑖,𝑗 , 𝐺𝑇) (2) 

The term 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) represents the likelihood of an 

object being present in the cell, whereas Intersection over 

𝑈𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) in formula (1) quantifies the extent of 

alignment between the predicted bounding box and the 

ground truth (𝐺𝑇) bounding box utilized in the training 

process [62]. Following the prediction, YOLOv8 utilizes 

Non-Maximal Suppression (NMS) to eliminate duplicate 

detections. NMS operates by choosing a bounding box that 

exhibits a high confidence score and subsequently comparing 

it with other boxes [63]. When the intersection over union 

(𝐼𝑜𝑈) between the chosen bounding box and other bounding 

boxes surpasses a specified threshold (for instance, 0.5), the 

bounding box that has a low confidence score will be 

eliminated. This process guarantees the retention of only the 

most precise and unique detections, thereby enhancing the 

overall quality of predictions [64]. 

The head detection model was trained on a manually 

annotated dataset of images and video frames captured in a 

real outdoor tourist environment. To enhance robustness, data 

were collected under diverse lighting and weather conditions, 

including morning periods with intense sun glare, mid-day 

scenes with shadowed forest trails, foggy low-contrast 

conditions, and overcast skies. Such diversity in capture 

conditions helps the model generalize to varied real-world 

scenarios and reduces the risk of overfitting [65]. Each image 

was annotated with a bounding box around each visible 

human head. This meticulous manual annotation effort 

ensured high-quality labels for training, which is crucial for 

reliable detection performance. In this condition, despite the 

environmental diversity, the dataset may not fully represent 

all possible visitor appearances. The majority of subjects 

come from the local tourist population, so certain ethnicities, 

clothing styles, or body heights could be underrepresented. 

This bias in the training data poses a risk to generalization – 

as limited diversity in training datasets can lead to biased 

models that perform inconsistently on unseen groups. 

Recognizing this limitation, the system emphasizes cautious 

interpretation of the system’s performance in contexts 

involving demographics or conditions not well covered by 

our data. 

G. Person Tracking with Centroid Tracker 

Centroid tracker algorithms leverage the idea of center 

points to monitor the movement of objects across frames in a 

video. Ensuring consistent object identification across frames 

is a crucial challenge in computer vision, and centroid tracker 

algorithms provide a straightforward and efficient method to 

accomplish this. This method operates by identifying a 

bounding box surrounding an individual's head, referred to as 

an object in the video, and subsequently determining the 

center point of that bounding box. The centroid of each object 

is determined through the following formula (3) and (4) 

𝑐𝑋 =  
𝑥1 + 𝑥2

2
 (3) 

𝑐𝑌 =  
𝑦1 +  𝑦2

2
 (4) 

The Centroid Tracker serves to identify if an individual is 

a novel entity or one that has been tracked previously. In the 

absence of any previously monitored objects, each centroid 

will promptly receive a distinct new identifier [66]. In cases 

where objects have been tracked before, the system will 

determine the Euclidean distance between the newly 

identified centroid and the previously established centroid. 

The equation (5) used to determine the Euclidean distance. 

𝑑 = √(𝐶𝑥1 − 𝐶𝑥2)2 + (𝐶𝑦1 − 𝐶𝑦2)2 (5) 

If the distance falls below a set threshold, the object is 

deemed identical to the previously monitored object, and the 

ID is preserved. When the distance surpasses the established 

threshold, the entity is classified as a novel object and 

assigned a distinct unique ID. Through the examination of 
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centroid movement and the implementation of a distance 

threshold, the bounding box is refreshed to showcase the 

unique ID of each detected object above it. This approach 

guarantees that each person is counted only once and 

preserves consistent identifiers, regardless of any movement 

within the frame. After processing all objects within the 

frame, the algorithm verifies that only the objects currently 

detected are retained in the frame. If an object is not detected 

in the current frame, it is eliminated from the tracking list. 

This guarantees that only objects currently active in the frame 

continue to be monitored. This method additionally aids in 

addressing duplicate detections and enhances the precision of 

real-time individual tracking [67]. The distance threshold for 

the Centroid Tracker is determined through empirical testing 

with several object movement scenarios that have been 

performed. The optimal value is obtained from the average 

maximum distance of movement between frames that can 

still be tracked consistently, which is around 55-75 pixels. 

As previously stated, this system leverages the YOLOv8 

object detection model for head detection, combined with a 

simple Centroid Tracking algorithm for associating 

detections across video frames. YOLOv8 was chosen due to 

its state-of-the-art accuracy and speed, making it well-suited 

for real-time applications[68]. The model was configured to 

detect human heads by training on our annotated head dataset 

(using transfer learning from pre-trained weights). Each 

detected head in a frame is represented by a bounding box, 

and its center point (centroid) is calculated.  

The Centroid Tracker then links these detections frame-

to-frame by comparing the distance between centroids in 

consecutive frames. It is empirically determined an 

appropriate distance threshold for this association process by 

experimentation. In our tests, threshold values of 20 pixels, 

40 pixels, and 60 pixels were evaluated on sample video 

sequences. A moderate threshold is around 55-75 was found 

to work best, as it minimized double-counting and ID 

switches compared to lower or higher values. A too-small 

threshold caused the tracker to lose track of fast-moving 

heads (splitting one person into multiple IDs), while an overly 

large threshold risked merging distinct individuals into one 

track. Ultimately, the chosen distance threshold allowed the 

tracker to reliably maintain each person’s identity as they 

moved through the scene, ensuring that a single individual is 

not counted multiple times.  

This centroid-based data association is a lightweight 

approach that complements YOLOv8’s detections by 

smoothing out frame-by-frame variations. If a detection is 

missing in one frame (due to momentary occlusion or 

detection drop), the tracker will hold the recent centroid 

position for a few frames, effectively smoothing the 

trajectory and preventing immediate loss of count. This 

integration of detection and tracking addresses the common 

issue of double counting when the same person is detected in 

overlapping camera frames or re-enters the scene. 

H. Counting and Display the Result 

The Crowded Detection system utilizes Python code to 

tally the number of individuals present within the camera's 

monitoring area. The visitor count is derived from centroid 

mapping using the bounding box created by YOLOv8, along 

with an analysis of individual movement within the video 

frame. The system utilizes OpenCV [69] presents the 

processed video frames, enabling real-time display of the 

calculation results. In every frame, the system presents the 

count of individuals presently within the monitoring area, 

along with the cumulative total of individuals detected 

throughout the monitoring session [70]. This information 

appears on the screen in a textual format, with colors and font 

sizes modified for optimal readability. Furthermore, the 

system employs bounding boxes along with unique ID 

annotations to guarantee accurate tracking of each detected 

individual across video frames. This method enables the 

system to deliver precise information regarding the number 

of individuals present in the monitoring area, facilitating 

effective crowd management and informed decision-making 

in the Kawah Putih tourist area. 

I. Analysis Techniques 

This study uses the Confusion Matrix method for data 

analysis to assess the performance of the Crowded Detection 

system. This technique is frequently employed in assessing 

classification models to juxtapose system predictions with 

actual outcomes [71], [72]. Key measures, including 

accuracy, precision, recall, and F1-score, can be derived from 

the Confusion Matrix to evaluate the system's efficacy in 

identifying persons under diverse testing settings. The 

Confusion Matrix categorizes detection results into the 

classifications such as True Positive (TP) defines the quantity 

of individuals accurately identified by the system, False 

Positive (FP) that denotes the quantity of entities identified 

by the system that are not genuine individuals (false 

positives). Next, False Negative (FN) that indicate the 

quantity of individuals present in the surveillance region who 

remain undetected by the system. 

The Accuracy parameter reflects the system's 

effectiveness in correctly identifying individuals, including 

both the detection of their presence and the confirmation of 

their absence in a given area. The calculation of accuracy is 

determined by the formula (6). The Precision parameter 

serves as a valuable metric for assessing the ratio of accurate 

positive identifications relative to the total number of positive 

identifications. A greater Precision value corresponds to a 

reduced False Positive value. The system demonstrates a 

strong ability to differentiate between individuals and non-

individual objects. The calculation for Precision is outlined in 

formula (7). In the meantime, the Recall parameter in formula 

(8) is assessed to evaluate the system's effectiveness in 

identifying all individuals within a specified area. A high 

recall value signifies that the system successfully identifies 

all relevant objects that need to be detected.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP

TP + FP + FN
 (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 (8) 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

In the high-density scenario, occlusion and overlapping 

challenges between head objects arise. This causes the system 

to experience a trade-off between precision and recall, which 

has a direct impact on the overall performance. For example, 

when the model is optimized for high recall, the system tends 

to capture more objects, but risks detecting false positives, 

resulting in decreased precision. Conversely, if optimized for 

precision, some objects go undetected (false negatives), 

ultimately lowering recall. In this context, accuracy does not 

adequately reflect performance, as it does not consider the 

distribution of errors. Therefore, the F1-Score metric in 

formula (9) is used to evaluate the balance of precision and 

recall and provide a more realistic picture of performance. 

III. RESULTS AND DISCUSSION 

This chapter provides an in-depth examination of testing 

and the analysis of results. Evaluation is conducted to assess 

the system's effectiveness in identifying, monitoring, and 

quantifying individuals in real-time within a changing 

environment. The trial protocol encompasses 11 test 

scenarios, which include defining the monitoring area, 

methods for camera placement, and various measured 

parameters like detection accuracy, detection speed, and the 

stability of object tracking. The results are analyzed through 

a confusion matrix, employing metrics like precision, recall, 

and F1-Score to assess the system's effectiveness. The test 

results serve as a foundation for pinpointing possible 

enhancements and refining the system prior to its 

implementation in a real-world setting within a tourist area. 

Prior to executing the test, it is essential to establish the 

experimental setup and identify the dataset.  

A. Experiment Setup 

The software utilized for model training in this test 

comprises the Windows 11 operating system, enhanced with 

CUDA 12.6-based acceleration to boost GPU-based 

computing performance. The hardware utilized includes an 

Intel i5-11300h processor paired with 16GB of RAM and an 

Nvidia GTX 1650 GPU, facilitating the effective processing 

of deep learning models. The device utilized in the 

experiment is the Logitech Webcam C270. The development 

and implementation of the model were executed utilizing 

Python 3.10.4.  

B. Dataset 

The dataset utilized in this study is “Survey2,” developed 

by the Center of Excellence Smart Technology and Applied 

Science, comprising a collection of images of visitors to the 

Kawah Putih tourist area. Each dataset is categorized with 

labels, specifically ‘human’ and ‘umbrella’, comprising 425 

images and a total of 5,007 annotations. When developing the 

image dataset for individuals, annotations are categorized 

into two distinct groups: ‘human’ and ‘umbrella’, particularly 

in instances where an umbrella is being utilized. This method 

guarantees that the machine learning model is capable of 

identifying and tallying each individual precisely, despite the 

presence of objects like umbrellas that may obscure portions 

of their bodies [48]. Items with umbrellas are labeled 

individually due to their partial occlusion, which enhances 

precision in crowd counting.  

Furthermore, objects are annotated individually as 

explained in the previous subsection to guarantee that the 

model can effectively manage different degrees of object 

occlusion. Consequently, people adorned with head 

coverings like hats, hoodies, headscarves, and caps remain 

categorized as ‘human’ since these items do not hinder the 

overall visibility of the body. In contrast, umbrellas receive a 

distinct annotation to ensure that individuals beneath them 

are still identifiable, thereby minimizing the risk of incorrect 

detection in busy settings or outdoor scenarios [73].  

This study employs YOLOv8 for the detection of human 

objects, highlighting that the model's accuracy is significantly 

influenced by the quality and specifications of the data 

annotation utilized in the training process. The dataset is 

subsequently partitioned into 70% for training, 20% for 

validation, and 10% for testing purposes [74]. To guarantee 

compliance with the YOLOv8 annotation format, Roboflow 

was utilized to transform the annotations and partition the 

dataset into three primary subsets: the training set, validation 

set, and testing set [75]. The illustration in Fig. 4 presents an 

example image sourced from the annotated dataset. 

 

Fig. 4. Annotation process 

Roboflow serves as the primary tool in the annotation 

conversion process, often referred to as pre-processing. This 

platform is instrumental in supporting the development and 

application of machine learning models, particularly within 

the realms of computer vision and object detection. This 

platform offers a range of tools and services designed to 

streamline data preparation, model training, and the 

implementation of models in both production and testing 

environments. Data preparation plays a crucial role in 

enhancing the precision of object identification in images or 

video recordings. A compilation of visuals and recordings 

from tourist destinations is gathered and labeled. The primary 

emphasis of the annotation is on individuals, whether they are 

walking solo, in groups, or utilizing umbrellas.  

Following the object annotation phase, image resizing 

and augmentation techniques are applied to enhance the 

variety of the training data. This includes adding noise, 

adjusting exposure, increasing brightness, introducing color 

aberration, applying occlusion, and modifying saturation. 

This technique focuses on enabling the model to identify 

individuals even in challenging image quality situations, 

fluctuating lighting, diverse camera angles, and foggy 

environments, which frequently occur in practical scenarios 

[76]. Upon completion of the training process, the model 
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underwent testing with the mean Average Precision (mAP) 

metric to verify its performance in real-world conditions, 

yielding a value of 0.84. This value is regarded as favorable, 

given that the size of the head in the crowd image is quite 

small, which introduces further challenges in detection.  

C. Experiments 

In this test of the Crowded Detection system, a total of 

eleven distinct scenarios were executed to assess the 

effectiveness of object detection in relation to the camera's 

position and distance from the monitored area. The test lasted 

for a consistent duration of an hour of system operation. The 

first scenario took place in an indoor setting, featuring a 

maximum camera distance of 10 meters, as illustrated in Fig. 

5. 

 

Fig. 5. Indoor experiment with low light intensity 

In this situation, the camera is set up indoors where 

lighting is consistent and the room is relatively dark, 

alongside a light source, while the object being detected 

exhibits minimal movement because of the confined 

environment. The objective of this scenario is to examine 

how the system identifies individuals in optimal conditions 

with minimal disruption [77].  

In the second scenario, testing continues in an indoor 

environment, but now with an increased camera distance of 

20 meters, accompanied by adequate room lighting. The 

primary challenge in this scenario is ensuring detection 

accuracy when subjects are positioned at a greater distance 

from the camera [78], and ensure that indoor lighting does not 

interfere with system performance. The test system for this 

scenario can be seen in Fig. 6 

 

Fig. 6. Indoor experiment with bright light intensity  

Fig. 7 displays the test results for third scenario. The 

camera is positioned in an outdoor setting, with a maximum 

distance of 10 meters from the subject being observed. The 

camera is positioned at an elevated height to monitor the 

movement of people in an open space, where elements like 

natural light, shadows, and the presence of non-human 

entities such as animals or objects may influence the 

detection outcomes.  

 

Fig. 7. 10m of camera setting at outdoor area 

In the fourth scenario, the camera is positioned at a 

distance of 20 meters in an outdoor setting, as illustrated in 

Fig. 8. The system undergoes testing over extended distances 

to evaluate its ability to effectively detect and accurately 

identify individuals within a broader open environment. This 

includes assessments under diverse lighting conditions, 

accounting for fluctuations in light intensity throughout the 

day and into the evening.  

 

Fig. 8. 20m of camera at outdoor scenario result 

The fifth scenario presents a significant challenge 

regarding the placement of the camera in an outdoor 

environment, particularly given that the observation distance 

may reach up to 50 meters. The scenario illustrated in Fig. 9 

aims to assess the system's ability to recognize individuals 

from a distance, while also examining the model's capacity to 

maintain accuracy as the size of the individual captured by 

the camera decreases. This scenario involves a critical 

assessment of factors including background interference, 

limited camera resolution, and the influence of light. This 

scenario facilitates a thorough assessment of the system's 

performance under different environmental conditions, 
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encompassing both controlled indoor lighting and the 

complex visual challenges found in open areas [79].  

 

Fig. 9. 50 m of camera at outdoor  

The sixth scenario focuses on evaluating the system's 

performance within a foggy crater environment, specifically 

analyzing the algorithm's effectiveness in identifying 

individuals under conditions of diminished visibility. The 

condition depicted in Fig. 10 poses notable challenges, as fog 

obscures object features and reduces detection accuracy. 

 

Fig. 10. Foggy scenario 

The seventh scenario is conducted with various camera 

angle variations to verify the system's ability to adjust to 

shifts in perspective. Adjustments in camera angles influence 

how objects are perceived within the frame, necessitating an 

assessment to identify the most effective angle that ensures 

maximum accuracy. Fig. 11 illustrates the camera angles 

captured, highlighting the white crater area located on the 

right side of the region 

 

Fig. 11. Different perspective at foggy scenario 

The eighth scenario simulates a crowded environment to 

evaluate the effectiveness of the Centroid Tracker in 

preventing the double counting of individuals. In this 

scenario, multiple entities may be in proximity or intersect, 

necessitating the system's capability to monitor each object 

without losing sight of it. In this situation, a relatively busy 

corner is utilized as shown in Fig. 12 to guarantee that the 

centroid tracker functions at its best. 

 

Fig. 12. Crowded moving scenario  

The nineth scenario show features a video that displays 

human figures, including not just the head but also the person 

holding an umbrella, as illustrated in Fig. 13. This assessment 

seeks to evaluate the system's capability to recognize the 

individual despite certain body parts being obscured by 

external objects, like an umbrella that may lead to occlusion. 

 

Fig. 13. Obstacle scenario result 

Furthermore, the tenth scenario involves a comparison 

between low-resolution cameras depicted in Fig. 14 and high-

resolution cameras shown in Fig. 15, mirroring the approach 

taken in scenario 4, to assess the impact of image quality on 

object detection. The reduction in resolution may obscure 

object details, thus this test seeks to explore the boundaries of 

the system's detection abilities across different camera 

resolution levels. 

Ultimately, the eleventh scenario evaluates the system's 

performance in backlight conditions, where the light source 

is positioned behind the object, resulting in a silhouette effect 

and diminishing the visibility of object details. This condition 

evaluates the model's ability to withstand challenges posed 

by low contrast and lighting constraints. 
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Fig. 14. Low resolution scenario result 

 

Fig. 15. High resolution scenario result 

 

Fig. 16. Backlight scenario 

The results of these eleven scenarios will be analyzed to 

assess the overall system, aiming to optimize its performance 

across different environmental conditions and enhance the 

reliability of real-time object detection, focusing on 

precision, recall, and F1-Score metrics. This analysis reveals 

which scenario yields the highest accuracy in individual 

detection while also highlighting the system's limitations 

under different conditions [80]. The scenario with the highest 

precision and recall will be considered the best position[81], 

meanwhile, scenarios characterized by low accuracy will 

serve as a benchmark for subsequent enhancements and 

optimizations of the system.  

D. Discussion 

This system introduces a visual counter designed to 

monitor the number of visitors in the tourist area of Kawah 

Putih. The proposed system utilizes YOLO version 8 in 

conjunction with a centroid tracker. The system underwent 

testing across eleven scenarios, with the results being 

analyzed through a comparison with the confusion matrix and 

the evaluation metrics calculated. Table IV presents the test 

results of the crowded detection system.  

 COMPARISON OF SCENARIO RESULTS 

Scenario Accuracy Precision Recall F1-Score 

1 0.9 0.92 0.96 0.94 

2 0.95 0.98 0.96 0.97 

3 0.86 0.97 0.88 0.92 

4 0.92 0.98 0.97 0.98 

5 0.63 0.9 0.675 0.78 

6 0.76 0.97 0.78 0.86 

7 0.8 0.95 0.78 0.85 

8 0.87 0.95 0.91 0.93 

9 0.83 0.97 0.84 0.9 

10 0.62 0.91 0.65 0.77 

11 0.89 0.92 0.96 0.94 

 

The test results presented in Table IV provide a basis for 

evaluating the system. Multiple findings indicate the 

influence of environmental and technical factors on the 

performance of the crowded detection system. In the first and 

second scenarios, specifically indoors at distances of 10m and 

20m, the system demonstrates strong performance, achieving 

accuracy levels of 0.9 and 0.95, respectively. Such high 

accuracy in indoor tests is attributed to stable lighting and 

uncluttered backgrounds, which make head features easier to 

detect. The precision and recall were likewise very high in 

these cases, indicating nearly all individuals were correctly 

identified. These findings are consistent with prior 

observations that controlled indoor conditions (minimal 

illumination changes and simpler backgrounds) tend to 

enhance model accuracy. The elevated precision, recall, and 

F1-Score suggest that the system operates effectively in 

indoor environments with minimal external disruption. The 

findings align with earlier research, indicating that indoor 

environments generally exhibit greater stability regarding 

lighting and background, which subsequently enhances the 

accuracy of the detection model [82]. 

In outdoor testing, the accuracy showed a slight decrease 

at a distance of 10m, dropping by 0.86, but improved at 20m, 

rising to 0.92. The slight drop in accuracy for outdoor clear 

scenarios (compared to indoors) could be due to more 

complex backgrounds and lighting variability; nonetheless, 

the system maintained robust detection capability when 

visibility was good, and no extreme factors were present. The 

metrics of precision and recall were consistently elevated, 

suggesting that the system maintained its capability to 

accurately identify individuals despite minor environmental 

disruptions [83]. In the fifth scenario, with the distance 

extended to 50m, there is a significant decline in accuracy to 

0.63, recall decreases to 0.675, and the F1-score achieves 

only 0.78. The observed decrease suggests that, over greater 

distances, the model encounters challenges in accurately 

identifying objects. This is primarily attributed to the 

camera's limited resolution and the potential presence of 

obstacles in the outdoor setting [84].  

The sixth scenario which evaluates performance in foggy 

conditions, demonstrates a notable effect on system accuracy, 

achieving a score of 0.76 a significant decline from the 0.9 

level in clear conditions. This fog scenario (with heavy mist 

obscuring the scene) particularly challenged the model – fog 

introduces image distortion and reduces contrast, making it 

difficult for YOLOv8 to recognize head features [85], [86]. 

In fact, many heads that would be detected in clear air were 

missed in fog, likely because the blurred, low-contrast visual 
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cues failed to trigger the detector or matched with insufficient 

IoU against the true head locations. Similarly, at long-range 

distances, the system struggled when the camera was placed 

roughly 50 m away from the crowd, accuracy dropped to 

0.63. At this range, the recall of the detector also plummeted 

(to 0.67). It indicating that a large fraction of people in the 

scene was not detected at all. The primary causes are the great 

distance (making each head occupy only a few pixels) and 

potential occlusions or background clutter at long range – the 

model cannot reliably distinguish or localize very small heads 

under those conditions. Notably, in both the foggy and 50 m 

scenarios, the precision remained relatively high (0.90), 

meaning when a head was detected it was usually a correct 

detection (few false positives). This pattern suggests the 

model became conservative under difficult conditions, 

avoiding spurious detections but missing many true heads. 

Such performance trade-offs underscore the challenge of 

maintaining high recall in low-visibility (fog) or low-

resolution (distant) settings. 

The seventh scenario which evaluates variations in 

camera angles, the observed accuracy is 0.8. The findings 

indicate that the system demonstrates a notable adaptability 

to variations in camera angles, despite a minor reduction in 

accuracy. In scenario 8, which simulates crowded movement, 

the accuracy rises to 0.87, accompanied by an F1-Score of 

0.93. The result indicates that the system effectively manages 

individual movement within a crowd. The implementation of 

a centroid tracker likely enhances the system's capability to 

track objects while minimizing redundant calculations [52]. 

The nineth which evaluates the dataset involving 

individuals using umbrellas, the accuracy experiences a 

minor decline to 0.83. This suggests that the model continues 

to struggle with identifying individuals whose bodies are 

obscured by surrounding objects [87]. The tenth scenario 

characterized by a low resolution, demonstrates a notable 

decline in accuracy to 0.62 when contrasted with the fourth 

scenario, which features a high image resolution. The 

findings indicate that camera resolution is crucial for 

detection accuracy, as increased resolution enables the model 

to capture finer details. The eleventh scenario which 

evaluates indoor backlight conditions, the accuracy rises to 

0.89, accompanied by a recall of 0.96. This outcome indicates 

that while backlight can influence visitability, more regulated 

indoor conditions enable the model to maintain strong 

performance [88]. The test results indicate that environmental 

factors, including distance, visitability, viewing angle, and 

camera resolution, significantly influence the performance of 

the crowd detection system.  

The graph in Fig. 17 presents a comparison of the results 

from all tests. By evaluating these factors, future system 

development can concentrate on improving model adaptation 

to increase accuracy, precision, recall, and F1-Score to 

improve system performance[89]. In scenarios with 

occlusion, the IoU value tends to be lower because part of the 

object is covered, leading to detection errors. Similarly, in 

low contrast conditions, the difference between the object and 

the background becomes difficult to distinguish, which also 

leads to a decrease in the IoU value. This can be overcome by 

improving the detection model by increasing the variety of 

data provided the camera resolution and lighting are stable. 

To further illustrate the system's performance variability 

across different environmental contexts, a heatmap was 

generated to visualize detection accuracy under five distinct 

testing scenarios as seen in Fig. 18. The heatmap clearly 

demonstrates that indoor environments consistently yield the 

highest accuracy, with values of 0.90 at 10 meters and 0.95 at 

20 meters, likely due to stable lighting and minimal 

background clutter. Similarly, the outdoor test under clear 

weather conditions at a moderate range (10–20 meters) 

resulted in high accuracy (0.92), confirming the system's 

robustness when environmental visibility is optimal. 

However, the heatmap also highlights notable drops in 

accuracy under challenging conditions. In foggy outdoor 

scenarios, accuracy declined significantly to 0.76, reflecting 

the model's difficulty in detecting low-contrast, obscured 

head features. The most severe performance drop was 

observed in the long-range (50 meter) outdoor test, where 

accuracy fell to 0.63. This decrease is attributed to several 

compounding factors: reduced object size in the frame, 

increased occlusions, and background complexity—all of 

which impair the model’s ability to reliably detect and track 

small, distant heads. 

Overall, the heatmap emphasizes the importance of 

environmental context in determining the detection success 

rate. It provides a compelling visual summary that supports 

the argument for incorporating environment-aware 

adaptations, such as multi-camera setups or sensor fusion, to 

sustain accuracy across diverse real-world deployments. 

To contextualize the system’s performance, a comparison 

with existing studies is essential shown in Table V. In a study 

conducted by Wang et al. [28] YOLOv5 was used for 

pedestrian detection in a semi-crowded outdoor environment 

and achieved an average accuracy of 88.3% with inference 

speeds around 45 FPS. While effective, the system faced 

limitations in high-density settings, particularly due to 

occlusion and overlapping subjects. 

In contrast, the proposed system using YOLOv8 and head 

counting achieved an average accuracy of 94.2% and 

maintained real-time performance exceeding 60 FPS, even in 

complex scenarios such as overlapping heads and varied 

lighting. This demonstrates a notable improvement not only 

in detection precision but also in system responsiveness and 

efficiency—making it more suitable for deployment in 

dynamic tourism environments. The developed head 

detection and tracking system was evaluated in eleven 

different scenarios encompassing indoor and outdoor 

environments, varied distances, and challenging conditions. 

Overall, the system achieved high performance under ideal 

conditions – for instance, the average detection accuracy 

reached 94.2% (with precision 95.1% and recall 90.6%) in 

the test environment, and it maintained real-time processing 

speeds (>60 FPS) on a PC-grade GPU. These results confirm 

that YOLOv8 with head-focused detection provides accurate 

and efficient crowd counting in a controlled setting. 

However, the accuracy and reliability varied significantly 

across scenarios, highlighting the impact of environmental 

factors on the system’s performance. 
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Fig. 17. Scenario comparison result

 

Fig. 18. The heat map of accuracy across environmental scenarios 

 Additionally, a study by Nguyen et al. [25] applied a 

conventional body-counting method using Faster R-CNN in 

a controlled indoor environment, reporting high precision 

(94%) but low frame processing speed (under 10 FPS), 

rendering it impractical for real-time applications in the field. 

Unlike that study, our system emphasizes head-based 

detection for privacy, and combines detection with Centroid 

Tracking, effectively reducing double counting errors—an 

issue often overlooked in earlier research. 

The results of this study have several implications both 

practically, socially, and academically. The developed 

system effectively facilitates smart tourism management 

through the provision of real-time visitor information. This 

enables destination managers like Wana Wisata Kawah Putih 

to optimize capacity management, organize visiting 

schedules according to visitor density, and mitigate 

congestion and associated safety risks. This system enhances 

efficiency by decreasing reliance on manual labor for visitor 

count recording, thereby minimizing the potential for human 

error. 

The head counting approach employed effectively 

preserves visitor privacy by ensuring that it does not identify 

faces or personal identities, which is significant from both 

social and ethical viewpoints. This aligns the system with the 

principles of personal data protection and supports ethical 

application in public spaces. Therefore, this system 

demonstrates both technical effectiveness and social 

responsibility. 

The proposed system exhibits notable performance in 

real-time head detection and visitor counting; however, it is 

important to acknowledge the presence of several limitations. 

This system’s generalizability remains limited by the scope 

of testing. All experiments were conducted in a single tourist 

location (Kawah Putih), using a dataset of visitors from that 

site. As a result, the model is tuned to the environmental 

characteristics and crowd demographics of this one location. 

In practice, other tourist destinations may have different 

background scenery, architectures, or vantage points (e.g. 

urban settings, beaches, museums) that could confuse a 

model trained mostly on forest crater images. Likewise, 

crowd demographics and behaviors can vary – for example, 

visitors in other locations might wear different styles of 

clothing or hats, move in different patterns, or have different 

group sizes. These differences may affect the head detector’s 

accuracy if it encounters images unlike those in its training 

set. Therefore, further validation is needed to confirm the 

system works well on diverse locations and populations. The 

current results, while positive, are site-specific; deploying the 

model elsewhere might require additional training data or 

calibration. Expanding the dataset to include a broader range 

of environments (e.g. other tourist attractions with varying 

climates, cultural attire, and crowd densities) would improve 

the model’s robustness and ensure it generalizes beyond 

Kawah Putih. 

The detection accuracy diminishes as the distance 

increases, particularly past 30 meters. This decline is 

attributed to the smaller size of the detected object, 

complicating the YOLOv8 model's ability to accurately 

identify heads. The system exhibits challenges when faced 

with extreme lighting conditions, including backlighting, 

pronounced shadows, or low-light scenarios during 

nighttime. The positioning and orientation of the camera play 

a crucial role in detection performance, as less than ideal 

angles may lead to occlusion or partial visibility of the 

subject. 
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 COMPARISON WITH OTHER STUDIES 

Study Methods Accuracy FPS Environment Advantages Limitation 

Wang et al. 

[28] 
YOLOv5 88.3% 

~45 

FPS 
Regular outdoor Fast detection 

Less effective in crowded 

scenes 

Nguyen et al. 

[25] 
Faster R-CNN 94% 

<10 

FPS 
Indoor High accuracy 

Not suitable for real-time 

use 

This study 
YOLOv8 + Head + 

Tracker 
94.2% 

>60 

FPS 

Real-world 

outdoor 

Accurate, real-time, privacy-

aware 

Accuracy decreases at long 

range 

Another important consideration is the hardware 

limitation for real-world deployment. The system was tested 

using a PC with an Intel i5 CPU and an NVIDIA GTX 1650 

GPU (as noted in the experiment setup), which easily handled 

the YOLOv8 model at high frame rates. Although the system 

functions effectively on conventional computing devices, it 

has not undergone comprehensive testing on low-power edge 

hardware like the Jetson Nano or Raspberry Pi. However, 

many tourism sites would prefer to run such a system on low-

power edge devices (for example, an NVIDIA Jetson Nano) 

for portability and cost reasons. Deploying YOLOv8 on a 

Jetson Nano is challenging – this compact device offers 

substantially less processing power and no high-end GPU, so 

the inference speed would be much lower. In fact, the model 

has not yet been fully tested on such edge hardware in our 

study[90]. Prior experience shows that achieving real-time 

(>25–30 FPS) object detection on a Nano often requires 

careful optimization, and even then, performance may only 

reach a limited frame rate. For instance, running a heavy 

YOLO model on Jetson Nano might yield only single-digit 

FPS without optimizations, far from the 60 FPS observed on 

the PC. This gap means that additional strategies like model 

quantization, pruning, or using a smaller YOLOv8 variant 

(e.g. YOLOv8n – nano model) would be needed to meet real-

time requirements on edge devices. Ensuring efficient 

operation on edge hardware is crucial for practical 

deployment in remote tourist sites that lack robust computing 

infrastructure. 

A key advantage of this head-counting approach is its 

inherent respect for data privacy. The system deliberately 

avoids full-body or face recognition – it only detects and 

counts anonymous heads. This means it does not capture 

personally identifying features of individuals, aligning the 

system with privacy protection regulations. In jurisdictions 

with strict data laws (such as Europe’s GDPR), video 

monitoring that can identify people is often considered a 

privacy breach unless consent is given. By focusing on heads, 

our method sidesteps this issue. It cannot reveal someone’s 

identity, only their presence as part of a crowd. This 

significantly reduces regulatory and ethical risks, making the 

crowd monitoring more acceptable to the public and to 

authorities. The output is purely statistical (number of people 

and their movements) without profiling any individual. This 

privacy-by-design approach not only helps comply with laws 

but also fosters public trust, since visitors are less likely to 

feel that they are being personally surveilled. In summary, the 

choice of head-based detection provides a meaningful social 

benefit in that it enables effective crowd management without 

intruding on personal privacy, marrying technological 

capability with ethical responsibility. 

Future work ought to prioritize the expansion of the 

dataset to encompass a broader range of environmental 

conditions, such as night scenes, rain, fog, and different 

angles. Evaluating and refining the model for embedded 

systems and edge devices will be essential for effective 

deployment. Furthermore, the incorporation of alternative 

tracking algorithms, such as DeepSORT or Kalman Filter, 

could potentially improve object tracking accuracy and 

minimize counting discrepancies. The integration of multiple 

cameras and cloud-based data analytics can enhance 

scalability, allow for monitoring across different locations, 

and support predictive crowd management in smart tourism 

applications. 

Besides, to mitigate the performance drops observed 

under challenging conditions and to address the above 

limitations, several enhancements can be explored [74]such 

as, multi-camera setup covering different angles or areas can 

help overcome occlusions and blind spots[91], and 

incorporating thermal infrared cameras could allow detection 

of people’s heat signatures in low-visibility conditions 

(nighttime or heavy fog). By fusing thermal imaging with the 

RGB camera input, the system could detect heads that are 

invisible or vague on the regular camera, thereby addressing 

scenarios with poor lighting or weather-related visibility loss. 

This multi-modal approach would likely increase detection 

recall when standard vision falters (e.g. detecting warm heads 

through mist or in evening hours). 

Furthermore, the system can implement an adaptive 

resolution strategy to balance detail vs. speed. For example, 

the camera could capture at high resolution to detect small, 

distant heads (improving accuracy at long range), but the 

processing pipeline could downsample less critical portions 

of the image or use region-of-interest upscaling. Another 

approach is to run a lighter model or lower resolution when 

the crowd is sparse or close (ensuring faster inference), and 

switch to higher resolution or a more powerful model only 

when needed (e.g. when crowd density increases or people 

are far away). Such dynamic adjustments can maintain better 

accuracy without overwhelming limited hardware resources. 

By tuning the input size or model complexity on the fly, the 

system could stay near real-time on devices like Jetson Nano 

while still capturing important details for far or small targets. 

IV. CONCLUSIONS 

This research outlines the development of a real-time 

privacy-preserving visitor monitoring system based on 

YOLOv8 head detection and centroid tracking, designed to 

address overtourism challenges in natural tourist 

environments. The system demonstrated promising results in 

both indoor and outdoor scenarios, with high detection 

accuracy under optimal conditions and effective real-time 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2001 

 

Kurnia Wijayanti, Non-Intrusive Real-Time Tourist Crowd Monitoring for Overtourism Mitigation using YOLOv8-Based 

Head Detection and Tracking 

performance on mid-range hardware. By focusing solely on 

head counting, the system minimizes privacy risks commonly 

associated with facial recognition or identity tracking, 

offering a more ethically acceptable alternative for public 

surveillance. This design choice aligns with global data 

protection frameworks such as the GDPR, ensuring that 

individuals are not identifiable, and no personal data is stored. 

Experiments conducted at Wana Wisata Kawah Putih 

reveal that the system effectively detects and counts 

individuals in real-time, achieving an average accuracy of 

94.2%, precision of 95.1%, and recall of 90.6%, all while 

sustaining performance speeds exceeding 60 FPS. The 

incorporation of Centroid Tracking enhances tracking 

reliability and reduces instances of double counting, 

particularly in situations with overlapping objects and 

elevated crowd density. The implementation of automatic 

data annotation alongside a varied dataset has led to enhanced 

model generalization across different lighting and 

environmental conditions. 

However, the practical deployment of this system in real-

world environments presents notable challenges. The 

system's detection performance declined significantly at 

long-range distances (>30 meters) and in adverse weather 

conditions such as fog or direct glare. These limitations could 

severely impact the effectiveness of the solution in large, 

open, or sparsely monitored sites, where distant or partially 

visible visitors are common. In such settings, detection 

reliability becomes critical for informed decision-making and 

crowd control. Addressing these challenges will require 

complementary strategies, such as multi-camera networks, 

thermal imaging integration, or adaptive input scaling, to 

ensure robustness across diverse environmental contexts.  

Beyond environmental constraints, ethical and social 

considerations must also be addressed. While head detection 

avoids identity capture, public surveillance still raises 

concerns regarding data governance, transparency, and 

informed consent, especially in regions with limited digital 

literacy. Moreover, the dataset used in this study, while 

manually curated and environmentally diverse, may not fully 

represent the global variation in ethnicity, attire, and head 

profiles. This lack of demographic diversity poses a risk of 

algorithmic bias, potentially leading to unequal performance 

across visitor populations. Ensuring fairness in detection 

outcomes is essential to uphold inclusivity in smart tourism 

technologies. 

From a technical perspective, the computational demands 

of running YOLOv8 at >60 FPS are considerable and may be 

incompatible with low-power or infrastructure-constrained 

deployments. Although the system performed well on a GTX 

1650 GPU, replicating this performance on edge platforms 

such as Jetson Nano or Raspberry Pi remains a challenge. To 

make the solution scalable, future work should prioritize 

hardware-specific optimization, such as model pruning, 

quantization, or TensorRT acceleration, and conduct 

comprehensive field testing on lightweight embedded 

devices. Additionally, further studies should evaluate the 

trade-offs between accuracy, model complexity O (n log n) 

tracking, and power consumption to adapt the system for 

sustainable, low-footprint applications in remote 

destinations. 

Ultimately, this research contributes to the broader vision 

of ethical AI for public space management, where 

technological innovation is aligned with both environmental 

stewardship and human rights. By enabling data-driven 

visitor management without compromising individual 

privacy, the proposed system helps mitigate the ecological 

strain of overtourism while respecting social boundaries. This 

approach directly supports Sustainable Development Goals 

(SDG 11: Sustainable Cities and Communities, and SDG 15: 

Life on Land) by promoting responsible tourism and 

biodiversity protection. As a next step, the team aims to 

deploy and validate the system on Jetson Nano for real-world 

field testing, with the goal of developing a fully deployable, 

cost-effective, and ethically responsible solution for smart 

tourism infrastructures worldwide. 
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