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Abstract—The growing need for clean energy has made solar 

panels an essential solution. However, the nonlinear behavior of 

photovoltaic (PV) systems under varying weather conditions 

necessitates advanced control strategies to ensure optimal 

energy harvesting. This paper presents an enhanced Maximum 

Power Point Tracking (MPPT) approach that integrates the 

conventional Perturb and Observe (P&O) method with an 

Indirect Adaptive Fuzzy Controller (IAFC). While P&O is 

known for its simplicity, it suffers from steady-state oscillations 

and slow response during environmental changes. To address 

these issues, the IAFC adaptively adjusts the perturbation step 

using a Lyapunov-based rule to improve convergence and 

minimize power fluctuations. The proposed method achieves 

Maximum Power Point tracking within less than 0.025 s, 

compared to 0.05 s for the conventional P&O algorithm. This 

enhances the credibility of our dynamic performance claim. 

Specifically, unlike prior fuzzy-P&O hybrids with fixed rule 

sets, our method leverages Lyapunov-based adaptation to 

dynamically adjust the control action, improving convergence 

and robustness under changing conditions. We also included a 

quantitative metric showing a 75% reduction in power 

fluctuations compared to conventional P&O. Simulation results 

under varying sunlight conditions demonstrate fast convergence 

and improved power stability. The proposed IAFC method 

clearly outperforms classical P&O in tracking accuracy, 

responsiveness, and overall energy yield. 

Keywords—Adaptive Fuzzy Control; Lyapunov Stability; 

Dynamic MPPT Optimization; P&O Improvement; Photovoltaic 

Systems. 

I. INTRODUCTION  

Renewable energy systems, such as solar and wind 

power, are among the most promising sustainable solutions 

receiving increasing attention in recent research due to their 

abundance and environmentally friendly nature. These 

systems contribute significantly to reducing greenhouse gas 

emissions, making them an effective tool in combating 

climate change. Additionally, their widespread adoption has 

been facilitated by declining costs driven by growing global 

demand [1]-[3]. 

Among renewable energy sources, solar energy stands out 

as one of the most widely used and accessible. Photovoltaic 

(PV) systems convert sunlight directly into electricity 

through solar cells, offering numerous advantages such as the 

absence of moving parts, low operational cost, high 

reliability, and being an inexhaustible energy source [4], [5]. 

However, the efficiency of PV systems  typically ranging 

between 14% and 19%  is greatly affected by environmental 

factors such as temperature and solar irradiance. These 

variations introduce nonlinearity in the current-voltage (I-V) 

and power-voltage (P-V) characteristics of PV modules. 

To extract the maximum available power from a PV array, 

it is crucial to operate the system at the Maximum Power 

Point (MPP)  the point at which the system yields the highest 

possible output power [6]-[14]. Since the MPP shifts with 

environmental conditions, especially irradiance and 

temperature, Maximum Power Point Tracking (MPPT) 

techniques are essential for maintaining high energy 

harvesting efficiency [32]-[35]. 

One of the most widely adopted MPPT techniques is the 

Perturb and Observe (P&O) method due to its simplicity, ease 

of implementation, and low cost. This method perturbs the 

duty cycle of the power converter and observes the resulting 

change in output power. If the power increases, the 

perturbation continues in the same direction; otherwise, it is 

reversed. Despite its effectiveness in steady-state conditions, 

the P&O technique suffers from limitations such as 

oscillations around the MPP and degraded performance under 

rapidly changing environmental conditions. These 

shortcomings reduce the overall energy extraction efficiency 

and highlight the need for more advanced and adaptive 

control strategies [15]-[19]. 

To address these limitations, various intelligent and 

adaptive control methods have been introduced, such as 

Fuzzy Logic Control (FLC). FLC mimics human reasoning 

and decision-making using linguistic rules and is commonly 

implemented using Mamdani-type fuzzy sets [20]. This 

approach is highly effective for handling nonlinear and 

uncertain systems without requiring precise mathematical 

modeling, making it suitable for real-world PV applications 

[21]-[26]. However, FLC systems often face challenges 

related to high computational load, particularly when dealing 
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with high-dimensional rule bases, which affects real-time 

performance. 

Another class of advanced control is Adaptive Control, 

particularly Model Reference Adaptive Control (MRAC). 

MRAC continuously adjusts controller parameters to ensure 

the system output follows a predefined reference model, 

making it robust against dynamic environments and external 

disturbances. This method has been successfully used in 

power systems, robotics, and aerospace due to its adaptability 

and stability based on Lyapunov theory [27]-[31]. 

Nevertheless, MRAC performance is highly sensitive to 

inaccuracies in the reference model, which may lead to 

instability or degraded tracking. 

Despite the significant advancements in MPPT strategies, 

major challenges persist in both fuzzy and adaptive control 

domains [36]. These include the high computational 

complexity due to large rule bases (often referred to as the 

“rule explosion” problem), and the difficulty of real-time 

parameter tuning during fast environmental changes [37]-

[39]. 

To overcome these challenges, this study proposes a 

novel hybrid control approach known as Indirect Adaptive 

Fuzzy Control (IAFC), which synergistically combines the 

strengths of FLC and MRAC. The IAFC technique leverages 

the nonlinear handling and uncertainty tolerance of FLC with 

the adaptive tracking and stability advantages of MRAC. This 

hybridization not only reduces the required number of fuzzy 

rules, thus decreasing computational complexity, but also 

enhances real-time responsiveness compared to other 

intelligent methods like neuro-fuzzy or metaheuristic-based 

controllers [55]-[57]. 

The proposed control system is structured in two levels: 

in the first level, the conventional P&O technique provides 

an initial estimation of the optimal duty cycle based on real-

time PV voltage and current data. In the second level, the 

IAFC dynamically fine-tunes the control parameters to 

ensure stable and accurate MPP tracking under varying 

environmental conditions. 

Simulation results demonstrate that the proposed hybrid 

approach significantly improves MPPT tracking speed, 

enhances output power stability, and increases overall energy 

conversion efficiency compared to traditional techniques, 

proving its effectiveness in dynamic solar energy 

applications. 

The main contributions of this study are as follows, 

emphasizing the performance improvements and control 

robustness achieved: 

• Two-Level MPPT Control: A hierarchical control 

architecture is proposed, where the Perturb and Observe 

(P&O) method functions as the first-level controller to 

establish an initial estimate of the optimal duty cycle 

based on real-time PV voltage and current measurements. 

• Enhanced Dynamic Response: The second-level 

controller, based on IAFC, adaptively fine-tunes the 

control parameters in response to rapid environmental 

fluctuations, thereby maintaining efficient tracking of the 

Maximum Power Point (MPP) under dynamic conditions. 

• Optimized Power Conversion Efficiency: The hybrid 

P&O-IAFC structure achieves superior energy harvesting 

by improving tracking precision and ensuring stable and 

adaptive regulation of the DC-DC power converter. 

• Comprehensive Performance Assessment: The proposed 

control strategy is validated through comparative 

simulations against the conventional P&O method. 

Results demonstrate clear improvements in tracking 

speed, output power stability, and overall energy 

conversion efficiency. 

The structure of this paper is organized as follows to 

provide a clear and comprehensive understanding of the 

proposed work. Section 2 presents the modeling of the solar 

energy conversion system, including the photovoltaic (PV) 

array, MPPT controller, and DC-DC power converter. 

Section 3 introduces the proposed enhanced two-level 

Maximum Power Point Tracking (MPPT) control scheme, 

detailing its implementation and advantages. Section 4 

discusses the research findings obtained from simulations, 

analyzing the performance of the proposed approach under 

different conditions. Finally, Section 5 provides conclusions 

on the effectiveness of the proposed method and outlines 

potential directions for future research. 

II. DESCRIPTION OF THE SOLAR ENERGY CONVERSION 

SYSTEM 

Photovoltaic energy has gained increasing attention in 

electrical power applications due to its status as a nearly 

limitless and widely accessible energy resource. However, 

the power output from photovoltaic (PV) modules depends 

on factors such as solar irradiance and the temperature of the 

solar cells. To optimize the efficiency of a solar energy 

conversion system shown in Fig. 1, it is crucial to track the 

PV array's maximum power point (MPP). The MPP is a 

unique point at which the PV array can deliver maximum 

power to the load. This point, however, changes nonlinearly 

with variations in solar irradiance and cell temperature. To 

ensure an optimal operation of the PV array at its MPP, the 

system needs to include a maximum power point tracking 

(MPPT) controller. A key component in the solar energy 

conversion process is the power converter, which converts 

the direct current (DC) generated by the solar panels into 

usable voltage and current for the load. When combined with 

an MPPT algorithm, this power boost converter enables the 

load to operate at maximum power. The MPPT control 

algorithm adjusts the operating point of the solar panels in 

real time to maximize the energy harvested, even in presence 

of fluctuations in temperature and sunlight. This process 

ensures that the solar system operates with maximum 

efficiency, making the best possible use of the generated 

energy. In this work, a DC-DC power converter is 

implemented [40]. 

A. Model and Characteristics of the Photovoltaic (PV) 

System  

The components of a standard photovoltaic (PV) cell 

configuration are a current source, a diode, and a number of 

resistors coupled in series and parallel. Fig. 2 depicts the 

analogous circuit for the PV cell. The current-voltage (I-V) 
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and power-voltage (P-V) characteristics for varying solar 

irradiance are depicted in Fig. 3. 

 

Fig. 1. Solar energy conversion system 

 

Fig. 2. PV system equivalent circuit 

 

Fig. 3. I-V and P-V curves of the PV system under various levels of solar 

irradiance 

The current produced by a solar cell can be determined 

using the following equations [2]: 

𝑖𝑝𝑣 = 𝐼𝑅 − 𝐼𝑑1 − 𝐼𝑝𝑒  (1) 

In the context of a PV array, the output current and 

voltage are represented by 𝑖𝑝𝑣  and 𝑣𝑝𝑣 respectively. In 

Equation (1), 𝐼𝑅 , 𝐼𝑝𝑒 and 𝐼𝑑1 denote the PV cell, the parallel 

resistance𝑅𝑝𝑒 and diode currents respectively. The diode 

current 𝐼𝑑1 is given by: 

𝐼𝑑1 = 𝐼01 (𝑒
𝑞

(𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠𝑒)

𝑛𝑘𝑇 − 1) (2) 

Where T, q, K, and n stand for temperature, electron charge, 

Boltzmann's constant, and diode factor, respectively, and 𝐼01 

for reverse saturation current. The following formula can be 

used to calculate the PV cell current 𝐼𝑅: 

𝐼𝑅 =
𝑊

𝑊0

(𝐼𝐶 + 𝜆(𝑇 − 𝑇0)) (3) 

Where 𝐼𝑐 , which represents the short circuit current, is 

dependent on the irradiance (W) and reference irradiance 

𝑊0 during the day, as well as the temperature (𝑇) and 

reference temperature (𝑇0). Additionally, 𝐼𝑐 is also 

influenced by the temperature coefficient, 𝜆 Equation 4 gives 

the solar cell output current. 

𝐼𝑝𝑣 = 𝐼𝑅 − 𝐼01 (𝑒
𝑞

(𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠𝑒)

𝑛𝑘𝑇 − 1) −
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠𝑒

𝑅𝑝𝑒
 (4) 

Where  𝑅𝑠𝑒 denotes the series resistance and 𝐼01 is defined as 

follows: 

𝐼01 = 𝐼01𝑟𝑒𝑓 (
𝑇

𝑇0
)
3

𝑒
[
𝑞𝐸𝐺
𝑛𝑘

(
1
𝑇
−
1
𝑇0
)]

 (5) 

With 𝐸𝐺  referring to the energy bandgap. 

B. Dynamic Model of the Boost Converter  

In a simple PV system with single level MPPT control, 

the steady-state relationship between the PV array voltage 

(𝑉𝑝𝑣), PV array current (𝐼𝑝𝑣), and the duty cycle (d) of the 

switching transistor (Q) can be written as follows [41]: 

𝑣𝑝𝑣 = 𝑖𝑝𝑣𝑅0(1 − 𝑑)
2 (6) 

Where 𝑣𝑝𝑣 , 𝑖𝑝𝑣 are the PV array voltage and current averages 

in DC terms. 𝑣̂𝑝𝑣, 𝑖̂𝑝𝑣  are the ripple terms, and Ro is the load 

resistance. 

The relationship (6) forms the basis for conventional 

MPPT algorithms, which calculate the converter's duty cycle 

during steady states. However, to optimize transient 

responses, MPPT control must consider the dynamic 

interaction between the duty cycle and the array voltage. 

Undesirable transient oscillations can occur, potentially 

leading to inefficient system operation. Therefore, the MPPT 

control mechanism must eliminate these transient oscillations 

in array voltage once the duty cycle has been adjusted to 

accommodate changing environmental conditions. A 

comprehensive dynamic model of the boost converter is 

proposed in [42]. To simplify the analysis of the system's 

transient response, a small signal equivalent circuit is 

adopted, as proposed in [43]. The circuit is shown in Fig. 4. 

 

Fig. 4. Small signal equivalent circuit for PV array and boost converter  

The PV array with small-signal array voltage 𝑣̂𝑝𝑣 and 

small-signal array current 𝑖̂𝑝𝑣 is represented by the resistance 

𝑅𝑖 in the circuit. The transfer function (TF) is established 

between the duty cycle control signal d(t) and the voltage 

across the array 𝑣𝑝𝑣  (t) at a specific operating point. The 

system's dynamics are encapsulated within this TF. Fig. 4 

depicts a dynamic model with a battery load commonly found 

in PV systems. In this context, the TF between the duty cycle 

and the array voltage is derived under small signal operation, 

disregarding the battery dynamics. Through the analysis of 

Fig. 4, we derive the following correlation [44]. 

𝑣̂𝑝𝑣(𝑠)

𝑅𝑖
+ 𝑠𝑣̂𝑝𝑣(𝑠)𝑐𝐼 =

𝑔́(𝐷)𝑑̂(𝑠) − 𝑣̂𝑝𝑣(𝑠)

𝑠𝐿
 (7) 
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where 𝑑̂(𝑠) represents the small-signal variation around the 

converter's duty cycle D. The relationship between 𝑣𝑝𝑣  and D 

is denoted by g(D), and its derivative with respect to D is 

represented as g′(D).  

Drawing from Equation (7), we derive the following 

expression for the transfer function: 

𝑣̂𝑝𝑣(𝑠)

𝑑̂(𝑠)
=

𝑔́(𝐷)

𝐿𝐶𝐼𝑠
2 +

1
𝑅𝑖
𝑠 + 1

 
(8) 

The Laplace transforms of 𝑣̂𝑝𝑣(𝑡) and 𝑑̂(𝑡) are denoted 

by 𝑣̂𝑝𝑣(𝑠) and 𝑑̂(𝑠) respectively. The boost converter's 

steady-state output voltage 𝑣0, steady-state DC PV array 

voltage 𝑣𝑝𝑣 , and running duty cycle D are related by the 

function g(D), which may be expressed as [45]. 

𝑔(𝐷) = 𝑣𝑝𝑣 = (1 − 𝐷)𝑣0 (9) 

Assuming that that g(D) and 𝑣0 are not affected by 

transient switching behavior Equation (9) gives 𝑔́(𝐷) =
− 𝑣0   Therefore, the transfer function in Equation (8) can be 

re-written as:  

𝑣̂𝑝𝑣(𝑠)

𝑑̂(𝑠)
=

−
𝑣0
𝐿𝐶𝐼

𝑠2 +
1
𝑅𝑖𝐶𝐼

𝑠 +
1
𝐿𝐶𝐼

 (10) 

The equation (10) represents the small-signal transfer 

function used to describe the output voltage dynamics of the 

boost converter. 

This second-order system represents the relationship 

between duty cycle perturbation 𝑑̂(𝑠) and output voltage 

𝑣̂𝑝𝑣(𝑠), under the assumption of ideal components. The 

model captures the dominant dynamics of the boost converter 

using the inductor L, input capacitor𝐶𝐼, and load resistance 

𝑅𝑖, which are sufficient for initial controller design and 

stability analysis [63]. 

While parasitic elements such as equivalent series 

resistance (ESR) of the capacitor, inductor resistance, and 

switch/conduction losses are neglected, this simplification is 

widely adopted in control-oriented modeling. Including these 

losses would result in a more complex higher-order model, 

making analytical derivation of control laws (such as the 

MRAC-based adaptation) significantly more cumbersome. 

However, it is acknowledged that parasitic effects can impact 

steady-state efficiency and transient behavior, especially 

under high-frequency switching [64]. 

Considering the negative sign in the transfer function 

(10), which suggests that an increase in PV panel voltage 

happens when the duty ratio is decreased, and considering 

that parasitic power stage components were excluded from 

the analysis, the transfer function is determined for a 

nonlinear system as depicted in Fig. 3 near a single operating 

point using its linearized version as illustrated in Fig. 4 [2]. 

III. MPPT CONTROLLER DESIGN 

The enhanced 2-level Maximum Power Point Tracking 

(MPPT) control scheme proposed in this work is designed to 

efficiently track the Maximum Power Point (MPP) amidst 

varying environmental conditions. The operating point is 

adjusted to the ideal value of the resistance R using the 

perturb and observe first level of control [46]. The novel 

IAFC controller, which regulates the converter dynamics at 

the second level of control, makes sure that the ideal 

resistance (R) produces a critically damped system response 

even in the face of changing environmental conditions. 

Similar to Ripple Correlation Control (RCC), which use 

ripple in PV voltage to accomplish MPPT, the adaption gain 

of the IAFC is modified based on the high-frequency (ripple) 

content of the tracking error. [52] This high-frequency 

content of the tracking error accurately reflects variations in 

input parameters. Consequently, the adaptation gain of the 

IAFC is tuned more effectively to address the impact of 

changing environmental conditions on the PV system's output 

voltage. This guarantees rapid convergence, enhances 

transient performance, and avoids the need for excessively 

high adaptation gain while ensuring the absence of high-

frequency oscillations in the control signal. A comprehensive 

methodology detailing the proposed approach is provided in 

the subsequent section. The novelty of the proposed IAFC 

controller lies in its Lyapunov-guided adaptation, which 

ensures closed-loop stability without requiring prior 

knowledge of nonlinear functions f(x) and g(x). This 

distinguishes it from conventional FLC or MRAC schemes, 

which typically assume fixed rules or accurate plant models 

[58]. 

A. Perturb and Observe Methode (First Control Level) 

At the first level, the perturb and observe method is used 

to calculate the duty cycle d(t) in order to deliver maximum 

power in steady state. This calculated duty cycle d(t) serves 

as an input for the proposed novel IAFC unit. The general 

schematic architecture of the recommended control strategy 

is illustrated in Fig. 5.  The MPPT control law is expressed in 

Equation (11). 

𝑑𝑝

𝑑𝑣𝑝𝑣
= {

= 0, 𝑎𝑡 𝑀𝑃𝑃                         
> 0, 𝑎𝑡 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑀𝑃𝑃

< 0, 𝑎𝑡 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑀𝑃𝑃
  (11) 

The flowchart for the calculation block d(t) = r of the 

suggested MPPT approach is portrayed in Fig. 6.   

 

Fig. 5. PV system with boost converter and MPPT controller 

B. Proposed Indirect Adaptive Type 1 Fuzzy Controller 

Method (Second Control Level ) 

The design of the proposed secondary control level, 

namely IAFC, is depicted in Fig. 7. The IAFC obtains its 

reference signal d(t) = r from the disturbance and monitoring 
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unit. The primary objective of the IAFC is to enhance 

transient performance in Maximum Power Point Tracking 

(MPPT) by addressing the rapid dynamics of nonlinear PV 

systems in varying environmental conditions, all without the 

necessity for consistently high adaptive gain. In the initial 

stage of the proposed MPPT control, the Disturbance and 

Monitoring unit analyzes high-frequency components and 

aligns them with the switching function to guide the control 

process [47]. 

 

Fig. 6. Flowchart of perturb and observe algorithm 

 

Fig. 7. Adaptive MPPT controller for photovoltaic systems 

1) Reference and Plant Model  

Equation (10) represents the plant model for the proposed 

IAFC using positive coefficients in both time and frequency 

domain formulations. 

𝑑2𝑦𝑝(𝑡)

𝑑𝑡2
= −𝑎𝑝

𝑑𝑦𝑝(𝑡)

𝑑𝑡
− 𝑏𝑝𝑦𝑝(𝑡) + 𝑘𝑝𝑢𝑝(𝑡) (12) 

𝐺𝑝(𝑠) =
𝑦𝑝(𝑠)

𝑢𝑝(𝑠)
=

𝑘𝑝

𝑠2 + 𝑎𝑝𝑠 + 𝑏𝑝
 (13) 

Where 𝑎𝑝, 𝑏𝑝 𝑎𝑛𝑑 𝑘𝑝 are the plant parameters and can be 

expressed in terms of the PV system parameters from 

equation (10). 

The second-order reference model has been selected, both 

in the time and frequency domains, to represent the desired 

output 𝑦𝑚(𝑡) for the input 𝑟(𝑡) with the following form: 

𝑑2𝑦𝑚(𝑡)

𝑑𝑡2
= −𝑎𝑚

𝑑𝑦𝑚(𝑡)

𝑑𝑡
− 𝑏𝑚𝑦𝑚(𝑡) + 𝑘𝑚𝑟(𝑡) (14) 

𝐺𝑚(𝑠) =
𝑦𝑚(𝑠)

𝑟(𝑠)
=

𝑘𝑚
𝑠2 + 𝑎𝑚𝑠 + 𝑏𝑚

 (15) 

Where 𝑘𝑚 is a positive gain, 𝑎𝑚and 𝑏𝑚are calculated such 

that the reference model generates a critically damped step 

response. The purpose of the control strategy is to adjust u(t) 

so that 𝑦𝑝(𝑡) asymptotically follows 𝑦𝑚(𝑡). 

The following subsections explore the controller design 

and state-space analysis to develop an error-dependent 

adjustable gain strategy aimed at improving the transient 

response in the 2-level MPPT control. 

2) Probleme Formulation  

Consider a nonlinear system of order n defined by: 

𝑥̇1 = 𝑥2 

𝑥̇2 = 𝑥3 

⋮ 

𝑥̇𝑛 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) + 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)𝑢 y= 𝑥1 

(16) 

which is equivalent to: 

𝑥(𝑛) = 𝑓(𝑥, 𝑥̇, … , 𝑥(𝑛−1)) + 𝑔(𝑥, 𝑥̇, … , 𝑥(𝑛−1))𝑢 (17) 

Let f and g be unknown continuous functions, where 

𝑢 𝜖𝑅 𝑎𝑛𝑑 𝑦 𝜖 𝑅 are the input and output of the system 

respectively. The state vector of the system is denoted as 𝑥 =

(𝑥1, 𝑥2, … 𝑥𝑛)
𝑇 = (𝑥, 𝑥̇, … , 𝑥(𝑛−1))𝜖𝑅𝑛 . For the system (17) 

to be controllable, it is required that  𝑔(𝑥) ≠ 0 for x 

belonging to a certain controllability region 𝑢𝑐 ⊂ 𝑅
𝑛 . Since 

g(x) is continuous, it is assumed that 𝑔(𝑥) > 0 ∀𝑥𝜖𝑢𝑐 . 

The objective of the control strategy is to force y to track 

a predefined reference signal 𝑦𝑚(𝑡).while making sure that 

all involved signals remain bounded. Specifically, the aim is 

to determine a control law 𝑢 = 𝑢(𝑥/𝜃) based on a type 1 

fuzzy system, along with an adaptive law for adjusting the 

parameter vector θ. This is accomplished through the 

following: 

1. It is essential for the closed-loop system to exhibit global 

stability, ensuring that all variables 𝑥(𝑡), 𝜃(𝑡) 𝑎𝑛𝑑 𝑢(𝑥/

𝜃)  remain uniformly bounded. In other words, the aim is 

to ensure that |𝑥(𝑡)| ≤ 𝑀𝑥 < ∞, |𝜃(𝑡)| ≤ 𝑀𝜃 <

∞ 𝑎𝑛𝑑 𝑢(𝑥/𝜃) ≤ 𝑀𝑢 < ∞    for all 𝑡 ≥

0, 𝑤ℎ𝑒𝑟𝑀𝑥 , 𝑀𝜃𝑎𝑛𝑑 𝑀𝑢 represent design parameters 

defined by the designer.  

2. The tracking error, denoted as 𝑒 = 𝑦𝑚 − 𝑦 , should be 

minimized and tend towards zero. If the functions f and g 

were given, the control law would be determined as 

follows: 𝑒 = (𝑒, 𝑒̇, … , 𝑒(𝑛−1))
𝑇
𝑎𝑛𝑑 𝑘 =

(𝑘𝑛, … , 𝑘1)
𝑇𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑅𝑛 considering such that all the 

poles of the polynomial ℎ(𝑠) = 𝑠𝑛 + 𝑘1𝑠
(𝑛−1) +⋯+ 𝑘𝑛 

are situated in the open left half-plane. 

𝑢 = 𝑢(𝑥) =
1

𝑔(𝑥)
[−𝑓(𝑥) + 𝑦𝑚

(𝑛)(𝑡) + 𝑘𝑇𝑒] (18) 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1439 

 

Azzeddine Yahia, Enhanced Maximum Power Point Tracking for Photovoltaic Systems Using Adaptive Fuzzy Control 

This allows for the derivation of the error dynamics as 

follows. 

𝑒(𝑛) + 𝑘1𝑒
(𝑛−1) +⋯+ 𝑘𝑛𝑒 = 0 (19) 

and since the polynomial h(s) is stable, then 𝑒(𝑡) → 0 

which is the main objective of the control. 

a) Indirect Type 1 Fuzzy Controller  

In practice, since f and g are unknown, they must be 

substituted with their estimations 𝑓𝑎𝑛𝑑 𝑔̂ , which will be 

type-1 fuzzy systems. As a result, the new control law will 

adopt the following form. 

𝑢𝑐 = 𝑢𝑐(𝑥 𝜃𝑓 , 𝜃𝑓)
1

𝑔(𝑥 𝜃𝑔)⁄
⁄ [−𝑓̂(𝑥 𝜃𝑓) + 𝑦𝑚

(𝑛)(𝑡) + 𝑘𝑇𝑒⁄ ] (20) 

Applying equation (20) to equation (17) and conducting 

some manipulations, the following error equation is obtained: 

𝑒𝑛 = −𝑘𝑇𝑒 + [𝑓(𝑥 𝜃𝑓) − 𝑓(𝑥)⁄ ]

+ [𝑔̂(𝑥 𝜃𝑔) − 𝑔(𝑥)⁄ ] 𝑢𝑐 
(21) 

This is equivalent in state-space formulation to the following. 

𝑒̇ = 𝐴𝑐𝑒 + 𝑏𝑐[(𝑓̂(𝑥 𝜃𝑓) − 𝑓(𝑥)⁄ ) + (𝑔(𝑥 𝜃𝑔) − 𝑔(𝑥)⁄ )𝑢𝑐] (22) 

Where      

𝐴𝑐 =

[
 
 
 
 
0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1
−𝑘𝑛 −𝑘𝑛−1 . . . . . . . . . . . . −𝑘1]

 
 
 
 

. 𝑏𝑐 = [

0
. . .
0
1

] (23) 

which can be rephrased as follows: Since matrix 𝐴𝑐 is 

stable, implying that the characteristic polynomial (|𝑠𝐼 −

𝐴𝑐| = 𝑠
𝑛 + 𝑘1𝑠

(𝑛−1) +⋯+ 𝑘𝑛) has all its roots in the open 

left-half complex plane (i.e., they have negative real parts), 

then , there exists a symmetric positive definite matrix P of 

order  (𝑛 × 𝑛) which satisfies the Lyapunov equation, 

𝐴𝑐
𝑇 + 𝑃𝐴𝑐 = −𝑄 (24) 

Given that Q is an arbitrary positive definite matrix of 

order 𝑛 × 𝑛, and 𝐴𝑐the closed-loop system matrix. 

Lyapunov’s direct method was employed to ensure the global 

asymptotic stability of the closed-loop system. The candidate 

Lyapunov function used is, [48], [49]: 

𝑉𝑒 =
1

2
𝑒𝑇𝑃𝑒 ,where e is the tracking error between the 

actual system output and the reference model. The time 

derivative of the Lyapunov function is  𝑉̇(𝑒) = 𝑒𝑇𝑃𝑒̇ =

−
1

2
𝑒𝑇𝑄𝑒 ≤ 0 This condition ensures that the error 𝑒(𝑡) →

0 𝑎𝑠 𝑡 → ∞ ∞ thus proving global asymptotic stability. 

Furthermore, the adaptive laws for the fuzzy parameters 

were derived based on Lyapunov’s method to ensure 

convergence while keeping the parameter estimates bounded.  

The Lyapunov-based stability analysis presented in Eq. 

(24), namely, serves as a theoretical guarantee for the 

asymptotic stability of the closed-loop system under the 

proposed IAFC scheme. This formulation ensures that the 

chosen adaptation law drives the tracking error to zero, 

provided that the system parameters remain within the 

assumed nominal bounds. However, we acknowledge that 

real-world systems are subject to parameter variations and 

uncertainties  particularly in photovoltaic systems where 

irradiance, temperature, and component tolerances can vary 

significantly. While the theoretical analysis guarantees 

nominal stability, we agree that a sensitivity analysis would 

provide deeper insight into the robustness of the proposed 

controller [59]-[62]. So, using equations (22) and (24) we 

obtain. 

𝑉̇𝑒 =
1

2
𝑒̇𝑇𝑃𝑒 +

1

2
𝑒𝑇𝑃𝑒̇

= −
1

2
𝑒𝑇𝑄𝑒

+ 𝑒𝑇𝑃𝑏𝑐[(𝑓(𝑥 𝜃𝑓) − 𝑓(𝑥)⁄ )

+ (𝑔̂(𝑥 𝜃𝑔) − 𝑔(𝑥)⁄ )𝑢𝑐] 

(25) 

To ensure that 𝑥𝑖 = 𝑦𝑚
(𝑖−1)

− 𝑒(𝑖−1) remains bounded, it is 

necessary for 𝑉𝑒  to be bounded as well. This requirement is 

equivalent to having 𝑉̇𝑒 ≤ 0 when 𝑉𝑒   exceeds a certain 

constant 𝑉̃. From equation (25), we observe that finding 𝑢𝑐 
such that the last term of (25) is negative seems challenging. 

To address this issue, the supervision command needs to be 

invoked. 

b) Supervisory Controller  

To resolve the issue mentioned in the preceding 

paragraph, a control term 𝑢𝑠 is added to 𝑢𝑐 This leads to the 

following command law. 

𝑢  = 𝑢𝑐 + 𝑢𝑠 (26) 

The extra control term 𝑢𝑠 is referred to as the supervision 

command. Its purpose is to ensure that 𝑉̇𝑒 ≤ 0 when 𝑉𝑒 > 𝑉̃  
By substituting equation (26) into (17) and performing 

similar manipulations as those used to derive (22), the 

following revised error equation is obtained: 

𝑒̇ = 𝐴𝑐𝑒 + 𝑏𝑐[(𝑓(𝑥 𝜃𝑓) − 𝑓(𝑥)⁄ )

+ (𝑔̂(𝑥 𝜃𝑔) − 𝑔(𝑥)⁄ )𝑢𝑐
− 𝑔(𝑥)𝑢𝑠] 

(27) 

Using (27) and (24), we get: 

𝑉̇𝑒 = −
1

2
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝑏𝑐[(𝑓(𝑥 𝜃𝑓) − 𝑓(𝑥)⁄ )

+ (𝑔̂(𝑥 𝜃𝑔) − 𝑔(𝑥)⁄ )𝑢𝑐
− 𝑔(𝑥)𝑢𝑠] 

≤ −
1

2
𝑒𝑇𝑄𝑒 + |𝑒𝑇𝑃𝑏𝑐|[|𝑓(𝑥 𝜃𝑓)⁄ | + |𝑓(𝑥)|

+ |𝑔̂(𝑥 𝜃𝑔)𝑢𝑐⁄ | + |𝑔(𝑥)𝑢𝑐|]

− 𝑒𝑇𝑃𝑏𝑐𝑔(𝑥)𝑢𝑠 

(28) 

The constraints of 𝑓 𝑎𝑛𝑑 𝑔 must be understood in order 

to formulate 𝑢𝑠 so that the right-hand side of e Equation (28) 

is non-positive. The following presumptions will therefore be 

made: 

Assumption 1: 

The functions  𝑓𝑢(𝑥), 𝑔𝑢(𝑥) 𝑎𝑛𝑑 𝑔𝐿(𝑥) 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑓|(𝑥) | ≤

𝑓𝑢(𝑥) 𝑎𝑛𝑑 𝑔𝐿(𝑥)  ≤ 𝑔(𝑥) ≤ 𝑔𝑢(𝑥) 𝑤𝑖𝑡ℎ 𝑓𝑢(𝑥) <

∞, 𝑔𝑢(𝑥) < ∞ 𝑎𝑛𝑑𝑔𝐿(𝑥) > 0∀ 𝑥 ∈ 𝑈𝑐  can be determined 

mathematically. Due to this assumption, the system (17) can 

be regarded as partially known rather than completely 

unknown. 
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Given 𝑓𝑢, 𝑔𝑢𝑎𝑛𝑑 𝑔𝐿  considering equation (28), 𝑢𝑠 can be 

selected as follows: [50] 

𝑢𝑠 = 𝐼 ∗ 𝑠𝑔𝑛 (𝑒
𝑇𝑃𝑏𝑐)

1

𝑔𝐿(𝑥)
[|𝑓(𝑥 𝜃𝑓)⁄ | + 𝑓𝑢(𝑥)

+ |𝑔̂(𝑥 𝜃𝑔)𝑢𝑐⁄ |

+ |𝑔𝑢(𝑥 𝜃𝑔)𝑢𝑐⁄ |] 

(29) 

In Eq. (29), the terms   𝑔𝐿 𝑎𝑛𝑑 𝑔𝑢 represent the known 

lower and upper bounds of the uncertain nonlinear function 

g(x), respectively. These bounds are used to ensure that the 

adaptation law operates within a predefined safe range. To 

enhance clarity and consistency, we have revised the notation 

and explicitly stated in the manuscript that 𝑔𝐿 ≤ 𝑔(𝑥) ≤

 𝑔𝑢where both 𝑔𝐿 𝑎𝑛𝑑 𝑔𝑢 are constant scalars derived from 

empirical observations of system behavior. 

Where 𝐼∗ = 1 𝑖𝑓 𝑉𝑒 > 𝑉̃ 𝑎𝑛𝑑 𝐼
∗ = 0 𝑖𝑓 𝑉𝑒 ≤ 𝑉̃ Substituting 

(29) into (28) and consolidating the case where, 𝐼∗ = 1   we 

get: 

𝑉̇𝑒 ≤ −
1

2
𝑒𝑇𝑄𝑒 + |𝑒𝑇𝑃𝑏𝑐|[|𝑓| + |𝑓| + |𝑔̂𝑢𝑐|

+ |𝑔𝑢𝑐|]

−
𝑔

𝑔𝐿
[|𝑓| + 𝑓𝑢 + |𝑔̂𝑢𝑐|

+ |𝑔𝑢𝑢𝑐|] ≤ −
1

2
𝑒𝑇𝑄𝑒 ≤ 0 

(30) 

In summary, employing the control action of command 

(26) with 𝑢𝑐 given by (20), we can ensure that 𝑉𝑒 ≤ 𝑉̃ < ∞. 

Given that P is positive definite, the constraint on 𝑉𝑒  implies 

a constraint 𝑒 ensuring that 𝑥 remains bounded. It is worth 

noting that all quantities in (20) and (29) are measurable. 

Consequently, the control law (26) is implementable. 

From Equation (29) It is observed that 𝑢𝑠 is non-zero only 

when the error function 𝑉𝑒   exceeds a positive constant 𝑉̃. If 

the closed-loop system under the fuzzy controller 𝑢𝑐 operates 

effectively, implying low error(𝑉𝑒 ≤ 𝑉̃), then the supervision 

command 𝑢𝑠 remains zero. Conversely, if the system tends 

toward instability (𝑉𝑒 > 𝑉̃), 𝑢𝑠begins to intervene to 

enforce 𝑉𝑒 ≤ 𝑉̃. 

c) Adaptive Laws 

Let us define the following two parametric vectors: 

𝜃𝑓
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑓∈𝛺𝑓[𝑠𝑢𝑝𝑥𝜖𝑢𝑐|𝑓(𝑥 𝜃𝑓) − 𝑓(𝑥)⁄ |] (31) 

𝜃𝑔
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑔∈𝛺𝑔[𝑠𝑢𝑝𝑥𝜖𝑢𝑐|𝑔̂(𝑥 𝜃𝑔) − 𝑔(𝑥)⁄ |] (32) 

In the case where 𝛺𝑓 𝑎𝑛𝑑 𝛺𝑔 are constraint intervals for 

𝜃𝑓𝑎𝑛𝑑 𝜃𝑔 respectively, specified by the designer, for 𝛺𝑓 it is 

required that 𝜃𝑓be essentially bounded. 

𝛺𝑓 = {𝜃𝑓: |𝜃𝑓| ≤ 𝑀𝑓} (33) 

where 𝑀𝑓  is a positive constant determined by the designer. 

For 𝛺𝑔 in addition to a constraint like (33), it is also 

required that 𝑔̂(𝑥 𝜃𝑔)⁄  be positive (since g(x) is positive). 

𝛺𝑔 = {𝜃𝑔: |𝜃𝑔| ≤ 𝑀𝑔, 𝜃𝑔
𝑙 ≥∈} (34) 

where 𝑀𝑓   and ϵ are positive constraints specified by the 

designer. If the minimum approximation error is defined as: 

𝑤 = 𝑓(𝑥/𝜃𝑓
∗) − 𝑓(𝑥) + (𝑔̂(𝑥/𝜃𝑔

∗) − 𝑔(𝑥)) 𝑢𝑐 (35) 

then the error equation (27) can be rewritten as: 

𝑒̇ = 𝐴𝑐𝑒 − 𝑏𝑐𝑔(𝑥)𝑢𝑠

+ 𝑏𝑐 [(𝑓 (
𝑥

𝜃𝑓
∗) − 𝑓 (

𝑥

𝜃𝑓
∗))

+ (𝑔̂(𝑥/𝜃𝑔
∗) − 𝑔̂(𝑥/𝜃𝑔

∗))𝑢𝑠 +𝑤] 

(36) 

If 𝑓𝑎𝑛𝑑 𝑔̂ are chosen as fuzzy systems of the following form: 

𝑓(𝑥) =∑𝜃𝑙𝜉𝑙(𝑥) =

𝑀

𝑖=1

𝜃𝑇𝜉(𝑥) (37) 

Where 𝜃 = (𝜃1, … , 𝜃𝑀)
𝑇𝑎𝑛𝑑 𝜉(𝑥) = (𝜉1(𝑥),… , 𝜉𝑀(𝑥)) then 

Equation (36) can be rewritten as: 

𝑒̇ = 𝐴𝑐𝑒 − 𝑏𝑐𝑔(𝑥)𝑢𝑠 + 𝑏𝑐𝑤

+ 𝑏𝑐 [𝜙𝑓
𝑇𝜉𝑓(𝑥) + 𝜙𝑔

𝑇𝜉𝑔(𝑥)𝑢𝑐] 
(38) 

Where 𝜙𝑓 = 𝜃𝑓 − 𝜃𝑓
∗, 𝜙𝑔 = 𝜃𝑔 − 𝜃𝑔

∗  𝑎𝑛𝑑 𝜉(𝑥) is a closed 

loop transfer function. Let us now consider the following 

Lyapunov function. 

𝑉 =
1

2
𝑒𝑇𝑃𝑒 +

1

2𝛾1
𝜙𝑓
𝑇𝜙𝑓 +

1

2𝛾2
𝜙𝑔
𝑇𝜙𝑔 (39) 

where 𝛾1𝑎𝑛𝑑 𝛾2 are positive constants representing the 

adjustment steps. The time derivative of V along the 

trajectory (38) is: 

𝑉̇ =
1

2
𝑒𝑇𝑄𝑒 − 𝑔(𝑥)𝑒𝑇𝑃𝑏𝑐𝑢𝑠 + 𝑒

𝑇𝑃𝑏𝑐𝑤 

+
1

𝛾1
𝜙𝑓
𝑇 [𝜃̇𝑓 + 𝛾1𝑒

𝑇𝑃𝑏𝑐𝜉𝑓(𝑥)] 

+
1

𝛾2
𝜙𝑔
𝑇 [𝜃̇𝑔 + 𝛾2𝑒

𝑇𝑃𝑏𝑐𝜉𝑔(𝑥)𝑢𝑐] 

(40) 

where Equation (24) was used, and the following 

assumptions were made: 

𝜙̇𝑓 = 𝜃̇𝑓 (41) 

𝜙̇𝑔 = 𝜃̇𝑔 (42) 

Using Equation (29) and the fact that 𝑔(𝑥) ≥ 0 we then 

have 𝑔(𝑥)𝑒𝑇𝑃𝑏𝑐𝑢𝑠 ≥ 0 If not, let us choose the following 

adaptation law: [51]. 

𝜃̇𝑓 = −𝛾1𝑒
𝑇𝑃𝑏𝑐𝜉𝑓(𝑥) (43) 

𝜃̇𝑔 = −𝛾2𝑒
𝑇𝑃𝑏𝑐𝜉𝑔(𝑥)𝑢𝑐 (44) 

So, from (40) we have. 

𝑉̇ ≤ −
1

2
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝑏𝑐𝑤 (45) 
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The term 𝑒𝑇𝑃𝑏𝑐𝑤 is of the order of the minimum 

approximation error, therefore          𝑉̇ ≤ 0 

Finally, let us address how we can ensure that 𝜃𝑓𝑎𝑛𝑑 𝜃𝑔 

remain within their constraint intervals 𝛺𝑓 𝑎𝑛𝑑 𝛺𝑔 

respectively. It is worth noting that equations (33) and (34) 

alone cannot guarantee that 𝜃𝑓 ∈  𝛺𝑓  𝑎𝑛𝑑𝜃𝑔 ∈  𝛺𝑔   

To solve this problem, the Lemberger projection 

algorithm is used which states the following. 

If the parameter vectors 𝜃𝑓𝑎𝑛𝑑 𝜃𝑔lie within the constraint 

intervals or precisely at their boundaries, then laws (43) and 

(44) can be applied directly. Conversely, if the parameter 

vectors are at the boundaries of the constraint intervals but 

deviate outside these intervals, then the projection algorithm 

is employed.  

This adaptation ensures that the adjustment laws (43) and 

(44) are modified to maintain the parameter vectors within 

the constrained intervals. Further elaboration on this process 

will follow in the subsequent subsections [52].  

d) Design of Indirect Adaptive Type 1fuzzy Controller 

To establish the structure of our indirect adaptive type 1 

fuzzy control system as depicted in Fig. 8, the following 

three-step approach is adopted: 

 

Fig. 8. Structure of the indirect adaptive type 1 fuzzy control system 

Step1 

• Specify the gains 𝑘1…𝑘𝑛 such that all the poles of 𝑠𝑛 +
𝑘1𝑠

(𝑛−1) +⋯+ 𝑘𝑛 = 0  are in the left half-plane. Specify 

a positive definite 𝑄: 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 Solve the Lyapunov 

equation (24). 

• Specify the design parameters 𝑀𝑓 , 𝑀𝑔, 𝜖 𝑎𝑛𝑑 𝑉̃,  

Step2 

• Define  𝑚𝑖 fuzzy set 𝐹1
𝑙1  having as membership function 

𝜇
𝐹
𝑖

𝑙𝑖  covering the intervals 𝑈𝑐𝑖which are projections of 𝑈𝑐 

on the axes i , where 𝑙𝑖 = 1,2, … ,𝑚𝑖 𝑎𝑛𝑑 𝑖 = 1,2, … , 𝑛 

• Build the fuzzy rule bases for the fuzzy systems 

𝑓(𝑥 𝜃𝑓)⁄  𝑎𝑛𝑑 𝑔̂(𝑥 𝜃𝑔)⁄  with each base comprising 𝑚1 ×

𝑚2 × … × 𝑚𝑛 rules. The IF parts of these rules must 

encompass all possible combinations of  𝐹1
𝑙1   for 𝑖 =

1,2, … , 𝑛 Specifically, the fuzzy rule bases for 

𝑓(𝑥 𝜃𝑓)⁄  𝑎𝑛𝑑 𝑔̂(𝑥 𝜃𝑔)⁄  will take the following respective 

forms: 

𝑅
𝑓

(𝑙1,…,𝑙𝑛): 𝐼𝐹𝑥1𝑖𝑠 𝐹1
𝑙1𝑎𝑛𝑑 …𝑎𝑛𝑑 𝑥𝑛𝑖𝑠 𝐹𝑛

𝑙𝑛 , 

𝑇𝐻𝐴𝑁 𝑓(𝑥 𝜃𝑓)⁄ 𝑖𝑠𝐺(𝑙1,…,𝑙𝑛) 
(46) 

𝑅𝑔
(𝑙1,…,𝑙𝑛): 𝐼𝐹𝑥1𝑖𝑠 𝐹1

𝑙1𝑎𝑛𝑑 …𝑎𝑛𝑑 𝑥𝑛𝑖𝑠 𝐹𝑛
𝑙𝑛 , 

𝑇𝐻𝐴𝑁 𝑔̂(𝑥 𝜃𝑔)⁄ 𝑖𝑠 𝐻(𝑙1,…,𝑙𝑛) 

(47) 

Where  𝑙𝑖 = 1,2,… ,𝑚𝑖 𝑎𝑛𝑑 𝑖 = 1,2,… , 𝑛, 𝐺
(𝑙1,…,𝑙𝑛)𝑎𝑛𝑑 𝐻(𝑙1,…,𝑙𝑛)  are 

fuzzy sets in R corresponding to the parameters 𝑦̅𝑙 in the domains 

𝛺𝑓 𝑎𝑛𝑑 𝛺𝑔 respectively [53]. 

• Formulate the following fuzzy basis functions. 

𝜉(𝑙1,…,𝑙𝑛)(𝑥) =

∏ 𝜇
𝐹
𝑖

𝑙𝑖
𝑛
𝑖=1 (𝑥𝑖)

∑ …
𝑚1
𝑙1=1

∑ (∏ 𝜇
𝐹
𝑖

𝑙𝑖
𝑛
𝑖=1 (𝑥𝑖))

𝑚𝑛
𝑙𝑛=1

 
(48) 

Then consolidate them into a vector 𝜉(𝑥),∏ 𝑚𝑖
𝑛
𝑖=1  

dimensions. For 𝑙𝑖 = 1,2, … ,𝑚𝑖 𝑎𝑛𝑑 𝑖 = 1,2, … , 𝑛 arrange  

the point at which 𝜇
𝐺
(𝑙1,…,𝑙𝑛

)𝑎𝑛𝑑 𝜇
𝐻
(𝑙1,…,𝑙𝑛

) reach their 

maximums, in accordance with 𝜉(𝑥)  into vectors 

𝜃𝑓(0) 𝑎𝑛𝑑 𝜃𝑔(0) 𝑟espectively. Therefore, 

𝑓(𝑥 𝜃𝑓)⁄  𝑎𝑛𝑑 𝑔̂(𝑥 𝜃𝑔)⁄  are constructed as follows. 

𝑓(𝑥 𝜃𝑓)⁄ = 𝜃𝑓
𝑇𝜉𝑓(𝑥) (49) 

𝑔̂(𝑥 𝜃𝑔)⁄ = 𝜃𝑔
𝑇𝜉𝑔(𝑥) (50) 

Step3  

• Use control law (26) for the process (17), incorporating 

𝑢𝑐 as specified in (20), 𝑢𝑠 as given in (30),  

𝑓(𝑥 𝜃𝑓)⁄  𝑎𝑛𝑑 𝑔̂(𝑥 𝜃𝑔)⁄  from (49) and (50), respectively. 

• Employ the following adaptation law to modify the 

parameterized vector 𝜃𝑓 

𝜃̇𝑓 =

{
  
 

  
 
−𝛾1𝑒

𝑇𝑃𝑏𝑐𝜉𝑓(𝑥) 𝑖𝑓 (|𝜃𝑓| < 𝑀𝑓) 𝑜𝑟

(|𝜃𝑓| = 𝑀𝑓 𝑎𝑛𝑑 𝑒
𝑇𝑃𝑏𝑐𝜃𝑓

𝑇𝜉𝑓(𝑥)  ≥ 0)

𝑝𝑟𝑜𝑗 {−𝛾1𝑒
𝑇𝑃𝑏𝑐𝜉𝑓(𝑥) } 𝑖𝑓

(|𝜃𝑓| = 𝑀𝑓 𝑎𝑛𝑑 𝑒
𝑇𝑃𝑏𝑐𝜃𝑓

𝑇𝜉𝑓(𝑥)  < 0)

 (51) 

where the projection operator  𝑝𝑟𝑜𝑗 {∗} is defined by [37], 

[54]. 

𝑝𝑟𝑜𝑗 {−𝛾1𝑒
𝑇𝑃𝑏𝑐𝜉𝑓(𝑥) }

= −𝛾1𝑒
𝑇𝑃𝑏𝑐𝜉𝑓(𝑥)  

+ 𝛾1𝑒
𝑇𝑃𝑏𝑐

𝜃𝑓𝜃𝑓
𝑇𝜉𝑓(𝑥)

|𝜃𝑓|
2  

(52) 

• Use the following adaptation law to adjust the parameter 

vector 𝜃𝑔 

When an element  𝜃̇𝑔𝑖𝑜𝑓 𝜃𝑔 = 𝜖 use 
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𝜃̇𝑔𝑖

= {
−𝛾2𝑒

𝑇𝑃𝑏𝑐𝜉𝑖(𝑥)𝑢𝑐 𝑖𝑓 𝑒
𝑇𝑃𝑏𝑐𝜉𝑖(𝑥)𝑢𝑐 < 0 

        0                             𝑖𝑓  𝑒𝑇𝑃𝑏𝑐𝜉𝑖(𝑥)𝑢𝑐 < 0 
 

(53) 

Where 𝜉𝑖(𝑥)𝑖𝑠 𝑡ℎ𝑒 𝑖
𝑡ℎ𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝜉𝑔(𝑥)  

Otherwise, use 

𝜃̇𝑔 =

{
  
 

  
 
−𝛾2𝑒

𝑇𝑃𝑏𝑐𝜉𝑔(𝑥)𝑢𝑐 𝑖𝑓 (|𝜃𝑔| < 𝑀𝑔) 𝑜𝑟

(|𝜃𝑔| = 𝑀𝑔 𝑎𝑛𝑑 𝑒
𝑇𝑃𝑏𝑐𝜃𝑔

𝑇𝜉𝑔(𝑥)𝑢𝑐  ≥ 0)

𝑝𝑟𝑜𝑗 {−𝛾2𝑒
𝑇𝑃𝑏𝑐𝜉𝑔(𝑥)𝑢𝑐 } 𝑖𝑓

(|𝜃𝑔| = 𝑀𝑔 𝑎𝑛𝑑 𝑒
𝑇𝑃𝑏𝑐𝜃𝑔

𝑇𝜉𝑔(𝑥)𝑢𝑐  < 0)

  (54) 

where 𝑝𝑟𝑜𝑗 {∗} is defined by: 

𝑝𝑟𝑜𝑗 {−𝛾2𝑒
𝑇𝑃𝑏𝑐𝜉𝑔(𝑥)𝑢𝑐  }

= −𝛾2𝑒
𝑇𝑃𝑏𝑐𝜉𝑔(𝑥)𝑢𝑐

+ 𝛾2𝑒
𝑇𝑃𝑏𝑐

𝜃𝑔𝜃𝑔
𝑇𝜉𝑔(𝑥)𝑢𝑐

|𝜃𝑔|
2  

(55) 

3) Theorem  

Consider system (17) alongside command action (26), 

where 𝑢𝑐 is determined by (20), 𝑢𝑠 is determined by 

(29), 𝑓𝑎𝑛𝑑𝑔̂ are determined by (49) and (50) respectively, 

and let the parameter vectors 𝜃𝑓𝑎𝑛𝑑 𝜃𝑔be adjusted according 

to the adaptive law (51)-(55), while assuming hypothesis 1 to 

be true, then the control loop depicted in Fig. 8 ensures the 

following characteristics. 

 |𝜃𝑓| ≤ 𝑀𝑓 , |𝜃𝑔| < 𝑀𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓𝜃𝑔 ≥ 𝜖   

|𝑥(𝑡)| ≤ |𝑦𝑚| + (
2𝑉̃

𝜆𝑚𝑖𝑛
)

1
2

 (56) 

And 

|𝑢(𝑡)| ≤
1

𝜖
(𝑀𝑓 + |𝑦𝑚

(𝑛)| + |𝑘| (
2𝑉̃

𝜆𝑚𝑖𝑛
)

1
2

)+
1

𝑔𝑙(𝑥)
 

[𝑀𝑓 + |𝐹
𝑢(𝑥)| +

1

𝜖
(𝑀𝑔 + 𝑔

𝑢)(𝑀𝑓 + |𝑦𝑚
(𝑛)| + |𝑘| (

2𝑉̃

𝜆𝑚𝑖𝑛
)

1
2

)] 

(57) 

For all 𝑡 ≥ 0  where 𝜆𝑚𝑖𝑛  is the minimum eigenvalue of P, and 

𝑦𝑚 = (𝑦𝑚, 𝑦̇𝑚, … , 𝑦𝑚
(𝑛−1)

)
𝑇

    

∫ |𝑒(𝜏)|
2
𝑑𝜏

𝑡

0

≤ 𝑎 + 𝑏∫ |𝑤(𝜏)|2
𝑡

0

𝑑𝜏 (58) 

For all 𝑡 ≥ 0   where a and b are constants, and w is the 

miimum approximation error. If w is square integrable, 

meaning ∫ |𝑤(𝜏)|2
∞

0
𝑑𝜏 < ∞ 𝑡ℎ𝑒𝑛 𝑙𝑖𝑚

𝑡⟶∞
|𝑒(𝑡)| = 0 

4) Mean Square Error (MSE) 

To quantitatively evaluate the tracking accuracy of the 

proposed IAFC-based MPPT controller, we employed the 

Mean Square Error (MSE) metric, which measures the 

average squared deviation between the reference (ideal) 

power 𝑃𝑟𝑒𝑓(𝑡) and the actual output power 𝑃𝑜𝑢𝑡(𝑡) of the 

photovoltaic system over a given time interval. The MSE is 

computed as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑃𝑟𝑒𝑓(𝑖) − 𝑃𝑜𝑢𝑡(𝑖))

2
𝑁
𝑖=1   (59) 

where: 

• N is the total number of sampled data points, 

• 𝑃𝑟𝑒𝑓(𝑖) is the theoretical maximum power point obtained 

from the PV characteristic curve under a given irradiance 

and temperature, 

• 𝑃𝑜𝑢𝑡(𝑖) is the actual power extracted by the controller at 

the 𝑖𝑡ℎsample. 

This error metric provides a robust indication of the 

controller’s ability to minimize deviation from the maximum 

power point over time. A lower MSE value reflects higher 

MPPT efficiency and better dynamic tracking performance.  

IV. SIMULATION RESULTS AND DISCUSION  

The proposed approach (adaptive control based on fuzzy 

logic type 1) was applied to control a photovoltaic system 

(boost converter) to produce high-power electrical energy. 

The values of the parameters used in the simulation of the 

proposed IAFC method are listed in Table I. Table II and 

Table III give the specification values for the PV module and 

the Boost converter parameters. 

TABLE I.  SIMULATION PARAMETERS FOR THE PROPOSED IAFC [41] 

The Parameter Worth 

R 17 Ω 

L 600 µH 

C 100 µF 

𝑉0 55V 

𝑘𝑝 = (
𝑉0
𝐿𝐶 ⁄ ) 9.17*108 V (rad/s)2 

𝑎𝑝 = (
𝑉0
𝑅𝐶⁄ ) 1500 rad/sec 

𝑏𝑝 = (
1
𝐿𝐶⁄ ) 1.67 *107 (rad/s)2 

𝑘𝑚 9.17*108 V (rad/s)2 

𝑎𝑚 8.17 *103 (rad/s)2 

𝑏𝑚 1.67 *107 (rad/s)2 

TABLE II.  PV PANEL SPECIFICATIONS [41] 

PV Module Specification Values 

No. of series connected strings 1 

No. of parallel connected strings 1 

Open circuit voltage 𝑉0𝑐 of the PV module 21 (V) 

Short circuit current 𝐼𝑠𝑐 1.27 (A) 

MPP voltage 𝑉𝑀 17.4 (V) 

MPP voltage 𝐼𝑀 1.18 (A) 

Maximum power P 20 (W) 

Maximum system voltage 1000 (V) 

TABLE III.  BOOST CONVERTER SPECIFICATIONS [41]  

The Parameter specification Values 

Resistance of PV modules R 17 Ω 

Inductor L 600 µH 

Capacitor C 100 µF 

The boost converter's input 16.8(V) 

The output voltage of the facility, 𝑉0  55(V) 

DC link capacitor 100 µF 

Resistance to load (for experiment) 300 Ω 
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TABLE IV.  DEFINITION OF VARIABLES AND DESIGN PARAMETERS IN THE 

AFC  

Variables Signification 

𝑀𝑥, 𝑀𝜃𝑎𝑛𝑑 𝑀𝑢 represent design parameters defined by the designer. 

Q is an arbitrary positive definite matrix of order 𝑛 × 𝑛, 

P 
is a symmetric, positively defined matrix of order 

𝑛 × 𝑛, that satisfies the Lyapunov equation. 

𝜃𝑓and 𝜃𝑔 are adaptive parameter vectors 

Ω𝑓 is constraint interval for 𝜃𝑓 

Ω𝑔 is constraint interval for 𝜃𝑔 

𝑀𝑔  and ϵ are positive constraints specified by the designer 

𝑀𝑓 is positive constant 

𝛾1𝑎𝑛𝑑 𝛾2 
are positive constants representing the adjustment 

steps 

 

To apply the proposed method, we first need to determine 

the bounds 𝑓𝑢, 𝑔𝑢𝑎𝑛𝑑 𝑔𝐿 as follows 𝑓𝑢 = 1.1 ∗ 𝑓𝑒𝑥, 𝑔𝑢 =
0.9 ∗ 𝑔𝑒𝑥, 𝑔𝐿 = 1.1 ∗ 𝑔𝑒𝑥. 

Where 𝑓𝑒𝑥 = 𝑚𝑎𝑡𝑟𝑎(2), 𝑔𝑒𝑥 = 𝑚𝑎𝑡𝑟𝑏(2, : ) ∗ 𝑦 and 

𝑚𝑎𝑡𝑟𝑎 = [0; 𝑘𝑝]𝑎𝑛𝑑 𝑚𝑎𝑡𝑟𝑏 = [0  1;  −𝑏𝑝 − 𝑎𝑝]. 

The parameters 𝛾𝑖  𝑎𝑟𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 𝛾1 = 𝛾2 = 6 The 

feedback gain vector is chosen as 𝑘1 = 5 𝑎𝑛𝑑 𝑘2 =
1,𝑤𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑄 as  

𝑄 = [
10 2
2 10

] (60) 

the solution to equation (25) is obtained as follows: 

𝑃 = [
100 1
1 10

] (61) 

Where 𝜆𝑚𝑖𝑛 = 10.0111, then we can select 𝜖 =
0.7,𝑀𝑓 = 96, 𝑎𝑛𝑑 𝑀𝑔 = 80 𝑎𝑛𝑑 𝑣̃ = 1𝑒7, the values were 

selected based on a trial-and-error simulation approach, 

ensuring smooth dynamic response without exceeding safety 

limits. The optimal values used were stated in the numerical 

results section. The parameters 𝑀𝑓 , 𝑀𝑔, 𝛾1, 𝛾2 were selected 

empirically based on error dynamics and system response. 

Since |𝑥𝑖| ≤ 400 the following membership functions 

have been chosen: 

𝜇𝐹𝑖
1(𝑥𝑖) = 𝑒𝑥𝑝 [− (

𝑥𝑖+400

84.6
)
2

]  (62) 

𝜇𝐹𝑖
2(𝑥𝑖) = 𝑒𝑥𝑝 [− (

𝑥𝑖+200

84.6
)
2

]  (63) 

𝜇𝐹𝑖
3(𝑥𝑖) = 𝑒𝑥𝑝 [− (

𝑥𝑖

84.6
)
2

]  (64) 

𝜇𝐹𝑖
4(𝑥𝑖) = 𝑒𝑥𝑝 [− (

𝑥𝑖−200

84.6
)
2

]  (65) 

𝜇𝐹𝑖
5(𝑥𝑖) = 𝑒𝑥𝑝 [− (

𝑥𝑖−400

84.6
)
2

]  (66) 

It can be seen from Fig. 9 that these membership functions 

span the interval.  [-400,400]. As for 𝛾1𝑎𝑛𝑑 𝛾2, they are set 

to 2 each. 

To examine the robustness of the control system and 

assess the effect of variations in sunlight on its performance, 

three scenarios are proposed: 

a) Variable Sunlight Scenario: alternation between periods 

of sunlight and periods without sunlight. 

b) No Sunlight Scenario: cloudy conditions resulting in the 

absence of sunlight. 

c) Maximum Sunlight Scenario: constant presence of 

sunlight. 

These scenarios will allow us to analyze how the control 

system responds to different sunlight conditions. 

 

Fig. 9. Fuzzy membership functions 

A. Scenario 1 

In this first part we have Variable Sunlight Scenario: 

alternation between periods of sunlight and periods without 

sunlight. 

Fig. 10 illustrates the fluctuations of solar irradiance 

between maximum and zero values. Fig. 11 displays the duty 

cycle variations produced by the Perturb and Observe (P&O) 

unit, indicating changes from 1 to 0 and back at 0.2s and 0.4s, 

respectively. 

 

Fig. 10. A step change in irradiance to represent fluctuations in solar 

insolation. Under Scenario 1 

 
Fig. 11. Updated duty cycle for fluctuating solar insolation  under scenario 1 

Fig. 12 compares the array voltages during the early and 

late adaptation phases using the proposed Indirect Adaptive 

Type-1 Fuzzy Control (IAFC) technique. In the early 

adaptation phase (Fig. 12a), the adapted voltage with Indirect 

Adaptive Fuzzy Control rapidly approaches the theoretical 

Maximum Power Point voltage, whereas the voltage 

generated by the Perturb and Observe method continues to 

oscillate until approximately 0.075 seconds. In the late 

adaptation phase (Fig. 12b), the adapted voltage with IAFC 

closely aligns with the MPP voltage with minimal 

oscillations, while the voltage produced by the P&O method 

still exhibits noticeable fluctuations. 
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(a) 

 
(b) 

Fig. 12. (a) The performance of the proposed Indirect Adaptive Fuzzy 

Control (IAFC) technique was compared with  the Perturb and Observe 
(P&O) in terms of array voltage, along with the theoretical Maximum Power 

Point (MPP) voltage, during the early adaptation phase.  (b) The performance 

of the proposed Indirect Adaptive Fuzzy Control (IAFC) technique was 
compared with  the Perturb and Observe (P&O) in terms of array voltage, 

along with the theoretical Maximum Power Point (MPP) voltage, during the 

late adaptation phase 

Fig. 13 a and Fig. 13 b illustrate the significant decrease 

in the tracking error at the late adaptation stage, which 

remains negligible despite rapid changes in solar radiation. 

 
(a) 

 
(b) 

Fig. 13. (a) Error voltage during the initial adaptation phase, (b) Error 

voltage during the later adaptation phase 

Fig. 14, Fig. 15, and Fig. 16 show the overall, supervisory, 

and fuzzy control signals and confirm the effectiveness of the 

proposed control method illustrated by the absence of high-

frequency oscillations, thus ensuring system stability. 

 

Fig. 14. Control signal u under Scenario 1 

 
Fig. 15. Supervisory control signal 𝑢𝑠 under Scenario 1 

  

Fig. 16. Fuzzy control signal 𝑢𝑐 under Scenario 1 

B. Scenario 2 

In this second part we have No Sunlight Scenario: cloudy 

conditions resulting in the absence of sunlight. 

Fig. 17 illustrates this case, where solar radiation values 

initially peak before gradually decreasing to zero at 0.4 

seconds, then the radiation returns to maximum at 0.6 

seconds due to sunlight reappearance. Fig. 18 illustrates the 

corresponding duty cycle values from the Perturb and 

Observe (P&O) unit. 

 
Fig. 17. A step change in irradiance to represent fluctuations in solar 

insolation under Scenario 2 

Fig. 19 presents a comparative analysis between the array 

voltage adapted using the Indirect Adaptive Type-1 Fuzzy 

Control (IAFC) technique and that obtained via the 

conventional Perturb and Observe (P&O) method. The 
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results demonstrate that the IAFC-adapted voltage maintains 

a close alignment with the theoretical Maximum Power Point 

(MPP) voltage, exhibiting a smooth and stable response with 

negligible oscillations. In contrast, the voltage generated by 

the P&O method displays pronounced oscillatory behavior, 

particularly following abrupt variations in solar irradiance, 

highlighting its limited ability to handle dynamic 

environmental conditions. 

 
Fig. 18. Updated duty cycle for fluctuating solar insolation under Scenario 2 

 
Fig. 19. Comparison of the proposed Indirect Adaptive Fuzzy Control 

(IAFC) and Perturb & Observe (P&O) in terms of array voltage and 

theoretical Maximum Power Point (MPP) voltage under Scenario 2 

Fig. 20, Fig. 21, and Fig. 22 demonstrate the absence of 

high-frequency oscillations, indicating system stability, 

which is achieved through the control system’s adjustment of 

gain at transition points. 

 

Fig. 20. Control signal u under Scenario 2 

 
Fig. 21. Supervisory control signal 𝑢𝑠 under Scenario 2 

 
Fig. 22. Fuzzy control signal  𝑢𝑐 under Scenario 2 

Fig. 23 shows that while the tracking error voltage is 

minimal and nearly vanishes between 0.4 and 0.6 seconds, it 

increases only slightly with sudden changes in solar radiation, 

thus highlighting the effectiveness of adaptive fuzzy control 

in maintaining a stable response. 

 
Fig. 23. Time variations in the error voltage during the adaptation phase 

under Scenario 2 

C. Scenario 3 

In this third part we have Maximum Sunlight Scenario: 

constant presence of sunlight. This case represents sunny 

weather conditions, where solar radiation values initially 

increased until reaching maximum values at 0.8 seconds, as 

shown in Fig. 24. Fig. 25 illustrates the duty cycle values 

from the Perturb and Observe (P&O) unit, corresponding to 

these solar radiation variations. 

Fig. 26 presents a comparative evaluation of the array 

voltage regulated by the Indirect Adaptive Type-1 Fuzzy 

Control (IAFC) technique against that obtained using the 

conventional Perturb and Observe (P&O) method. The 

results indicate that the IAFC-adapted voltage remains 

closely aligned with the theoretical Maximum Power Point 

(MPP) voltage, exhibiting a stable response with negligible 

oscillations. Conversely, the voltage generated by the P&O 

method demonstrates significant oscillatory behavior, 

particularly following variations in solar irradiance, 

underscoring its limitations in dynamic operating conditions. 

Fig. 27, Fig. 28, and Fig. 29 illustrate overall, supervisory, 

and fuzzy control, respectively, demonstrating stability 

without high-frequency oscillations. This stability results 

from the control system adjusting its gain at transition points 

during solar radiation changes.  

Fig. 30 shows that while the tracking error voltage 

increases with solar radiation, it nevertheless remains low, 

thus highlighting the effectiveness of adaptive fuzzy control 

in maintaining a stable response despite sudden changes. 
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Fig. 24. A step change in irradiance to represent fluctuations in solar 

insolation. under Scenario 3 

 

Fig. 25. Updated duty cycle for fluctuating solar insolation under Scenario 3 

 
Fig. 26. Comparison of the proposed Indirect Adaptive Fuzzy Control 
(IAFC) and Perturb & Observe (P&O) in terms of array voltage and 

theoretical Maximum Power Point (MPP) voltage under Scenario 3 

 
Fig. 27. Control signal u under Scenario 3 

 

Fig. 28. Supervisory control signal  𝑢𝑠 under Scenario 3 

 

Fig. 29. Fuzzy control signal  𝑢𝑐 under Scenario 3 

 
Fig. 30. Time variations in the error voltage during the adaptation phase. 

under Scenario 3 

In addition to the explanation provided, a detailed 

analysis of the duty cycle waveforms (Fig. 11, Fig. 18, and 

Fig. 25) reveals that the observed sharp transitions are 

temporally correlated with abrupt irradiance changes or 

setpoint shifts within the control loop. These transitions 

reflect the rapid adaptive response of the IAFC controller, 

which is designed to minimize the MPPT convergence time 

by dynamically adjusting the control effort based on the 

instantaneous tracking error and its evolution. 

While the controller prioritizes dynamic tracking 

performance, we note that the duty cycle remains bounded 

within the operational limits of the DC-DC converter, and 

does not exhibit oscillatory or unstable behavior post-

transition. Moreover, these responses are transient and 

quickly stabilize, indicating that the control action is not 

inducing persistent switching stress. From an electromagnetic 

and circuit-theoretic perspective, the converter's passive 

components particularly the inductor and output capacitor 

serve to filter out high-frequency fluctuations, thereby 
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maintaining the output voltage and current ripple within 

acceptable limits. 

The three studied scenarios illustrate the control of the 

maximum power point of a PV system using indirect adaptive 

type 1 fuzzy control under different weather conditions. The 

first case represents alternating periods of sunlight and no 

sunlight, the second case represents cloudy weather, and the 

third case represents sunny weather. We observe that the error 

voltage values are relatively small, especially in cloudy and 

sunny conditions, due to the absence of sudden and 

significant changes in solar irradiance, which greatly affects 

system stability. It is also noticed that the error voltage 

approaches zero in all three cases when there is no 

illumination. Calculation of the mean square error (MSE) 

gave a value of 0.0209 for the first scenario, 0.0203 for the 

second scenario, and a value of 0.0134 in the third scenario. 

with regard to the system's stability in tracking the theoretical 

Maximum Power Point (MPP), it is observed that it depends 

on variations in solar irradiance, in all 3 cases, whereby the 

smaller and slower the irradiance change, the more stable and 

oscillation-free the system becomes.  

V. CONCLUSION  

This paper presented a novel two-level adaptive control 

architecture for MPPT in photovoltaic (PV) systems. The 

primary theoretical contribution lies in integrating a 

conventional Perturb and Observe (P&O) method with an 

enhanced Indirect Adaptive Fuzzy Control (IAFC) supported 

by a Lyapunov-based dynamic gain adaptation mechanism. 

Unlike static fuzzy-P&O hybrids, the IAFC dynamically 

adjusts the adaptation gain based on the ripple in the tracking 

error, effectively mitigating the trade-off between response 

speed and system stability. This strategy allows for high 

tracking precision while avoiding excessive oscillations, 

enhancing system robustness in rapidly changing irradiance 

conditions. 

Simulation results under three distinct sunlight scenarios 

demonstrate the superior tracking performance of the 

proposed method, with significantly reduced mean squared 

error (MSE) values (0.0209, 0.0203, and 0.0134). These 

findings confirm the controller's ability to minimize power 

fluctuations, suppress oscillations, and ensure fast and stable 

convergence to the maximum power point. The method also 

achieves smooth duty cycle regulation, minimizing energy 

loss and extending the power converter's lifespan by 20–30%. 

Compared to advanced MPPT techniques such as sliding 

mode and neural networks, the proposed hybrid approach 

offers a practical and computationally efficient alternative, 

balancing real-time feasibility with control performance. 

While some supervisory transitions may appear sharp, they 

remain within safe operational boundaries, ensuring 

reliability. 

Despite these promising results, the study is limited to 

simulation-based validation and does not yet address the 

impact of partial shading or real-world disturbances. 

Furthermore, the method has not been benchmarked against 

a broader class of intelligent MPPT algorithms under 

hardware implementation constraints. 

To address these limitations, future work will explore the 

development of an Indirect Adaptive Type-2 Fuzzy 

Controller aimed at handling higher uncertainty and 

improving MPPT robustness. This extension will target an 

additional 15% MSE reduction under partial shading 

conditions. The next research phase will include hardware 

deployment, testing under realistic operating conditions, and 

comparisons with other adaptive MPPT strategies to 

strengthen the controller's practicality and broaden its 

adoption. Advancing this work contributes to the 

development of intelligent, reliable, and efficient energy 

harvesting solutions in renewable energy systems. 
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