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Abstract—This paper presents a comprehensive 

comparative study of several metaheuristic optimization 

algorithms with the aim of identifying the most effective method 

for solving well-established engineering design problems. The 

algorithms selected for this study include Sperm Swarm 

Optimization (SSO), Chernobyl Disaster Optimizer (CDO), 

Bermuda Triangle Optimizer (BTO), Marine Predators 

Algorithm (MPA), and Particle Swarm Optimization (PSO). 

These algorithms are tested and evaluated through both 

qualitative and quantitative analyses.The first phase of testing 

involves applying the algorithms to a set of benchmark functions 

from the Congress on Evolutionary Computation (CEC) 2017 

suite. Key performance indicators such as best fitness value, 

standard deviation, and mean are used to measure solution 

quality, while convergence curves are analyzed to assess 

optimization efficiency over iterations. This allows for a robust 

evaluation of each algorithm's ability to balance exploration and 

exploitation in the search space. In the second phase, the 

algorithms are implemented to solve real-world engineering 

design problems, including Speed Reducer Design, Pressure 

Vessel Design, Cantilever Beam Design, and Robot Gripper 

Optimization. These case studies further validate the practical 

applicability and versatility of the algorithms in handling 

complex, multidimensional, and constrained optimization tasks. 

The results indicate varying levels of performance across 

different problems, highlighting the strengths and limitations of 

each method. This comparative insight provides valuable 

guidance for researchers and practitioners in selecting suitable 

optimization techniques for specific engineering challenges. 

Keywords—Swarm Based Optimization Algorithms; Physical 

Based Optimization Algorithm; Speed Reducer Design; Pressure 

Vessel Design. 

I. INTRODUCTION  

The process of creating a large number of potential 

candidate solutions in order to identify the optimal one that 

will provide the least amount of value or the most amount of 

value for the given issue is known as optimization [1]-[6]. 

One popular method for solving derivative optimization 

issues is gradient descent [7]-[11]. Derivatives can produce 

exact optimum solutions, but they can also render NP-hard 

problems intractable quickly due to their exponential 

processing cost [12]-[16]. Because of this, scientists are now 

investigating other techniques that yield almost flawless 

results in a manageable polynomial period of time [17]-[19]. 

Metaheuristics have been a major focus of algorithmic 

and artificial intelligence research in the last few decades 

[20]-[25]. They provide a strong substitute for traditional 

gradient-based mathematical techniques in the resolution of 

challenging optimization issues [26]-[31]. These methods 

have the benefit of being able to generate almost flawless 

responses in a reasonable amount of time. Metaheuristics are 

better than earlier approaches because of their ease of use, 

scalability, and adaptability [32]-[36]. Their diversity, wide 

range of applications, and adaptability have also spurred 

study into the creation and improvement of several 

optimization problem-solving strategies [37][38][39]. 

Optimization has developed to tackle a wide range of 

difficult, high-dimensional problems [40]-[44]. 

This is especially relevant when problems like non-

linearity, discontinuity, or non-convexity in the objective 

function make standard gradient-based techniques inadequate 

[45]-[49].  Four main categories of metaheuristic algorithms 

can be bifurcated to generate an optimal solution to different 

kinds of problems. These categories can be listed in Table I, 

which are physical based, swarm based, evolutionary based 

and manmade optimization algorithms. 

Recent, optimization algorithms have a vast range of 

applications in various domains such as biology, economics, 

and engineering [61]-[66]. These algorithms are developed to 

solve complex problems efficiently and quickly [67]-[71]. 

The exploration and exploitation principles should be applied 

by the aforementioned categories of algorithms in an effort to 

reach at the global optimal solution.  The capacity of an 

algorithm to identify every aspect of a problem's dimension 

is known as the exploration principle.  Conversely, 

exploitation describes an algorithm's capacity to arrive at the 

best possible answer to a problem. 

Hence, these algorithms strive for equilibrium among the 

previously listed principles [72][73][74]. Bermuda Triangle 

Optimizer (BTO) [50], Chernobyl Disaster Optimizer (CDO) 

[52][75], Sperm Swarm Optimization (SSO) [54], Marine 

Predators Algorithm (MPA) [76], and Particle Swarm 

Optimization (PSO) [77] are well-known optimization 

algorithms that have various advantages. These advantages 

can be listed as follows: 
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TABLE I.  METAHEURISTIC ALGORITHMS AND THEIR ACRONYM AND 

CITATION 

Category Algorithm Acronym Citation 

Physics-
based 

Bermuda Triangle 

Optimizer 
BTO Shehadeh [50] 

AtomSearch 
Optimization 

ASO Zhao et al. [51] 

Chernobyl Disaster 

Optimizer 
CDO Shehadeh [52] 

Swarm-
based 

Sand Cat Swarm 
Optimization 

SCSO 
Seyyedabbasi 
and Kiani [53] 

Sperm Swarm 

Optimization 
SSO 

Shehadeh et al. 

[54] 

Greylag Goose 
Optimization 

GGO 
El-Kenawy et 

al.[55] 

Elk herd optimizer EHO 
Al-Betar et 

al.[56] 

Evolutionary 
based 

Synergistic 
fibroblast 

optimization 

SFO 
Dhivyaprabha 

et al. [57] 

Differential 
evolution 

DE 
Storn and Price 

[58] 

Manmade 

optimization 

Fireworks 

Algorithm 
FA Tan et al. [59] 

 Harmony Search HS Geem et al. [60] 

 

• PSO, MPA and SSO are simple to understand and utilize. 

• Usually, PSO simply needs to be adjusted for the inertia 

weight, cognitive coefficient, social coefficient. This 

simplicity in tuning of parameters helps reduce error 

appearance in code. 

• SSO uses random value in its procedure, such as Ph value, 

and temperature value, which are an exact values of 

female reproduction system vital signs. To prevent gaps 

between these parameters SSO applies the logarithm to 

normalize these tuning of parameters and help reduce 

error appearance in code.  

• SSO and PSO converge faster in many problems.  

• SSO, MPA and PSO can be used to solve a wide variety 

of optimization problems, such as both continuous and 

discrete issues, solving multiple objectives optimization 

problems, and solving problems with and without 

constraints. 

• Existing traditional methods, struggle with high-

dimensional constraints; SSO’s adaptive penalties offer 

superior convergence. 

• Novel Inspiration of CDO and BTO draws from a unique 

and impactful of real and historical events, which offer 

fresh principles in optimization techniques. 

• CDO and BTO balance between exploration and 

exploitation strategies by avoiding local optima, the 

architectures of them enable efficient exploration of the 

solution space domain of any problem. 

• CDO is powerful, and efficient approache to solving 

complex optimization problems.  

• CDO uses random values of tuning parameters, which are 

the exact values of human walk speed, gamma particle, 

beta particle, alpha particle spreading speeds. In addition, 

it normalizes these values by applying the logarithm on 

them.  

• BTO also apply random values in its procedure to skep 

local minima. 

Based on the aforementioned advantages, we are 

motivated in this paper to do a comparative study of these 

algorithms by measuring the efficiency of them with existing 

CEC 2017 benchmark functions. In addition, to determine the 

better algorithm between them that could solve engineering 

designing problems [78]-[82]. This paper is organized as 

follows: Section 2 presents the review on optimization 

algorithms and their categories. Section 3 describes the 

experimental setup and presents the results of SSO, CDO, 

BTO, MPA, and PSO in solving CEC and engineering 

problems. We conclude the paper in Section 4. 

II. LITERATURE REVIEW 

In this paper, we choose Sperm Swarm Optimization 

(SSO), Chernobyl Disaster Optimizer (CDO), Bermuda 

Triangle Optimizer (BTO), Particle Swarm Optimization 

(PSO), and Marine Predators Algorithm (MPA) to review on 

them and to use them in purpose of optimizing some well-

known engineering problems.  

A.  Sperm Swarm Optimization (SSO) 

Shehadeh et al. [54] suggested "Sperm Swarm 

Optimization (SSO)," a novel optimization technique that 

simulates the swarm of sperm swimming to reach the egg 

during fertilization. This process is depicted in Fig. 1. 

 

Fig. 1. Fertilization process 

The initial velocity, current velocity, and global velocity 

are the three velocities of the swarm. The winner of the global 

one is the sperm that is closest to the egg. Fig. 1 shows this 

velocity [12]. The following mathematical models depict 

these velocities. The temperature and pH values, which are 

random values between 35.1 and 38.5 and 7 and 14, 

respectively, have an impact on the previously indicated 

velocities. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑙𝑜𝑐𝑦𝑖𝑡𝑦 = 𝐷. 𝑉𝑖 . 𝐿𝑜𝑔10(𝑝𝐻𝑅𝑎𝑛𝑑1) (1) 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐵𝑒𝑠𝑡_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

= 𝐿𝑜𝑔_10(𝑝𝐻 − 𝑅𝑎𝑛𝑑2)
∙ 𝐿𝑜𝑔10(𝑇𝑒𝑚𝑝_𝑅𝑎𝑛𝑑). (𝑠𝑏_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[] − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[]) 

(2) 

𝐺𝑙𝑜𝑏𝑎𝑙_𝐵𝑒𝑠𝑡_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

= 𝐿𝑜𝑔_10(𝑝𝐻 − 𝑅𝑎𝑛𝑑3)
∙ 𝐿𝑜𝑔10(𝑇𝑒𝑚𝑝_𝑅𝑎𝑛𝑑2). (𝑠𝑔𝑏_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[] − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[]) 

(3) 
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Where 𝐷  is a factor of velocity damping. This factor takes a 

value randomly between zero and one. 𝑝𝐻𝑅𝑎𝑛𝑑1 , 𝑝𝐻𝑅𝑎𝑛𝑑2 , 

and 𝑝𝐻𝑅𝑎𝑛𝑑3  are a random number of 𝑝𝐻 value, which takes 

value between seven to fourteen. 𝑇𝑒𝑚𝑝_𝑅𝑎𝑛𝑑1 and 

𝑇𝑒𝑚𝑝_𝑅𝑎𝑛𝑑2 are temperature values, which take a random 

value between 35.1 and 38.5. 𝑠𝑏_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[]  is the best 

solution that has achieved so far. 𝑠𝑔𝑏_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[] is the global 

best solution that has obtained by the winner (Fig. 2). 

These velocities can be merged in one equation as 

follows. Where, the 𝑣[] is the velocity rule of SSO. 

𝑣[] 

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐵𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝐺𝑙𝑜𝑏𝑎𝑙_𝐵𝑒𝑠𝑡_𝑆𝑜𝑙𝑖𝑡𝑖𝑜𝑛 

(4) 

The current best solution can be presented in the 

following formula. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡[] = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡[] + 𝑣[] (5) 

 

The 

winner 

 

Fig. 2. Swarm of sperm and the winner [54] 

B. Chernobyl Disaster Optimizer (CDO) 

The 1986 Chernobyl nuclear catastrophe served as the 

inspiration for the "Chernobyl Disaster Optimizer (CDO)". In 

order to overcome optimization issues, this method [52], 

Shehadeh, mimics the impacts and transmission of radiation 

particles that are excluded from nuclei that target people. The 

optimizer considers three types of radiation particles: gamma 

(𝛾), beta (𝛽), and alpha (𝛼). Fig. 3 [52] shows these particles 

and the explosion zone.  

 

Fig. 3. The radiation particles and explosion point [52] 

In CDO, Shehadeh assumes that the present locations of 

the gamma, beta, and alpha particles are 𝑋𝛾(𝑡), 𝑋𝛽(𝑡), and 

𝑋𝛼(𝑡) respectively. The following models, in that order, 

provide the gamma, beta, and alpha particle propagation: 

𝜌𝛾 =
𝑥ℎ
𝑆𝛾
− (𝑊𝑆ℎ ⋅ 𝑟𝑎𝑛𝑑 ()) (6) 

𝜌𝛽 =
𝑥ℎ

0.5 ⋅ 𝑆𝛽
− (𝑊𝑆ℎ ⋅ 𝑟𝑎𝑛𝑑 ()) (7) 

𝜌𝛼 =
𝑥ℎ

0.25 ⋅ 𝑆𝛼
− (𝑊𝑆ℎ ⋅ 𝑟𝑎𝑛𝑑 ()) (8) 

𝑥ℎ = 𝑟2 ⋅ 𝜋 (9) 

𝑆𝛾 = 𝑙𝑜𝑔 (𝑟𝑎𝑛𝑑 (1: 300,000)) (10) 

𝑆𝛽 = 𝑙𝑜𝑔 (𝑟𝑎𝑛𝑑 (1: 270,000)) (11) 

𝑆𝛼 = 𝑙𝑜𝑔 (𝑟𝑎𝑛𝑑 (1: 160,000)) (12) 

𝑊𝑆ℎ = 3 − 1 ∗ ((3)/ Maximum_Iteration ) (13) 

Where 𝑥ℎ is the area of human walking within a circle with a 

random radius between 0 and 1. 𝑆𝛾, 𝑆𝛽, and 𝑆𝛼 are the 

normalized and random speeds of the gamma, beta and alpha 

particles. 𝑊𝑆ℎ is walking speed of human, which is decreased 

linearly from 3km to 0, defined as Eq (13). The difference 

between the gamma, beta and alpha particles positions and 

total position can be calculated using the following formulas, 

respectively: 

Δ𝛾 = |𝐴𝛾 ⋅ 𝑋𝛾(𝑡) − 𝑋𝑇(𝑡)| (14) 

Δ𝛽 = |𝐴𝛽 ⋅ 𝑋𝛽(𝑡) − 𝑋𝑇(𝑡)| (15) 

Δ𝛼 = |𝐴𝛼 ⋅ 𝑋𝛼(𝑡) − 𝑋𝑇(𝑡)| (16) 

Where 𝐴𝛾, 𝐴𝛽, and 𝐴𝛼 are the propagation areas of the 

gamma, beta, and alpha particles, respectively, represented as 

the area of a circle with a random radius between 0 and 1as 

depicted in Fig. 3. 

𝐴𝛾 =  𝐴𝛽 = 𝐴𝛼 = 𝑟
2 ⋅ 𝜋 (17) 

Where 𝑋𝑇 is the average speeds of all particles. 

𝑋𝑇 = 
𝑣𝛾 + 𝑣𝛽 + 𝑣𝛼

3
 (18) 

Where 𝑣𝛾, 𝑣𝛽, and 𝑣𝛼 are the Gradient Descent Factors of 

gamma, beta and alpha particles respectively, which are 

calculated using the following formulas to find the optimal 

solution [52]: 

𝑣𝛾 = (𝑋𝛾(𝑡) − 𝜌𝛾 ⋅ Δ𝛾) (19) 

𝑣𝛽 = 0.5 . (𝑋𝛽(𝑡) − 𝜌𝛽 ⋅ Δ𝛽) (20) 

𝑣𝛼 = 0.25 . (𝑋𝛼(𝑡) − 𝜌𝛼 ⋅ Δ𝛼) (21) 

C. Bermuda Triangle Optimizer (BTO 

This optimizer is a novel metaheuristic optimization 

algorithm that is proposed in 2025 by Shehadeh [50]. This 

algorithm simulates the mysterious and phenomena 

associated with Bermuda triangle in which many aircrafts and 

ships are pulled into the area of the triangle and disappeared 

there. In BTO, Shehadeh assumes that there are two areas of 
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forces. The first one has massive attraction force, which is the 

exploitation area and can be formed as a Bermuda triangle. 

The second one has less attraction force, which is the area of 

circle that surrounded by the Bermuda triangle. This area can 

be used for exploration purpose. These areas are depicted in 

Fig. 4.  In BTO, each attracted object takes a random position 

on search space domain and a value of probability of force, 

which are pulled to the center of triangle based on Newton’s 

method of gravity, Eq (22). 

𝐺𝑓𝑜𝑟𝑐𝑒 =
𝐶𝑈𝐺.𝑀1. 𝑀2

𝑟2
 (22) 

Where the CUG is 6.67×10-11Nm2Kg-2 , which is constant of 

universal gravitation. 𝑀1 represents the mass at the center of 

the Bermuda Triangle that generates the gravitational field, 

modeled as a random value. 𝑀2  represents the mass that 

affect by 𝑀1, modeled as a random value. 𝑟 is the distance 

between 𝑀1 and 𝑀2, modeled as a random value. 

 

Fig. 4. Massive attraction force and less attraction force [50] 

The movement of these objects will be adjusted based on 

levy and chaos methods to simulate the exact movement of 

objects in ocean in which these objects will be affected by 

ocean flow and tide. Mainly, any an object exhibiting 

prescience whether inside or outside the Bermuda Triangle, 

which is randomly determined to be either greater than 0.5 or 

less than 0.5. When this value exceeds 0.5, the algorithm 

applies a subtraction operation, signifying a massive 

gravitational pull. This force is calculated based on the 

Bermuda Triangle’s area as shown in Fig. 4. Objects located 

within the Bermuda Triangle are already subject to this 

massive attraction. In Equation (23), the Probability of Force 

(PoF) is defined as (1 – p-value), which represents the 

probability that the alternative hypothesis holds true. 

Conversely, when the prescience value is less than 0.5, the 

algorithm applies an addition operation, indicating a less 

attractive force. This force is derived by subtracting the area 

of the surrounding region (the yellow circular zone) from the 

Bermuda Triangle’s area, as also illustrated in Fig. 4. Based 

on this computation, the object moves toward the optimal 

solution as described in Equation (23). 

𝑋𝑖,𝑗(𝐼𝑡𝑒𝑟𝑖 + 1)

=

{
 
 

 
 𝑐ℎ𝑜𝑎𝑠 × 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑎𝑟𝑒𝑎 × 𝐴𝑐𝑐 × 𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑃𝑜𝐹

× ((𝑈𝐵 − 𝐿𝐵 × 𝑍𝑜𝑛𝑒𝐵𝐹 + 𝐿𝐵), 𝑅𝑎𝑛𝑑𝑜𝑚 > 0.5

𝑐ℎ𝑜𝑎𝑠 × 𝑐𝑖𝑟𝑐𝑙𝑒𝑎𝑟𝑒𝑎 × 𝐴𝑐𝑐 × 𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑃𝑜𝐹

× ((𝑈𝐵 − 𝐿𝐵 × 𝑍𝑜𝑛𝑒𝐵𝐹 + 𝐿𝐵), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 (23) 

Where 𝐿𝐵 and 𝑈𝐵 refer to the lower and upper bounds of the 

problem’s search space. 𝑍𝑜𝑛𝑒𝐵𝐹 denotes the Bermuda Force 

Zone, which can be coefficient computed using Equation 

(24). 𝑃𝑜𝐹 stands for the probability ratio of the Bermuda 

force, which is derived from Equation (25).  𝑏𝑒𝑠𝑡(𝑥𝑗) 

represents the best value obtained so far. 𝐴𝑐𝑐 is the 

acceleration function, which is used to enhance the flow of 

the ocean current, and it can be calculated by exponential 

function as in Equation (26). 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑎𝑟𝑒𝑎  is the area of 

Bermuda triangle. 𝑐𝑖𝑟𝑐𝑙𝑒𝑎𝑟𝑒𝑎  is the subtraction between 

triangle area and circle area, which refers to the surrounding 

area of Bermuda.  

𝑍𝑜𝑛𝑒𝐵𝐹 = 𝑎𝑟𝑒𝑎𝑚𝑖𝑛 + 𝐼𝑡𝑒𝑟1
∗ (
𝑎𝑟𝑒𝑎𝑚𝑎𝑥 − 𝑎𝑟𝑒𝑎𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑇
) (24) 

Where  𝑎𝑟𝑒𝑎𝑚𝑖𝑛  is the logarithm of the minimum area of the 

Bermuda force zone, which is 500,000 square miles. The 

logarithm is used for normalization. 𝐼𝑡𝑒𝑟1 is the counter value 

at the 𝑖𝑡ℎ iteration. 𝑎𝑟𝑒𝑎𝑚𝑎𝑥   is the logarithm of the maximum 

area of the Bermuda force zone, which is 1,510,000 square 

miles, also normalized using the logarithm. 𝐼𝑡𝑒𝑟𝑇is the 

maximum number of iterations. 

The Bermuda force probability ratio can be determined 

using the following equation. In statistical terms, the p-value 

is the null hypothesis, which is true, while (1 – p-value) 

indicates the probability that the alternative hypothesis, 

which is also true, as shown in Equation (24). 

𝑃𝑜𝐹 = 1 − [
𝑖𝑡𝑒𝑟𝑖

1
𝐺𝐹𝑜𝑟𝑐𝑒

𝑖𝑡𝑒𝑟𝑇
1

𝐺𝐹𝑜𝑟𝑐𝑒

] (25) 

𝐴𝑐𝑐 = 𝑟 × 𝑒
(−20𝑥(

𝐼𝑡𝑒𝑟1
𝐼𝑡𝑒𝑟𝑇

))
 (26) 

Where 𝑖𝑡𝑒𝑟𝑖  is the ith iteration counter. 𝑖𝑡𝑒𝑟𝑇  is the maximum 

number of iterations. 𝑟 is random value.  𝐺𝐹𝑜𝑟𝑐𝑒 is Bermuda 

triangle force, which is Eq. (22). 

D. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a swarm-based 

metaheuristic optimization algorithm, which is inspired by 

the social behavior of birds while searching food. It was 

introduced by Kennedy and Eberhart in 1995. The position of 

each particle will be adjusted on search space domain based 

on three steps as in Equation (27), which are initial velocity 

of particle, best velocity of particle and global best velocity 

of particle. The global one is the leader of bird swarm.  This 

algorithm has a set of parameters in its velocity rule, which 

are inertia weight (𝑤), cognitive factor(𝑐1), and social 

factor(𝑐2). The 𝑐1 and 𝑐2 are always have a value of 2 [77]. 

𝑓𝑉𝑖,𝑚
(𝑡+1)

= 𝑤 ∗ 𝑣𝑖,𝑚
(𝑡)
+ 𝑐1 ∗ rand1() ∗

( pbest 
𝑖,𝑚
− 𝑥𝑖,𝑚

(𝑡)
)

+𝑐2 ∗ rand2() ∗ ( gbest 
𝑚
− 𝑥𝑖,𝑚

(𝑡)
)

 (27) 

E. Marine Predators Algorithm (MPA) 

MPA is a swarm based metaheuristic optimization 

algorithm introduced in 2020 by Faramarzi et al. [76] It is 

inspired by the foraging and hunting strategies of marine 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1889 

 

Widi Aribowo, A Comparative Study of Metaheuristic Optimization Algorithms in Solving Engineering Designing Problems 

predators (e.g., sharks, tunas, sailfish) in the ocean. This 

algorithm mimics the strategy of marine predators while 

searching for prey in different ocean zones using Levy and 

Brownian motion to mimic real-world foraging patterns. It 

aims to balance between exploration (searching broadly) and 

exploitation (refining good solutions). The pray catching 

strategy can be calculated in the following equation.  

𝑝

=

{
 

 𝑃𝑟𝑒𝑦
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝐶𝐹[𝑋 𝑚𝑖𝑛 + 𝑅⃗ ⊗ (𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛)] ⊗ 𝑈⃗⃗     

 if 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑟1 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑟2)    

 if 𝑟 > 𝐹𝐴𝐷𝑠

 (28) 

Where 𝑟1 and 𝑟2 are random indexes of prey matrix. 𝑈⃗⃗   is the 

binary vector with arrays including zero and one. 𝑋 𝑚𝑖𝑛  and 

𝑋 𝑚𝑎𝑥 are the vectors containing the lower and upper bounds 

of the dimensions. 

F. Optimizing CEC 2017 Benchmark Functions 

The aforementioned algorithms are tested in solving the 

well-known Congress on Evolutionary Computation (CEC) 

2017 [54] benchmark functions, which are 23 mathematical 

models that consist of unimodal, and multimodal benchmark 

functions. The results of these algorithms are listed in tables 

from 3 to 5. The qualitative tests are applied in this 

comparison, which are mean, standard deviation, and best 

fitness.  Based on ranking rows in the following tables, we 

can notice that BTO algorithm is the best in solving the 

majority of functions, such as F1, F2, F3, F4, F6, F7, F9, F10, 

F11, and F12, which has a merit in solving the unimodal 

benchmark functions, such as functions from F1 to F4. For 

the ragged and noisy function F5, SSO has been solved it 

efficiently in which it comes in the first rank. CDO mainly 

comes in second rank for the majority of benchmark 

functions, and it solves the multimodal F13 efficiently. MPA 

solves the composition functions of multimodal efficiently, 

such as functions from F20 to F23.  PSO algorithm mainly 

comes in the last rank, however it solves F17, F18, F19 in the 

same rank of MPA and SSO. 

III. EXPERIMENTAL SETUP AND RESULTS 

The SSO, CDO, PSO, BTO, and MPA are coded in 

“MATLAB R2023a” and run on Intel core i5 CPU, 8 GB 

RAM utilizing Windows 11 to optimize the required 

engineering problems. Table II hows the parameters of these 

algorithms. 

BTO outperforms the other algorithm overall, clearly 

dominating the ranking scores, which has the lowest total 

mean rank as depicted in Fig. 5. SSO and CDO show 

competitive performance, taking second and third place 

respectively. MPA and PSO trail significantly behind, with 

PSO consistently ranking last. For the qualitative test, the 

algorithm convergence is drawn for each algorithm in solving 

each benchmark function of CEC 2017. From the Fig. 6, we 

can notice that BTO has faster convergence, followed by SSO 

and CDO. The MPA followed them, while PSO comes in the 

last rank of convergence. 

TABLE II.  PARAMETERS OF SSO, PSO, CDO, BTO, AND MPA 

SSO 

Damping factor of velocity 

(𝐷) 
Rand  (0, 1) 

pH Rand  (7, 14) 

Temperature Rand  (35.5, 38.5) 

Size of population (swarm 

size) 
30 

Numbers of iterations 50 

PSO 

𝐶1 and 𝐶2 2 

Size of population 30 

Numbers of iterations 50 

CDO 

𝑆𝛾 – is the speed of gamma Rand  (1, 300,000) km/s 

𝑆𝛽 – is the speed of beta Rand  (1, 270,000) km/s 

𝑆𝛼 – is the speed of alpha Rand  (1, 16,000) km/s 

the radius of radiations 

propagation (𝑟) 
Rand  (0, 1) 

Size of population 30 

Numbers of iterations 50 

BTO 

CUG 6,67x10-11Nm2Kg-2 

𝑎𝑟𝑒𝑎𝑚𝑖𝑛 log(500000) 

𝑎𝑟𝑒𝑎𝑚𝑎𝑥 log(1,510,000) 

Size of population 30 

Numbers of generations 50 

MPA 

𝑟1 and 𝑟2 Rand(0, 1) 

Size of population 30 

Numbers of generations 50 

 

 

Fig. 5. Sum of total mean rank comparison of algorithms 
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TABLE III.  RESULTS OF BENCHMARK FUNCTIONS FROM F1 TO F13 

 CDO SSO MPA PSO BTO 

F1 

Best 7.95E-11 2.59E-11 15.6187 60636.99 0.00E+00 

Mean 2.08E-10 0.00014 48.1829 105054.4 1.49E+03 

Worst 4.01E-10 0.00302 158.953 145319.7 6.94E+04 

Std 7.76E-11 0.0007 26.475 15556.29 9.83E+03 

Rank 3 2 4 5 1 

F2 

Best 3.22E-06 8.67E-08 1.5991 62.2732 0 

Mean 4.81E-06 0.00023 2.9166 6371390 7.93E+10 

Worst 8.52E-06 0.00299 5.2416 1.6E+08 3.81E+12 

Std 1.16E-06 0.00048 0.74176 2509588 5.38E+11 

Rank 3 2 4 5 1 

F3 

Best 7.21E-08 2.65E-05 742.006 13988.5 0 

Mean 0.034466 81.9606 2104.723 32219.4 21625.28 

Worst 1.6636 2340.86 4299.15 61271 196848.3 

Std 0.23512 338.580 862.339 12018.7 51771.53 

Rank 2 3 4 5 1 

F4 

Best 1.01E-05 0.00071 2.9285 24.5219 0 

Mean 1.72E-05 0.26101 5.4527 42.3233 2.4463 

Worst 2.64E-05 1.5982 9.355 62.4067 87.2862 

Std 3.71E-06 0.35155 1.3571 7.2709 12.8204 

Rank 2 3 4 5 1 

F5 

Best 28.5556 28.3847 172.619 170721. 28.7973 

Mean 28.7063 29.1801 939.607 1221120 2165319 

Worst 28.7581 35.9431 2915.25 4797505 3.1E+08 

Std 0.04042 1.3184 577.993 979459.5 74544559 

Rank 2 1 4 5 3 

F6 

Best 7.5 4.5193 21.2953 1136.246 1.5238 

Mean 7.5 5.5276 51.3867 2631.223 1760.973 

Worst 7.5001 6.1575 95.9805 5229.108 61208.51 

Std 1.13E-05 0.29788 18.5072 972.2749 9362.192 

Rank 3 2 4 5 1 

F7 

Best 9.02E-05 0.00055 0.00416 0.2663 1.82E-05 

Mean 0.00163 0.00758 0.02039 0.73157 6.6554 

Worst 0.00598 0.02941 0.05734 1.3349 113.0406 

Std 0.00126 0.00697 0.01079 0.28601 24.8793 

Rank 2 3 4 5 1 

Sum Rank 17 16 28 35 9 

Mean Rank 2.428571 2.285714 4 5 1.285714 

TABLE IV.  RESULTS OF BENCHMARK FUNCTIONS FROM F8 TO F23 

 CDO SSO MPA PSO BTO 

F8 

Best -4317.92 -5796.57 -7443.59 -6535.82 -4995.54 

Mean -3116.34 -5631.7 -6100.3 -4741.23 -2666.62 

Worst -2304.7 -5422.99 -5060.86 -3132.88 -1412.76 

Std 455.7207 72.1446 497.4211 636.6539 699.4465 

Rank 5 3 1 2 4 

F9 

Best 9.67E-10 6.22E-11 31.6248 153.2982 0.00E+00 

Mean 113.2743 0.003615 78.8014 208.2787 30.7822 

Worst 293.8928 0.079819 137.0074 284.4248 448.1106 

Std 127.6219 0.015228 26.6201 28.4405 107.2275 

Rank 3 2 4 5 1 

F10 

Best 2.20E-06 1.03E-06 2.0413 6.099 8.88E-16 

Mean 3.52E-06 0.002348 3.072 8.7047 0.97995 

Worst 5.19E-06 0.050361 4.0291 10.5285 20.4984 

Std 6.30E-07 0.007683 0.38387 0.91181 4.033 

Rank 3 2 4 5 1 

F11 

Best 1.70E-10 2.67E-10 1.2044 6.842 0 

Mean 1.51E-07 0.011695 1.4728 11.8177 12.2338 

Worst 7.54E-06 0.28196 1.833 19.5564 611.6881 

Std 1.07E-06 0.045626 0.13422 2.8481 86.5058 

Rank 2 3 4 5 1 

F12 

Best 1.669 0.48686 0.54341 10.3876 0.06256 

Mean 1.669 0.72984 1.1347 170.2694 23703337 

Worst 1.669 1.1251 2.0243 4815.722 6.17E+08 

Std 1.69E-06 0.12489 0.39184 707.0014 1.17E+08 

Rank 4 2 3 5 1 

F13 

Best 0.402 2.4182 2.8697 66.9508 1.6086 

Mean 0.67432 2.8086 5.3869 21368.99 1311517 

Worst 0.9012 3.0976 11.6629 170106.7 65438239 

Std 0.11002 0.1163 1.7066 33284.08 9253988 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1891 

 

Widi Aribowo, A Comparative Study of Metaheuristic Optimization Algorithms in Solving Engineering Designing Problems 

 CDO SSO MPA PSO BTO 

Rank 1 3 4 5 2 

Sum Rank 18 15 20 27 10 

Mean Rank 3 2.5 3.333333 4.5 1.666667 

TABLE V.  RESULTS OF BENCHMARK FUNCTIONS FROM F14 TO F23 

 CDO SSO MPA PSO BTO 

F14 

Best 1.0439 1.0007 0.998 0.998 0.99816 

Mean 15.4195 4.9938 1.2761 8.2083 9.3236 

Worst 18.3438 12.6705 2.9821 17.3744 12.6705 

Std 4.4625 3.6623 0.56871 4.6994 3.9032 

Rank 4 3 1 1 2 

F15 

Best 0.000317 0.000391 0.000311 0.000553 0.000635 

Mean 0.000648 0.00133 0.000684 0.004975 0.025672 

Worst 0.000954 0.02129 0.001223 0.065264 0.14283 

Std 0.000135 0.002917 0.000217 0.010805 0.043797 

Rank 2 3 1 4 5 

F16 

Best -1.0311 -1.0316 -1.0316 -1.0316 -1.0306 

Mean -1.0002 -1.0289 -1.0316 -1.0316 -0.91675 

Worst -0.99464 -1.0034 -1.0316 -1.0314 1.7767 

Std 0.006122 0.004362 3.36E-11 5.42E-05 0.40009 

Rank 2 1 1 1 3 

F17 

Best 0.39808 0.39798 0.39789 0.39789 0.40212 

Mean 0.42413 0.42217 0.39789 0.39804 1.0307 

Worst 0.77347 0.56627 0.39789 0.403 4.0299 

Std 0.057782 0.030375 2.64E-09 0.000718 0.66057 

Rank 3 2 1 1 4 

F18 

Best 3.0599 3 3 3 3.0788 

Mean 74.0409 3.0027 3 6.2423 97.934 

Worst 88.0849 3.0185 3.0002 84.0102 978.6988 

Std 21.3486 0.004288 2.68E-05 16.0352 232.9909 

Rank 2 1 1 1 3 

F19 

Best -3.8621 -3.8518 -3.8628 -3.8628 -3.8545 

Mean -3.8231 -3.5254 -3.8628 -3.8164 -3.3583 

Worst -3.6396 -2.8282 -3.8622 -3.0897 -2.262 

Std 0.035137 0.26227 0.000105 0.18544 0.37258 

Rank 2 4 1 1 3 

F20 

Best -3.2888 -2.8784 -3.322 -3.3218 -2.7277 

Mean -3.1258 -2.0723 -3.2918 -3.28 -1.6414 

Worst -2.9004 -1.1699 -3.1909 -3.1962 -0.57082 

Std 0.089368 0.46509 0.050206 0.057656 0.5854 

Rank 3 4 1 2 5 

F21 

Best -7.3727 -3.7289 -10.1532 -10.1529 -4.3123 

Mean -3.3981 -1.6845 -9.2356 -6.3385 -1.3984 

Worst -1.4638 -0.78537 -5.0551 -2.627 -0.32429 

Std 1.332 0.67619 1.9785 3.5991 0.88441 

Rank 3 5 1 2 4 

F22 

Best -6.9876 -3.8699 -10.4029 -10.4023 -3.1585 

Mean -3.6978 -1.7387 -9.0208 -7.1632 -1.2622 

Worst -1.7076 -0.79078 -5.0798 -2.749 -0.40566 

Std 1.3351 0.78835 2.3554 3.5734 0.66172 

Rank 3 4 1 2 5 

F23 

Best -8.4831 -6.0136 -10.5364 -10.53 -3.7174 

Mean -3.7424 -2.1887 -9.4548 -6.1071 -1.4092 

Worst -2.0395 -0.96891 -5.128 -2.4208 -0.50418 

Std 1.4673 0.92407 2.1852 3.8113 0.79923 

Rank 3 4 1 2 5 

Sum Rank 27 31 10 17 39 

Mean Rank 2.7 3.1 1 1.7 3.9 
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Fig. 6. Convergence rate of algorithms in solving CEC benchmark functions 

A. Engineering Design Problems 

In this Section, the BTO, MPA, PSO, SSO and CDO have 

been applied to optimize a set of engineering design 

problems, such as “Speed Reducer Design, Pressure Vessel 

Design, Cantilever Beam Design, and Robot Gripper 

Problem”. We can summarize the outcomes as follows: 

1) Speed Reducer Design Problem 

The mathematical formulation of the Speed Reducer 

Design problem is shown below, which involves seven 

variables in its model. The problem's geometric structure is 

illustrated in Fig. 7. A comparison of BTO, MPA, PSO, SSO 

and CDO algorithms in optimizing this problem is provided 

in Table VI. According to the table, all seven variables 

influence the outcome. The results indicate that CDO 

achieved the best minimum weight of 3060.7908, which is 

ranked 1st. MPA is Second-best with 3121.451 weight. BTO 

in in third rank with 3143.9640. SSO in fourth rank with 

3195.3189 weight. PSO has worst performance with 

3242.5112 weight. 

Consider: 

y = [y1, y2, y3, y4, y5, y6, y7] = [b,m, p, l1, l2, d1, d2] 
  

Minimize: 

f(y)
=  0.7854𝑦1𝑦2

2(3.3333𝑦3
2 + 14.9334𝑦3

− 43.0934) − 1.508𝑦1(𝑦6
2 + 𝑦7

2) + 7.4777(𝑦6
3

+ 𝑦7
2) + 0.7854(𝑦4𝑦6

2 + 𝑦5𝑦7
2).  

Subject to:   

𝑔1(𝑦 ) =
27

𝑦1𝑦2
2𝑦3

− 1 ≤ 0, 𝑔2(𝑦 ) =
397.0

𝑦1𝑦2
2𝑦3

2 − 1 ≤ 0 

𝑔3(𝑦 ) =
1.90𝑦4

4

𝑦2𝑦6
4𝑦3

− 1 ≤ 0, 𝑔4(𝑦 ) =
1.90𝑦5

𝑦2𝑦7
4𝑦3

− 1 ≤ 0, 
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𝑔5(𝑦 ) =

√(
745𝑦5
𝑦2𝑦3

)
2
+16.9×106

110𝑦6
3 − 1 ≤ 0  

𝑔6(𝑦 ) =

√(
745𝑦5
𝑦2𝑦3

)
2
+157.5×106

85𝑦7
3 − 1 ≤0 

𝑔7(𝑦 ) =
𝑦2𝑦3
40

− 1 

𝑔8(𝑦 ) =
5𝑦2
𝑦1

− 1 ≤ 0 

𝑔9(𝑦 ) =
𝑦1
12𝑦2

− 1 ≤ 0 

𝑔10(𝑦 ) =
1.5𝑦6 + 1.9

𝑦4
− 1 ≤ 0 

𝑔11(𝑦 ) =
1.1𝑦7 + 1.9

𝑦5
− 1 ≤ 0 

Where 2.6 ≤  𝑦1  ≤  3.6 , 0.7 ≤  𝑦2  ≤  0.8, 17 ≤  𝑦3  ≤
 28, 7.3 ≤  𝑦4  ≤  8.3, 2.9 ≤  𝑦6  ≤  3.9, 5.0 ≤  𝑦7  ≤  5.5 

 

Fig. 7. Speed reducer design problem 

2) Pressure Vessel Design Problem 

The following list of four variables represents the 

mathematical modelling of the Pressure Vessel Design 

problem from a different perspective. Fig. 8 shows the 

geometry of this problem. Table VII displays the findings of 

the proposed algorithms in optimizing the Pressure Vessel 

Design issue. According to Table VII, factors 1 through 4 

have an impact on the variables of the Pressure Vessel Design 

problem. The findings demonstrate that the MPA achieved 

the lowest cost of 4076.5769, which is ranked 1st. CDO 

comes in second-best with 6091.4687 cost. SSO is the third 

best with 7350.5363 cost. PSO and BTO have the highest 

costs, over 7800. 

Consider: y = [y1, y2, y3, y4] =  [Ts, 𝑇h, R, L] 

Minimize:  

𝑓 ( y

)

= 0.6224𝑦1𝑦3𝑦4 + 1.7781𝑦2𝑦3 
2 + 3.1661𝑦1

2𝑦4
+ 19.84𝑦1

2𝑦3 

Subject to: 

𝑔1(𝑦 ) = −𝑦1 + 0.0193𝑦3 ≤ 0, 𝑔2(𝑦 ) = −𝑦3 + 0.00954𝑦3
≤ 0,

𝑔3(𝑦 ) = −𝜋𝑦3
2𝑦4 −

4

3
𝜋𝑦3

3 + 1296000 ≤ 0, 𝑔4(𝑦 ) = 𝑦4

−240 ≤ 0.

 

Where 0 ≤  𝑦1, 𝑦2  ≤  99, 10 ≤  𝑦3, 𝑦4  ≤  200 

 

Fig. 8. Pressure vessel design problem 

3) Cantilever Beam Design Problem 

On the other hand, the following equation is mathematical 

modelling Cantilever Beam Design problem with a list of the 

five variables. Fig. 9 shows the geometry of this problem. 

Table VIII displays the outcomes of the Cantilever Beam 

Design issue, which shows the problem variables from 1 to 5. 

The CDO algorithm achieves the lowest cost, which is 

1.35074, and ranked in 1st rank. SSO comes close behind, 

which its cost is 1.37208. MPA, BTO, and PSO show much 

higher values. 

 

Fig. 9. Cantilever beam design problem 

Consider: y = [y1, y2, y3, y4, y5] 

Minimize:   

𝑓 ( y

) = 0.6224(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4) 

Subject to: 

𝑔 ( y

) =

61

𝑦1 
3 +

27

𝑦0 
3 +

19

𝑦3 
2 +

7

𝑦1 
3 +

1

𝑦5 
3 − 1 ≤ 0. 

 

Where  0.01 ≤ 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 ≤ 100. 

4) Robot Gripper Design Problem 

The Robot Gripper Problem is solved using the suggested 

algorithms, and Table IX displays the results of their 

performance. The mathematical formulation has seven-

variable, which is the model of this problem. Fig. 10 provides 

a graphic depiction of the geometry of this problem. SSO has 

the lowest cost of 3.68878, which is ranked 1st. BTO is 

second-best in which is cost equal to 4.44538. MPA comes in 

third rank with cost equal to 4.48748. PSO comes in fourth 

rank at 5.05545. CDO has worst performance here with 

5.57659. 

Consider: y = [y1, y2, y3, y4, y5, y6, y7] =  [𝑎, 𝑏, 𝑐, 𝑒, 𝑓, 𝑙, 𝛿]. 

Minimize: 𝑓 ( y

) = −𝑚𝑖𝑛𝑧𝐹𝑘(𝑦 , 𝑧) + 𝑚𝑎𝑥𝑧𝐹𝑘(𝑦 , 𝑧) 

Subject to: 

𝑔1(𝑦 ) = −𝑌𝑚𝑖𝑛 + ℎ(𝑦 , 𝑍𝑚𝑎𝑥) ≤ 0, 𝑔2(𝑦 ) 
            = −ℎ(𝑦 , 𝑍𝑚𝑎𝑥) ≤ 0, 
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𝑔1(𝑦 ) = −𝑌𝑚𝑖𝑛 + ℎ(𝑦 , 𝑍𝑚𝑎𝑥) ≤ 0, 𝑔2(𝑦 ) 
            = −ℎ(𝑦 , 𝑍𝑚𝑎𝑥) ≤ 0, 
𝑔5(𝑦 ) = 𝑙2 + 𝑒2 − (𝑎 + 𝑏)2 ≤ 0, 𝑔6(𝑦 ) 
            = 𝑏2 − (𝑎 − 𝑒)2 − (𝑙 − 𝑍𝑚𝑎𝑥)

2 ≤ 0 

𝑔7(𝑦 ) = 𝑍𝑚𝑎𝑥 − 𝑙 ≤ 0 

Where 0 ≤ 𝑒 ≤ 50, 100 ≤ 𝑐 ≤ 200, 10 ≤ 𝑓, 𝑎, 𝑏 ≤ 150, 
1 ≤ 𝛿 ≤ 3.14, 100 ≤ 𝑙 ≤ 300 

Other parameter conditions are represented below: 

𝐹𝑘 =
𝑃𝑏sin (𝛼 + 𝛽)

2𝑐cos (𝛼)

𝛼 = cos−1 (
𝑎2 + 𝑔2 − 𝑏2

2𝑎𝑔
) + 𝜙, 𝑔 = √𝑒2 + (𝑧 − 𝑙)2

𝛽 = cos−1 (
𝑏2 + 𝑔2 − 𝑎2

2𝑎𝑔
) − 𝜙, 𝜙 = tan−1 (

𝑒

𝑙 − 𝑧
)

ℎ(𝑦 , 𝑧) = 2(𝑓 + 𝑒 + 𝑐sin (𝛽 + 𝛿))

𝑌𝑚𝑖𝑛 = 50, 𝑌𝑚𝑎𝑥 = 100, 𝑌𝐺 = 150, 𝑍𝑚𝑎𝑥 = 100, 𝑃 = 100.

 

IV. CONCLUSION AND FUTURE WORKS 

This paper presents the detailed mathematical foundation 

of the SSO, CDO, MPA, PSO, and BTO. In addition, this 

paper provides comprehensive study about them in solving 

CEC 2017 benchmark test suites. These algorithms are also 

applied in optimizing well known engineering design 

problem, such as Speed Reducer Design, Pressure Vessel 

Design, Cantilever Beam Design, and Robot Gripper 

Problems. The results of CEC 2017 shows that the BTO is the 

best optimizer for solving unimodal problem. On the other 

hand, CDO, SSO, and MPA are the best in solving 

multimodal problems, that is why these algorithms are 

superior in solving the multi modal engineering design 

problem. In the future, we will enhance the BTO and PSO 

algorithms by hybridizing them with other evolutionary or 

swarm intelligence algorithms to increase their efficiency and 

performance in solving the multimodal problems.  

 

Fig. 10. Robot gripper design problem 

 

TABLE VI.  RESULTS OF OPTIMIZING SPEED REDUCER DESIGN PROBLEM BASED ON SSO, CDO, MPA, PSO, AND BTO 

Algorithm y1 y2 y3 y4 y5 y6 y7 Minimum Weight Rank 

SSO 3.6000 0.7000 17.0000 7.3000 8.3000 3.3775 5.5000 3195.3189 4 

CDO 3.5100 0.7000 17.0000 7.3000 8.3000 3.4689 5.3150 3060.7908 1 

MPA 3.0947 0.8000 17.0000 7.3925 7.3000 3.4889 5.0041 3121.4516 2 

PSO 3.1594 0.8000 17.0000 7.9999 7.5015 3.2844 5.2239 3242.5112 5 

BTO 3.0387 0.8000 17.2919 7.7865 7.5939 3.1295 5.1350 3143.9640 3 

TABLE VII.  RESULTS OF OPTIMIZING PRESSURE VESSEL DESIGN PROBLEM BASED ON SSO, CDO, MPA, PSO, AND BTO 

Algorithm y1 y2 y3 y4 Minimum Cost Rank 

SSO 1.0307 0.5141 48.1118 123.3020 7350.5363 3 

CDO 0.8195 0.4015 41.4249 185.5132 6091.4687 2 

MPA 0.5625 1.6250 15.2920 10 4076.5769 1 

PSO 0.1250 3.8125 25.1443 114.2507 7850.2362 4 

BTO 3.9375 1.4375 10.0196 63.8676 8041. 9333 5 

TABLE VIII.  RESULTS OF CANTILEVER BEAM DESIGN PROBLEM OPTIMIZING BASED ON SSO, CDO, MPA, PSO, AND BTO 

Algorithm y1 y2 y3 y4 y5 Minimum weight Rank 

SSO 5.55155 5.04000 5.43018 3.49378 2.47292 1.37208 2 

CDO 6.11156 5.57061 4.35571 3.28815 2.32043 1.35074 1 

MPA 0.01000 7.53741 13.2714 5.27661 1.2793 1.70821 3 

PSO 6.1094 3.8265 16.6637 12.4117 4.4869 2.71429 5 

BTO 7.7526 3.0460 9.3397 9.5052 0.5021 1.8811 4 

TABLE IX.  RESULTS OF OPTIMIZING PRESSURE ROBOT GRIPPER PROBLEM BASED ON SSO, CDO, MPA, PSO, AND BTO  

Algorithm y1 y2 y3 y4 y5 y6 y7 Minimum cost Rank 

SSO 149.94360 139.62701 177.71509 8.73136 122.40109 141.14632 2.48982 3.68878 1 

CDO 150.00000 122.33474 153.97865 17.22967 150.00000 182.04682 3.14000 5.57659 5 

MPA 155.81850 121.37676 162.69311 30.71219 70.41388 157.17438 2.38838 4.48748 3 

PSO 128.88748 100.57036 149.94457 27.46263 112.54845 116.99098 2.74985 5.05545 4 

BTO 150.00000 95.02121 194.69334 50.00000 150.00000 154.46645 3.14000 4.44538 2 
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