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Abstract—The inefficient application of fertilizers in 

horticultural crops, particularly in rural areas of Peru, leads to 

significant economic losses, soil degradation, and environmental 

risks. In response to this issue, this paper proposes an intelligent 

fertilizer dosing system that integrates solid and liquid 

fertilization applications through a predictive machine learning 

model. The main contribution of this research is the 

development and partial validation of an embedded system that 

dynamically adapts nutrient (NPK) doses based on real-time soil 

conditions, crop type, and phenological stage. The predictive 

model, based on Random Forest (RF), was trained using 10000 

synthetic data points generated via Sobol-LHS sampling and 

validated with 1000 real field measurements. The method 

incorporates thirteen agronomic variables, including soil 

moisture, pH, temperature, and nutrient content, enabling 

adaptive control of the dosing mechanisms. The system achieved 

promising results, with root mean square errors (RMSE) of 

2.81 kg/ha for nitrogen, 1.42 kg/ha for phosphorus, and 

0.94 kg/ha for potassium. These results demonstrate the model’s 

ability to deliver accurate crop-specific fertilization 

recommendations, reducing input waste and improving nutrient 

use efficiency. Although full field trials are planned for future 

phases, the proposed system offers a scalable and low-cost 

solution for precision agriculture in resource-constrained 

settings, promoting more sustainable farming practices and 

enhancing the productivity of smallholder farmers. 

Keywords—Random Forest; Intelligent Fertilizer Dosing; 

Precision Agriculture; Soil Sensing; Embedded Agricultural 

Systems. 

I. INTRODUCTION 

The sustainability and productivity of horticultural crops 

face serious challenges due to the inefficient application of 

fertilizers in Peru [1]-[4]. In this country, 44% of the 2.26 

million farmers use chemical fertilizers, and more than 80% 

of them cultivate plots smaller than 5 hectares [5], where 

nutrient application is still carried out manually [6]-[12]. A 

high external dependency compounds this low level of 

mechanization; in 2022, Peru imported over one million tons 

of mineral fertilizers, while domestic guano production in 

2021 covered barely 2% of total national demand [5]. This 

situation results in significant economic losses, soil 

degradation, and environmental risks associated with 

uncontrolled nutrient application [13]-[15]. 

In recent decades, precision agriculture has promoted the 

use of sensors, controllers, and digital platforms to optimize 

the management of inputs such as water and fertilizers [16]-

[18]. However, many existing solutions have critical 

limitations; they often focus on a single type of fertilization 

(liquid or solid), involve high costs, or rely on deterministic 

algorithms poorly suited to environmental variability. 

Furthermore, artificial intelligence (AI) models developed for 

agriculture are often difficult to deploy in the field due to 

overfitting, high computational requirements, or 

incompatibility with low-power embedded hardware such as 

microcontrollers [19]-[22]. 

A critical review of the state of the art reveals a persistent 

gap between the intelligent mechanical design of dosing 

mechanisms and the practical implementation of AI models 

[23]-[26]. Some developments allow for monitoring variables 

such as soil moisture, pH, or nutrient levels but do not 

automatically adjust dosing according to crop type, 

phenological stage, or agroclimatic conditions [27]-[31]. 

Predictive models that achieve promising results in simulated 

environments, such as neural networks or regression 

algorithms, often require high-capacity platforms, making 

them incompatible with low-power microcontrollers like the 

ESP32, which are essential for field-embedded applications 

[32]-[37]. 

To address these limitations, this study proposes an 

intelligent dosing system that integrates the mechanical 

design of a dual module for solid and liquid fertilizers, real-

time multiparameter sensing, and a Random Forest machine 

learning model embedded in an ESP32 microcontroller. The 

model was trained with 10000 synthetic data points generated 

through Sobol-LHS sampling and validated with 1000 real 

field measurements, enabling the precise prediction of 

optimal nitrogen, phosphorus, and potassium (NPK) doses 

based on thirteen agronomic variables, including soil 

moisture, pH, temperature, and crop type. 

The main contribution of this research is the design, 

partial validation, and embedded implementation of an 

autonomous adaptive nutrient dosing system for horticultural 

crops, utilizing robust artificial intelligence and low-cost 

hardware. This development represents a significant advance 

in precision agriculture by enabling contextualized, efficient, 

and scalable fertilization, particularly in rural environments 

with limited resources, promoting more sustainable and data-

driven agricultural practices. 

II. THEORETICAL FRAMEWORK 

A. Horticultural Crops and Nutritional Requirements 

Horticultural crops such as tomato, broccoli, and lettuce 

exhibit high physiological and agronomic variability, leading 

to specific nutritional demands that change according to the 

crop type, phenological stage, and edaphoclimatic conditions 
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[38], [39]. This variability requires more precise fertilization 

strategies compared to extensive crops, as an imbalance in the 

application of nitrogen (N), phosphorus (P), or potassium (K) 

can directly affect yield, quality, and input use efficiency 

[40]-[43]. 

Nutrient management in horticultural crops must 

dynamically adapt to multiple factors, including soil pH, 

moisture content, texture, initial nutrient levels, and local 

climate conditions [44], [45]. Consequently, traditional 

approaches based on fixed doses or empirical rules have 

proven insufficient. In this context, machine learning models 

offer the ability to predict optimal nutrient doses by 

processing multiple input variables, thus facilitating decision-

making in embedded systems for precision agriculture. 

An adaptive fertilization strategy must not only consider 

the type and quantity of nutrients but also determine the 

optimal timing and method of application according to the 

crop’s phenological stage. Table I summarizes the typical 

fertilization phases, their associated key nutrients, and the 

expected functioning of the proposed intelligent dosing 

system. 

TABLE I.  RELATIONSHIP BETWEEN CROP GROWTH STAGES AND 

AUTOMATED DOSING STRATEGIES 

Phenological 

Stage 

Application 

Timing 

Main 

Nutrient 
System Action 

Establishment Before planting P, K 
Initial RF 

estimation 

Active Growth 
Vegetative 

phase 
N 

Adaptive solid 
and liquid dosing 

Maturation Final stage N, K 
Real-time 

adjustment 

 

This phenology-based approach enables more efficient 

nutrient dosing throughout the crop growth cycle, 

maximizing input utilization and reducing risks associated 

with nutrient leaching or critical nutritional deficiencies. 

B. Soil Preparation and Fertilization Efficiency 

Proper soil preparation is a fundamental requirement to 

ensure the effectiveness of any fertilization strategy, 

particularly in horticultural crops. The physical and chemical 

properties of the soil directly influence moisture retention, 

aeration, and nutrient availability to plant roots [46]-[50]. In 

particular, soil texture, structure, and organic matter content 

significantly affect the mobility and absorption of essential 

macronutrients such as nitrogen (N), phosphorus (P), and 

potassium (K). 

Common agronomic practices such as tillage, leveling, 

and organic matter incorporation aim to improve soil 

structure, facilitate root development, and optimize soil-plant 

interactions [51]-[53]. However, these practices are not 

always accompanied by dosing systems capable of 

dynamically responding to soil changes throughout the crop 

cycle. Most traditional fertilization schemes apply nutrients 

uniformly, without considering spatial variability or temporal 

evolution of soil properties. This approach often leads to 

overfertilization in some areas and deficiencies in others, 

decreasing nutrient use efficiency and increasing 

environmental risks such as leaching and salt accumulation 

[54], [55]. 

In this context, the integration of multiparameter sensors 

capable of measuring soil pH, electrical conductivity, 

moisture, and temperature enables a more precise 

characterization of soil conditions and allows real-time 

adjustment of fertilization doses. This principle is essential in 

the design of the proposed dosing system, where real-time 

soil measurements are used as input variables for a predictive 

model that calculates the optimal fertilizer application rates. 

C. Fertilizer Strategies and Phenological Adaptation 

Fertilizers used in horticultural agriculture are commonly 

divided into two main types: solid and liquid. Solid fertilizers, 

such as granular urea, diammonium phosphate, or ammonium 

nitrate, are characterized by their gradual release into the soil, 

making them suitable for long-cycle crops and basal 

applications [56]-[58]. In contrast, liquid fertilizers are 

concentrated nutrient solutions that allow for immediate 

absorption either through the roots or foliage and are 

particularly utilized during critical stages of crop 

development [59]-[65]. 

The method of fertilizer application varies depending on 

its properties. Solid fertilizers are typically distributed 

mechanically into the soil using systems such as helical 

screws, allowing relatively precise control of the applied 

mass flow [66], [67]. Meanwhile, liquid fertilizers are dosed 

through fertigation systems employing peristaltic pumps, 

which enable flow regulation based on the crop's needs and 

soil conditions. The coordinated combination of both 

fertilization types takes advantage of the persistence of solids 

and the rapid responsiveness of liquids [68], [70]. 

To maximize agronomic efficiency and minimize input 

waste, fertilizer applications must align with the crop’s 

phenological stage, a strategy known as phenological 

adaptation [71], [72]. During establishment, phosphorus and 

potassium are prioritized to support root development; in 

active growth, nitrogen dosage is increased; and in 

maturation, nitrogen and potassium ratios are adjusted to 

enhance harvest quality [73], [74]. 

The intelligent system proposed in this study incorporates 

this phenological adaptation logic into its machine learning 

model. The phenological stage is introduced as a categorical 

variable, along with thirteen other agro-environmental 

variables captured in real time. Based on these inputs, the 

model automatically adjusts the dosing of solid fertilizers (via 

helical screw) and liquid fertilizers (via peristaltic pump), 

synchronizing applications with the crop’s specific 

nutritional requirements at each developmental stage. This 

adaptive integration enables precise, sustainable, and 

technically feasible nutrient management in rural settings, 

reducing leaching losses and maximizing nutrient use 

efficiency. 

III. MATERIALS AND METHODS 

A. Mechanical Design of the Dosing System 

The proposed system for fertilizer dosing in horticultural 

crops was designed with the integration of mechatronic 

technologies and machine learning algorithms, which 

allowed for precise and adaptable application of solid and 

liquid fertilizers. The structure of the system consisted of 
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sensors for monitoring soil conditions, an actuator-driven 

dosing mechanism, and an artificial intelligence model aimed 

at optimizing nutrient application in real time [75]. The 

design was developed in SolidWorks, defining both the 

component architecture and the dosing mechanism 

configuration. Materials with high corrosion resistance and 

durability were selected to ensure efficient operation in harsh 

agricultural environments [76], [77]. 

Three main components were selected for accurate 

fertilizer dosing: 

1) Storage hopper: It was designed with a volume of 

0.35 m³ and a capacity of 300 kg for solid or granular 

fertilizers. The conical structure, with an angle of 40° and an 

outlet diameter of 20 cm, allowed a controlled flow to the 

dosing mechanism. 

2) Helical screw: Responsible for the dosing of solid 

fertilizers. It was made of wear and corrosion-resistant 

materials. Its rotation speed was controlled by an electric 

motor, which adjusted the amount of fertilizer applied based 

on the real-time data provided by the sensors. 

3) Fertigation system: Composed of peristaltic pumps 

used to dose liquid fertilizers in the form of NPK solutions 

diluted in irrigation water. This system allowed for precise 

and efficient application through a drip system. 

B. Sensor Integration and Calibration 

The proposed system integrated a multi-parameter soil 

sensor with RS485 protocol (model RBD-2300, IP68 rating), 

designed for agricultural applications in the open field. This 

sensor allowed the simultaneous measurement of key 

variables such as soil moisture, temperature, pH, electrical 

conductivity (EC), and estimated concentrations of nitrogen, 

phosphorus, and potassium (NPK). Its corrosion-resistant 

package, along with its ability to operate submerged or 

buried, made it suitable for continuous monitoring in harsh 

weather conditions. The communication under the Modbus 

RTU protocol was managed by a TTL-RS485 converter 

connected to the ESP32 microcontroller, ensuring robust and 

interference-free data transmission. 

To ensure representative measurements, the sensor was 

installed at a depth of 15 cm with vertical orientation, 

ensuring uniform contact of its electrodes with the soil array. 

Moisture was estimated using the dielectric constant of the 

soil, with a reading range of 0 to 100 % VWC. The calibration 

was carried out using the gravimetric method, correlating the 

mass of water in samples with the values obtained by the 

sensor [78]. A polynomial curve was generated with R² = 

0.976, and an estimated error of ±3 % under normal field 

conditions.  

The temperature was measured in a range of −40 °C to 80 

°C with an accuracy of ±0.5 °C.  In the range of 15-35 °C, the 

mean deviation was less than ±0.4 °C.  This variable was used 

for thermal compensation of other readings. The pH 

measurement was calibrated using the two-point method with 

standard buffer solutions (pH 4.0 and 7.0), obtaining a 

maximum error of ±0.15 units and good stability after 8 h of 

continuous operation [79]. 

EC was used as an indirect parameter to detect salinity 

and fertilizer accumulation. Although the sensor does not 

include explicit internal calibration, it was validated with 

NaCl solutions (0.1 M, 0.5 M, 1 M), observing a stable linear 

response. For NPK, a comparative validation was carried out 

with laboratory analysis: nitrogen (Kjeldahl method), 

phosphorus (colorimetry with molybdate) and potassium 

(flame photometry), obtaining average errors of ±6.2 mg/kg 

(N), ±3.9 mg/kg (P) and ±5.7 mg/kg (K), considered 

acceptable for field applications [80]. 

The sample rate was set to 5 s. The data was processed 

using an exponential moving average filter to smooth out 

high-frequency noise without losing the dynamics of change. 

In addition, a recalibration protocol based on time drift was 

implemented: every 72 h of continuous operation or every 10 

h of intermittent use, with automatic alerts from the ESP32 

firmware. Finally, the corrected values were normalized and 

sent as inputs to the artificial intelligence model in charge of 

estimating the optimal dosage of fertilizers. Fig. 1 shows the 

functional flow of the process of acquisition, calibration, and 

normalization of data from the multiparameter sensor, before 

being used by the artificial intelligence model for dosing 

decisions. 

 

Fig. 1. Functional diagram of the soil data acquisition system, integrating 
moisture, pH, temperature, electrical conductivity, and nutrient (NPK) 

measurements 

C. Mathematical Models for Adaptive Fertilizer Dosing 

The ferti-dosing module was developed in this study with 

the aim of modeling the dynamics of the soil-plant-

atmosphere system (SPAC) and adjusting the nutrient 

application in real time. The system used the data captured by 

the multi-parameter sensor, which was processed using 

machine learning algorithms. Unlike simplified approaches, 

this model considered nutrient availability and efficiency, 

Agricultural Land 

Variables: Humidity, pH, 

Temperature, EC, NPK 

Sample Rate: 5 
seconds 

Sensor RS85 
• Captures physical soil data 

• Integrates 5 parameters 

 

ESP32 Microcontroller 

• RS485 to TTL Conversion 

• Digital Data Reading 

• Signal filtering 

  

Internal calibration 

Output to the AI Model 

• Calibrated and normalized data sent to 

Random Forest 
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integrating variables measured in situ such as humidity, 

temperature, pH, and electrical conductivity. 

The evolution of nitrogen available in the soil was 

represented by a dynamic balance shown in (1), which 

included root uptake, leaching loss and microbial 

mineralization: 

�̇� 𝑑𝑖𝑠𝑝(𝑡) = 𝑈𝑐𝑟𝑜𝑝(𝑡) − 𝐿(𝑡) + 𝑀(𝑡) (1) 

Where 𝑈𝑐𝑟𝑜𝑝(𝑡) corresponded to the rate of absorption by 

the plant, 𝐿(𝑡) represented the leached fraction as a function 

of soil moisture and electrical conductivity, and 𝑀(𝑡) 

described microbial mineralization. This formulation allowed 

to capture more accurately the dynamics of the soil in the face 

of environmental disturbances. 

Root absorption was modeled with a Michaelis-Menten 

kinetics modified to the agricultural environment [81], [82] 

shown in (2), which considered both the concentration of the 

nutrient in solution and the combined effect of humidity and 

temperature: 

𝑈𝑐𝑟𝑜𝑝(𝑡) =
𝑈𝑚𝑎𝑥 ⋅ 𝐶(𝑡)

𝐾𝑚 + 𝐶(𝑡)
⋅ 𝑓(𝜃(𝑡), 𝑇(𝑡)) (2) 

Where 𝐶(𝑡) was the concentration of the available nutrient, 

𝑈𝑚𝑎𝑥 = 4.5 𝑚𝑔 · 𝑑−1 the maximum absorption rate, 𝐾𝑚 =
20 𝑚𝑔 · 𝑘𝑔−1 is the semi-saturation constant, and 𝑓(𝜃, 𝑇) a 

function that integrated the volumetric moisture of the soil 

𝜃(𝑡) and the temperature of the profile 𝑇(𝑡), both measured 

by the RS485 multi-parameter sensor [83], [84].  

1) Solid fertilizer dosage: The solid fertilizer 

application rate was calculated using (3) as a mass flow 

delivered by the helical screw, dynamically adjusted by the 

AI model based on the crop's absorption efficiency: 

𝐷(𝑡) =
𝑛𝐴𝑁

60𝑆
⋅ 𝜂𝑐(𝑡) ⋅ [1 + 𝐿(𝑡)]−1 (3) 

In this equation, 𝑛 represented the filling coefficient 

(related to the density of the fertilizer), 𝐴 the cross-sectional 

area of the screw, 𝑁 its rotation speed, 𝑆 the helical pitch, and 

𝜂𝑐(𝑡) the crop-specific absorption efficiency, estimated by a 

Random Forest model trained with thirteen agronomic 

variables. The term [1 + 𝐿(𝑡)]−1 it acted as a corrective 

factor for leaching losses, integrating real-time readings of 

moisture and EC [85]. 

2) Liquid fertilizer dosage: For fertigation, the 

volumetric flow applied by the peristaltic pumps was 

dynamically adjusted using (4), considering leaf evaporation 

induced by microclimatic conditions: 

𝑄(𝑡) = 𝑣 ⋅
𝜋𝐷2

4
⋅ 𝜂𝑐(𝑡) ⋅ [1 + 𝐸(𝑡)]−1 (4) 

Where 𝑣 was the speed of the fluid, 𝐷 the internal diameter 

of the duct, and 𝐸(𝑡) the fraction of leaf evaporation 

estimated using a simplified energy balance model that 

included temperature, relative humidity, and solar radiation. 

This approach made it possible to avoid losses of liquid 

fertilizer due to surface evaporation and to adjust the doses 

precisely [86]. 

3) Integration with sensors and adaptive control: All 

environmental variables were preprocessed using a discrete 

Kalman filter, which allowed for the reduction of noise and 

variability of measurements. These calibrated readings were 

used as inputs to both the mathematical model and the 

machine learning model. The control system combined feed-

forward, based on equations (1)-(4), with a closed-loop PID 

control, which was responsible for correcting the residual 

deviations between the estimated dose and the desired 

agronomic response. The controller parameters were adjusted 

using iterative simulations in MATLAB/Simulink, using the 

modified Ziegler-Nichols method as a starting point. The 

final tuned values were: Kp=1.2, Ki=0.08, and Kd=0.01, 

which allowed maintaining a stable and oscillation-free 

response under different simulated scenarios. Absorption 

efficiency 𝜂𝑐(𝑡), generated by the Random Forest model, 

presented a dynamic range between 0.65 and 0.91, the latter 

in high humidity and neutral pH scenarios. This value was 

updated in real time by the system, which allowed the dosage 

to be adjusted without the need to retrain the model when 

changing crops or agroecological zones. 

D. Development of the Artificial Intelligence Model 

The proposed innovative dosing system incorporated a 

predictive module based on machine learning, aimed at 

estimating in real time the optimal doses of nitrogen (N), 

phosphorus (P), and potassium (K). To this end, a multi-

output Random Forest model was developed, which uses 

thirteen agro-environmental variables obtained through field 

sensorization as input, including data on soil moisture, 

temperature, pH, electrical conductivity, phenological state 

of the crop, soil type, and predominant climate [87]-[90]. 

The model was trained using a synthetic set of 10000 

records generated by quasi-uniform Sobol-LHS sampling, 

with the aim of representatively covering the hyperspace of 

possible agricultural conditions. Continuous variables were 

distributed within agronomically relevant ranges: air 

temperature (5-35 °C), soil moisture (5-45 %), pH (5.0-8.0), 

electrical conductivity (20-1200 μS/cm), and initial NPK 

concentrations (0-250 kg/ha). In addition, categorical 

variables such as cultivation (10 species), phenological stage 

(3 phases), soil type (3 textural classes), and climate (3 

agroecological scenarios) were incorporated. 

To increase the realism of the synthetic assembly, 

controlled Gaussian noise was introduced in the continuous 

variables, based on the precision tolerances of the RS485 

multiparameter sensor (±0.05 pH, ±2% humidity, ±5 μS/cm 

EC). A random factor of spatial heterogeneity of 15% was 

also added to nutrient concentrations, simulating typical 

variability in the open field. Categorical variables were 

encoded using one-hot encoding, and continuous variables 

were normalized to the interval [-1, 1]. 

In addition, 1000 real measurements were made using 

physical sensors connected to the ESP32 microcontroller, 

under real agricultural conditions. These measurements were 

used to verify the model's behavior against field data, 

demonstrating its practical applicability, although full 

integration with the physical dosing system has not yet been 

implemented. 
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The dataset was divided into 70% for training, 15% for 

validation, and 15% for testing, and 5-fold cross-validation 

was applied. Eighteen regression algorithms were compared 

in the MATLAB Regression Learner environment, with the 

Random Forest model obtaining the best overall 

performance, with a configuration of 120 trees, a maximum 

depth of 10, and a bagging method. The mean absolute errors 

(MAE) were: 6.8 kg/ha (N), 6.1 kg/ha (P), and 6.4 kg/ha (K), 

all below 5% of the operating dosing range, which validated 

its robustness and generalizability under nonlinear 

multivariate conditions. Fig. 2 shows the general flow of the 

Random Forest model, in which random subsets of the dataset 

(bagging) were generated to train multiple decision trees, 

whose outputs were aggregated to obtain a robust prediction 

that was less sensitive to overfitting [91]. 

 

Fig. 2. Decision tree used in the Random Forest model 

The generated predictions were interpreted as specific 

absorption efficiencies 𝜂𝑐(𝑡), representing the estimated 

percentage of nutrients effectively absorbed by the crop under 

given conditions. These efficiencies fed into the 

mathematical equations of dosing described in the previous 

section. In addition, the recommendations were divided by 

phenological stages: 25 % during establishment, 55 % in 

active growth, and 20 % in maturation. Finally, the model 

was exported to C code using MATLAB Coder, with a view 

to its future implementation in low-power microcontrollers 

such as ESP32 operating on FreeRTOS. Preliminary testing 

with the 1000 actual measurements confirmed the model's 

compatibility with inputs from the physical environment. 

Although these tests do not constitute a functional validation 

of the integrated system, they did allow us to verify its 

behavior against real data, establishing a solid basis for its 

complete validation in later phases. 

E. Embedded Implementation in ESP32 Microcontroller 

To guarantee the operability of the system in rural 

environments without computational infrastructure, an 

embedded implementation architecture was designed on the 

ESP32-WROOM-32 microcontroller, which has a dual-core 

Xtensa LX6 architecture, 520 KB of SRAM, and support for 

real-time execution through FreeRTOS. The choice of this 

microcontroller was due to its low power consumption, local 

processing capacity, and compatibility with industrial 

communication sensors. 

The system was organized into concurrent tasks, under a 

multitask planning scheme, separating the process of data 

acquisition, inference from the artificial intelligence model, 

and activation of actuators. To enable this integration, the 

predictive model was exported from MATLAB using 

MATLAB Coder, generating code in C language compatible 

with embedded systems. 

Fig. 3 shows the functional diagram of this architecture, 

which depicts the connection between multi-parameter 

sensors, the ESP32 microcontroller, the AI inference module, 

the hybrid control system, and the actuators. The inference of 

the model was carried out locally, without the need for 

external connectivity, which allows its autonomous operation 

in areas without network access. The control system 

implemented was hybrid, combining feed-forward and PID 

control strategies, which were described in the hybrid control 

section. 

 

Fig. 3. Functional diagram of the ESP32 embedded system 

Fig. 4 presents the physical connection diagram used 

during the sensing validation tests. The RS485 

communication interface, the multi-parameter sensor, and an 

auxiliary OLED screen are observed and connected to the 

ESP32 microcontroller. The communication between the 

sensor and the ESP32 was managed by a TTL-RS485 

converter module, with an independent power supply 

between 9 and 24 V, according to the sensor's requirements. 

 

Fig. 4. Diagram of connecting sensors in the system 

The architecture was designed to allow for modular 

scalability and accommodate configurations with multiple 

monitoring or application zones. In addition, its 

implementation in an embedded environment with local 

processing minimizes response latency and avoids 

dependence on cloud services, increasing the system's 

robustness in field conditions. 

FreeRTOS  

ESP32 
microcontroller 

ACQUISITION 

TASK 

AI INFERENCE 

MODULE 

HYBRID 

CONTROL 

SYSTEM 

ACTUATORS 

MULTIPARAMETER 

SENSOR 
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F. Experimental Validation 

As part of the proposed system's methodological 

validation, a preliminary test phase was developed to verify 

the prediction model's behavior under real-world sensing 

conditions. To this end, 1000 experimental records were 

collected using the RS485 multi-parameter sensor in 

combination with the ESP32 microcontroller, replicating the 

complete operational flow: acquisition, calibration, 

preprocessing, and transmission to the artificial intelligence 

module. This partial validation aimed to confirm the integrity 

of the acquisition and normalization process for agro-

environmental variables in field conditions without activating 

the mechanical actuators yet, as the dosing system is still 

under construction. The data obtained allowed for the 

evaluation of sensor consistency, reading stability under 

agricultural conditions, and proper integration with the 

embedded firmware. 

Although these tests do not yet constitute an agronomic 

validation of the impact of the recommended doses, they 

represent a critical intermediate phase in the transition from 

the computational model to its functional implementation. 

The adopted methodology included validating the 

communication protocol between sensors and the ESP32, 

estimating background noise in key variables such as soil 

moisture and pH, and verifying the local inference flow 

within the microcontroller. 

In parallel, an expanded experimental phase has been 

planned, which will include the integration of the complete 

mechanical prototype, its deployment in horticultural crop 

plots, and comparison against conventional fertilization 

methods. This stage will involve the collection of new 

measurements under different soil types, crop species, and 

agroclimatic conditions, as well as the monitoring of 

agronomic indicators such as yield, nutrient use efficiency, 

and reduction in applied inputs. The resulting data will be 

used to retrain the predictive model through continuous 

learning techniques, enhancing its adaptability and 

generalization capacity. 

IV. RESULTS 

A. Conceptual Design of the Dosing System 

The conceptual design of the fertilizer dosing machine 

was developed using CAD software (SolidWorks), ensuring 

dimensional and operational precision for each subsystem. 

This design incorporates mechanisms for the application of 

both solid and liquid fertilizers, integrated into an 

autonomous mobile platform equipped with GPS navigation. 

One of the main components for solid fertilizer dosing is the 

helical screw, whose geometry was calculated based on 

fertilizer type, rotation speed, and particle size, as shown in 

Fig. 5. 

 

Fig. 5. Helical screw design 

To maintain a constant flow towards the screw, a storage 

hopper was designed with the capacity to cover 

approximately one hectare of horticultural crops, as 

illustrated in Fig. 6. 

 

Fig. 6. Hopper design in solid fertilizer dosing system 

The integration of the hopper, screw, and automated 

control mechanism forms the solid fertilizer dosing 

subsystem, shown in Fig. 7, whose simulation in SolidWorks 

verified the homogeneous distribution of fertilizer under 

different operating conditions. 

 

Fig. 7. Simulation of the helical screw in CAD software 

For liquid fertilizer application, a fertigation module 

based on a peristaltic pump was developed and designed to 

operate synchronously with the solid dosing system and 

respond to recommendations generated by the artificial 

intelligence algorithm. Its structural design is shown in Fig. 

8. 

 

Fig. 8. Dosing system for liquid fertilizers 

In addition, an autonomous chassis with traction and GPS 

navigation was designed to position the system according to 

predefined fertilization maps. The mechanical model of this 

locomotion system is shown in Fig. 9. 

 

Fig. 9. Stand-alone mechanism for an intelligent dosing system 
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The complete integration of both dosing systems (solid 

and liquid) into the autonomous vehicle is presented in Fig. 

10, allowing the precise and synchronized application of 

differentiated fertilizers. 

 

Fig. 10. Transfer mechanism for the application of organic and chemical 

fertilizers 

B. Model Validation with Synthetic and Real Data 

The predictive model was trained using a synthetic dataset 

of 10000 records generated through Sobol-LHS sampling. 

This dataset was designed to comprehensively cover diverse 

combinations of agro-environmental variables: temperature, 

soil moisture, pH, electrical conductivity, NPK 

concentrations, crop type, phenological stage, and soil type. 

This technique helped prevent sampling bias and improved 

the model's generalization capability across new scenarios. 

A practical validation was performed using 1000 real-

world measurements collected with an RS485 

multiparameter sensor connected to an ESP32 

microcontroller. These measurements, taken under actual 

field conditions, included humidity, temperature, pH, EC, 

and nutrient (NPK) data, and were directly processed by the 

embedded system, validating the complete data flow from 

sensor acquisition to AI model inference. During inference 

tests with real inputs, the system achieved an average latency 

of 14.6 milliseconds per sample while operating under 

FreeRTOS, confirming the computational feasibility of the 

model in a low-power embedded environment. 

The prediction results obtained by the Random Forest 

model are shown in the following figures. Fig. 11 presents the 

relationship between actual and predicted values for nitrogen 

dosing (n_dose), showing close alignment with the perfect 

prediction line. 

 

Fig. 11. Prediction of nitrogen (N) dose vs. actual values using random forest 

model 

Fig. 12 displays the prediction results for phosphorus 

(p_dose). It demonstrates minimal dispersion of points from 

the ideal line, which indicates high predictive precision. 

 

Fig. 12. Prediction of phosphorus (P) dose vs. actual values using random 

forest model 

Finally, Fig. 13 shows the potassium (k_dose) results, 

with a highly aligned pattern, highlighting the model’s ability 

to capture complex absorption and availability dynamics. 

 

Fig. 13. Prediction of potassium (K) dose vs. actual values using random 

forest model 

C. Predictive Model Performance and Accuracy Metrics 

The Random Forest model exhibited high accuracy in 

predicting nitrogen, phosphorus, and potassium fertilization 

doses, both on synthetic and real sensor-processed data. The 

RMSE metric was used to quantify this precision, and the 

results are summarized in Table II. 

TABLE II.  RMSE VALUES FOR FERTILIZER DOSE PREDICTIONS BASED ON 

COMBINED SYNTHETIC AND REAL DATA 

Nutrient RMSE (kg/ha) Data Source 

Nitrogen (N) 2.81 Synthetic + Real 

Phosphorus (P) 1.42 Synthetic + Real 

Potassium (K) 0.94 Synthetic + Real 

 

These values reflect accurate predictions in all cases. In 

particular, the model achieved an error below 3 kg/ha for 

nitrogen and below 1 kg/ha for potassium, which is highly 
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relevant for large-scale agricultural applications. The low 

dispersion observed in Fig. 11, Fig. 12, and Fig. 13 further 

confirms the model's robustness against typical variations in 

agricultural environments. 

From an agronomic perspective, these error levels 

translate into concrete benefits. Specifically, an RMSE of 

0.94 kg/ha for potassium corresponds to a deviation of less 

than 5% in the field, potentially reducing input overuse by 

10-15%. This leads to significant economic savings and 

mitigates the environmental impact associated with nutrient 

leaching. Moreover, the system's ability to dynamically 

adjust solid and liquid fertilizer doses based on real-time soil 

and phenological conditions enhances nutrient use efficiency. 

It promotes a more sustainable and profitable agricultural 

production. 

D. Correlation Between Variables and Fertilization Doses 

To complement the model's precision analysis, a Pearson 

correlation map was constructed to identify the relationships 

between input variables and the recommended fertilizer 

doses. Fig. 14 presents the correlation matrix generated from 

the 10000 synthetic records and the 1000 real measurements 

used during the model’s training and validation phases. 

 

Fig. 14. Correlation map between fertilizer variables and doses 

The most relevant findings include: 

● Air temperature exhibited weak correlations with 

fertilizer doses, suggesting that thermal variations had a 

limited influence on nutrient requirements under the 

evaluated conditions. 

● Soil potassium concentration showed a strong positive 

correlation with the potassium dose (r = 0.98), reinforcing 

the critical role of soil nutrient content in adaptive 

fertilization strategies. 

● Extremely high correlations (r > 0.99) were observed 

among the three NPK doses, indicating a strong 

interrelationship modeled from the input data. This may 

reflect both agronomic synergistic responses and 

potential redundancies within the training dataset. 

V. DISCUSSION 

The results obtained confirmed the technical feasibility of 

the proposed intelligent fertilizer dosing system. The 

Random Forest predictive model achieved RMSE values of 

2.81 kg/ha for nitrogen, 1.42 kg/ha for phosphorus, and 

0.94 kg/ha for potassium, demonstrating adequate precision 

for precision agriculture applications. This adaptive 

prediction capability, combined with its embedded 

implementation on low-power microcontrollers, enables 

autonomous execution under field conditions without the 

need for complex computational infrastructure. Compared to 

previous studies, the developed system presents substantial 

improvements. For example, the liquid fertilizer injection 

system presented in [92] was limited to a single application 

modality, lacking dynamic adjustment capabilities and soil 

sensor integration. In contrast, the present work integrates 

solid and liquid fertilization, multiparameter soil sensing, and 

adaptive control through machine learning. 

The study in [88] demonstrated how proper NPK dosing 

impacts tuber yield, although using conventional strategies 

without real-time adjustment. The system proposed here 

overcomes this limitation by adapting fertilizer doses based 

on instantaneous soil and environmental conditions, 

increasing nutrient use efficiency and reducing the 

environmental impact associated with overfertilization. 

Regarding autonomous mobility, the vehicle presented in 

[93] integrated GPS navigation but lacked predictive 

capabilities based on intelligent soil sensing. In contrast, the 

system developed in this study combines autonomous 

locomotion with real-time adaptive decision-making for 

precise input dosing. 

The correlation analysis revealed that soil potassium 

content maintained a strong positive correlation with the 

recommended potassium doses, while air temperature and 

soil moisture showed moderate correlations. Additionally, a 

high intercorrelation among the three NPK doses (r > 0.98) 

was identified, which may reflect both synergistic crop 

nutritional responses and potential redundancies that should 

be analyzed in future agronomic validations. Among the main 

agronomic implications, it is notable that an RMSE of 

0.94 kg/ha for potassium represents deviations of less than 

5%, resulting in input savings and increased production 

sustainability. Furthermore, the system’s ability to operate 

independently in rural environments with low connectivity 

provides a competitive advantage over solutions reliant on 

cloud-based processing. 

However, the system also presents limitations. Although 

1000 real measurements were used to validate the predictive 

model, a full agronomic validation with the final physical 

dosing machine has not yet been conducted. Controlled field 

trials are planned for future phases to evaluate agronomic 

responses and the independent effectiveness of nitrogen, 

phosphorus, and potassium recommendations. Overall, the 

proposed system constitutes a step forward toward the 

intelligent automation of plant nutrition in horticultural crops. 

It integrates robust predictive modeling, optimized 

mechatronic design, and efficient embedded processing. This 

solution offers a scalable, sustainable, and viable alternative 

to enhancing agricultural efficiency in low-resource rural 

contexts. 

VI. CONCLUSION 

This study proposed the development and partial 

validation of an intelligent fertilizer dosing system, 

integrating real-time multiparameter sensing and machine 

learning-based inference to optimize nutrient application in 

horticultural crops. The predictive model, based on a multi-

output Random Forest, was trained with 10000 synthetic 
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records generated through Sobol-LHS sampling and 

incorporated thirteen critical agro-environmental variables. 

Preliminary validation with 1000 real field measurements 

confirmed the compatibility among the sensing modules, 

embedded processing, and intelligent prediction, achieving 

RMSE of 2.81 kg/ha for nitrogen, 1.42 kg/ha for phosphorus, 

and 0.94 kg/ha for potassium. The main contribution of this 

research lies in the hybrid architecture designed, enabling the 

adaptive and coordinated dosing of solid and liquid fertilizers 

through a low-power embedded system programmed under a 

FreeRTOS environment. This dynamic adjustment 

capability, based on crop phenological stage and 

instantaneous soil conditions, represents a significant 

advance toward more efficient, sustainable, and scalable 

fertilization systems for precision agriculture in rural areas. 

However, the system currently constitutes a proof of 

concept. Validation was limited to controlled agricultural 

conditions, without including extensive field trials across 

different crop types or under significant environmental 

variability. Additionally, the high correlation observed 

among the predicted doses of N, P, and K (r > 0.98) suggests 

the need to expand dataset diversity and refine training 

strategies to improve the independence of nutrient 

recommendations. Further technical factors such as long-

term sensor stability, prolonged energy consumption, and 

end-user acceptance also require future evaluation. 

Future research should conduct comparative field trials on 

sensitive crops such as potatoes and leafy vegetables, 

considering edaphoclimatic variability and water stress 

conditions. Moreover, exploring alternative models such as 

XGBoost or lightweight neural network architectures could 

further enhance low-power microcontrollers' predictive 

accuracy and computational efficiency. Addressing these 

aspects will enable progress toward the real and sustainable 

implementation of autonomous nutrient management systems 

in resource-constrained agricultural contexts. 
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