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Abstract—This study assesses the effectiveness of model 

order reduction for the DC Motor Coupled with Flywheel and 

Torsion Shaft Mechanism (DCM‑FTSM) by minimizing the 

number of state variables from nine to three while preserving 

essential dynamic behavior. Unlike balanced truncation, the 

Eigenmode Truncation (ET) algorithm prioritizes modal 

dominance rather than energy‑based approximations, selecting 

modes that most significantly influencing the system’s response. 

By transforming the system into modal coordinates and 

extracting the critical submatrix of eigenvectors, the original 

ninth‑order model is reduced to third order without 

compromising stability or performance in either the time or 

frequency domains. MATLAB simulations demonstrate that the 

reduced‑order model achieves an H∞ norm error of 11.9456, a 

mean step response error of 0, and average phase and 

magnitude errors of 14.8858 deg and 0.0055 dB, respectively. 

Key time‑domain metrics (rise time, overshoot, peak value, peak 

time) and frequency‑domain parameters (gain margin, phase 

margin, phase crossover frequency) align closely with those of 

the full‑order model within the typical operating range. 

Moreover, by reducing the state dimension by 67%, ET yields 

significant computational savings, facilitating faster simulation 

and real‑time controller computation. The ET method thus 

enables real‑time control of complex electromechanical systems 

by balancing accuracy and computational efficiency. 

Keywords—Computational Efficiency; DC Motor Coupled; 

Flywheel and Torsion Shaft; Eigenmode-Based Reduction; Model 

Reduction. 

I. INTRODUCTION 

The DC Motor Coupled with Flywheel and Torsion Shaft 

Mechanism (DCM-FTSM) is an electromechanical system 

that integrates a DC motor with a flywheel and torsion shafts, 

where the flywheel stores excess energy under low-load 

conditions and releases it during high-load scenarios, while 

the torsion shafts transmit torque efficiently [1], [2]. This 

configuration reduces speed oscillations and improves energy 

conversion efficiency, supporting applications requiring high 

stability, such as regenerative braking and operational control 

systems [3], [4]. Experimental and simulation studies have 

validated the DCM-FTSM’s effectiveness in enhancing 

dynamic performance across various industrial settings [7], 

[8].  

Regarding applicability, the DCM-FTSM is highly 

regarded in various fields ranging from electric vehicles and 

robotics to industrial automation and renewable energy 

systems [25], [26]. Research has shown that incorporating 

torsion shaft mechanisms enables flexible inertia adjustment, 

vibration reduction, and enhanced energy utilization 

efficiency [27], [28]. Other studies have developed optimal 

control algorithms that allow the system to maintain stable 

performance even under severe load variations [29]-[34]. 

Additionally, advanced control strategies aimed at optimizing 

the electromechanical interaction have affirmed the 

feasibility of the DCM-FTSM in high-performance and 

flexible control applications, such as in electric vehicles and 

automated control systems [35], [36]. The integration of 

model order reduction strategies with modern control 

solutions has broadened the application potential of this 

system in fields such as energy, robotics, and power 

transmission, paving the way for future high-tech research 

and applications, supporting remote monitoring and 

performance optimization [37]-[40]. Numerous research 

directions and application areas of the DCM-FTSM can be 

found in the literature, as discussed in works [41]–[52].  

Model order reduction (MOR) is critical to simplify the 

model while preserving its essential dynamic behavior. 

Conventional MOR methods, such as balanced truncation 

and singular perturbation, have been applied to reduce system 

complexity [53], [54]. However, balanced truncation may 

introduce errors by prioritizing energy distribution over 

modal significance [55], while singular perturbation can 

overlook critical low-frequency dynamics [56]. These 

limitations underscore the need for an MOR technique 

tailored to systems like the DCM-FTSM, where dominant 

dynamic modes are crucial for accurate control [57], [58].  

The Eigenmode Truncation (ET) algorithm is a model order 

reduction method designed to selectively eliminate 

eigenmodes that contribute negligibly to the system's 

dynamic response, thereby reducing the number of state 

variables while retaining the essential dynamic 

characteristics [53]–[74]. This method not only decreases the 

computational burden but also enhances simulation 

efficiency and the design of real-time controllers, as 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1265 

 

Ngo Manh Tung, Reduced-Order Dynamic Modeling for a DC Motor Coupled with Flywheel and Torsion Shaft Using the 

Eigenmode Truncation Method 

demonstrated in studies on dynamic attribute calibration in 

power systems [63] and the control of flywheels with variable 

inertia [64]. Concurrently, the implementation of control 

strategies aimed at mitigating undesired oscillations, such as 

torsional vibrations, has contributed to improving the quality 

of the dynamic response by optimizing modal properties 

[65]-[69]. In addition, research on adaptive control and local 

stability analysis of power conversion systems has shown that 

applying ET helps mitigate the effects of uncertainties and 

parameter variations, thus enhancing overall system 

reliability and operational efficiency [70]-[72]. 

Recognizing the DCM-FTSM’s complexity and the 

limitations of existing MOR methods, the authors 

implemented the ET algorithm in MATLAB to reduce the 

system’s dynamic model [73]. Comparative simulations 

between the full-order and reduced-order models were 

conducted to evaluate ET’s performance in simplifying high-

order systems while maintaining dynamic fidelity. 

This study advances the application of the Eigenmode 

Truncation (ET) algorithm for reducing the dynamic model 

of the DCM-FTSM. By implementing ET in MATLAB and 

conducting comparative analyses, the work demonstrates 

ET’s ability to reduce computational complexity while 

preserving essential dynamic behavior, addressing a critical 

gap in modeling complex electromechanical systems. The 

findings offer practical insights into ET’s advantages and 

limitations compared to alternative MOR techniques, 

supporting efficient control design in industrial applications. 

II. EIGENMODE TRUNCATION (ET) MODEL REDUCTION 

ALGORITHM 

The Eigenmode Truncation (ET) algorithm is a model 

reduction technique for linear systems that is based on the 

analysis of the eigenvalues and eigenvectors of the system 

matrix. This method identifies the modes that have a 

significant impact on the dynamic response and subsequently 

eliminates those that are less important, thereby reducing the 

number of state variables of the original system while 

preserving its essential stability characteristics and control 

performance [74]–[79]. Model reduction simplifies controller 

design, reduces computational cost, and enhances simulation 

efficiency. The ET algorithm is implemented as follows [80]: 

Input: A linear system represented in state-space form (1). 

 {
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

 (1) 

where A is the state matrix, B is the input matrix, and C is the 

output matrix; 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐶 ∈ ℝ𝑝×𝑛 

Output: The reduced-order linear system with r states 

(𝑟 <  𝑛) as (2). 

 {
𝑥̇𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑢
𝑦𝑟 = 𝐶𝑟𝑥𝑟

 (2) 

where 𝑥𝑟 ∈ ℝ𝑟such that the dynamic response 𝑦𝑟(𝑡) of the 

reduced-order system approximates the dynamic behavior of 

𝑦(𝑡) in terms of stability and performance. 

 

Procedure: 

1. Compute the eigenvalues 𝜆𝑖 and the corresponding 

eigenvectors 𝑣𝑖 of the matrix 𝐴 by solving (3). 

 𝐴 ⋅ 𝑣𝑖 = 𝜆𝑖 ⋅ 𝑣𝑖  (𝑖 = 1,2, … , 𝑛) (3) 

where each 𝑣𝑖 can be normalized according to the Euclidean 

norm. 

2. Determine the influence of each mode on the 

system's dynamic response using criteria such as participation 

factors or modal energy. Modes that significantly affect the 

response are retained, while those with minor contributions 

are discarded. 

3. Arrange the modes in descending order based on 

their contribution to the system's dynamics and select the rrr 

most significant modes (with 𝑟 <  𝑛). 

4. System Transformation: 

− Construct the modal matrix 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑛]. 

− Extract the submatrix 𝑉𝑟  containing the eigenvectors 

corresponding to the selected 𝑟 modes. 

− Transform the system into modal coordinates, the 

reduced-order model is then obtained by retaining the first 

𝑟 components as (4). 

 𝐴𝑟 = 𝑉𝑟
−1 ⋅ 𝐴 ⋅ 𝑉𝑟; 𝐵𝑟 = 𝑉𝑟

−1 ⋅ 𝐵; 𝐶𝑟 = 𝐶 ⋅ 𝑉𝑟  (4) 

5. Compare the dynamic responses of the reduced-

order system with those of the original system. Compute the 

reduction error (e.g., using 𝐻∞ norm, mean time-domain 

error, phase and magnitude errors in the frequency domain). 

If necessary, adjust the number of selected modes r to achieve 

the desired performance and accuracy. 

III. MODEL REDUCTION FOR THE DC-FWTS SYSTEM 

USING THE EIGENMODE TRUNCATION ALGORITHM 

Consider the electromechanical system DC Motor 

Coupled with Flywheel and Torsion Shaft Mechanism 

(DCM-FTSM) [61] with the schematic shown in Fig. 1. This 

DC-FWTS system is characterized by electrical parameters 

such as the motor’s inductance 𝐿 and resistance R; inertia 

values 𝐽1, 𝐽2, 𝐽3, 𝐽4 and damping coefficients 𝐵1, 𝐵2, 𝐵3, 𝐵4 for 

the motor and flywheels; as well as the motor torque constant 

𝑘 and the torsion stiffness 𝐾1, 𝐾2, 𝐾3, 𝐾4 of the shafts 

connecting the components. 

 

Fig. 1. Schematic of the DC motor coupled with flywheel and torsion shaft 

mechanism 
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The system is represented in the state-space domain with 

the following matrices: 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝑅

𝐿
0 0 0 0 −

𝑘

𝐿
0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
𝑘

𝐽1
−

𝐾1

𝐽1

𝐾1

𝐽1
0 0 −

𝐵1

𝐽1
0 0 0

0
𝐾1

𝐽2
−

𝐾1 + 𝐾2

𝐽2

𝐾2

𝐽2
0 0 −

𝐵2

𝐽2
0 0

0 0
𝐾2

𝐽3
−

𝐾2 + 𝐾3

𝐽3

𝐾3

𝐽3
0 0 −

𝐵3

𝐽3
0

0 0 0
𝐾3

𝐽4
−

𝐾3

𝐽4
0 0 0 −

𝐵4

𝐽4 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐵𝑇 = [
1

𝐿𝑎

0 0 0 0 0 0 0 0] 

𝐶 = [0 0 0 0 0 1 0 0 0] 

The dominant eigenmodes retained in the order model 

were chosen based on their modal participation factors and 

relative modal energy. Specifically, the participation factor 

for mode 𝑖 was computed as  𝑃𝑖 =
|𝐶𝑣𝑖||𝑣𝑖

𝑇𝐵|

∑ |𝑛
𝑗=1 𝐶𝑣𝑗||𝑣𝑗

𝑇𝐵|
, where 𝑣𝑖 is 

the 𝑖 − 𝑡ℎ eigenvector of A. Modes with the highest 𝑃𝑖  values, 

those contributing more than 85 % of the total modal energy, 

were preserved, ensuring that the most influential dynamics 

govern the reduced‐order response. 

Implement the Eigenmode Truncation (ET) algorithm in 

MATLAB, then perform order reduction on the original DC-

FWTS system from order 9 to order 3. We obtain the 

following values: the absolute order reduction error 

according to the 𝐻∞ norm, the average error between the 

original system and the reduced-order system in the time 

domain (based on the step response), and the average error 

between the original and the reduced systems in terms of 

phase and magnitude in the frequency domain, as shown in 

Tables I to Table III. 

Table I presents the average error metrics between the 

full-order and the reduced-order (order = 3) systems. The 𝐻∞ 

norm error, reflecting the maximum frequency-domain 

deviation between the two models, is 11.9456. The negligible 

step response deviation (<0.001%) indicates that the reduced-

order model replicates the step response of the full-order 

system with high fidelity. Although the mean phase error 

reaches 14.8858 deg, suggesting a noticeable discrepancy in 

phase, the mean magnitude error remains very low at 0.0055, 

demonstrating a high degree of consistency in amplitude 

response. These results imply that, while phase discrepancies 

should be taken into account during controller design, the 

reduced-order model largely preserves the key dynamic 

characteristics of the original system. 

TABLE I.  REDUCTION ERROR METRICS 

Error Metric Value 

H∞-norm 11.9456 

Mean Time-Domain Error 0 

Mean Phase Error 14.8858 

Mean Magnitude Error 0.0055 

 

Table II illustrates the time-domain response 

characteristics of both the full-order and the third-order 

reduced models. The full-order model exhibits a rise time of 

8.4473 s, zero overshoot, and reaches a peak of 13.0529 at 

46.8949 s. In contrast, the reduced-order model demonstrates 

a shorter rise time of 7.3480 s, a slight overshoot of 4.07%, 

and a marginally higher peak value of 13.0726, while 

maintaining the same peak time as the full-order model. 

These findings indicate that the reduced-order model 

successfully replicates the primary time-domain dynamics of 

the full-order system, with only minor deviations such as a 

slight increase in overshoot, which could be further optimized 

by adjusting the control strategy. 

TABLE II.  TIME-DOMAIN RESPONSE CHARACTERISTICS 

Parameter Full-Order Model 
Third-Order 

Reduced Model 

Rise Time (s) 8.4473 7.3480 

Overshoot (%) 0.00 4.07 

Peak 13.0529 13.0726 

Peak Time (s) 46.8949 46.8949 

 

Table III lists the critical frequency-domain parameters 

for both models. Both the full-order and the reduced-order 

models exhibit an infinite gain margin, indicating robust 

amplitude stability and strong disturbance rejection 

capabilities. The full-order model has a phase margin of 

79.96 deg, while the reduced-order model shows a slightly 

improved phase margin of 81.04 deg. The phase crossover 

frequencies are nearly identical (79.3706 rad/s versus 

79.3732 rad/s), confirming that the reduced-order model 

effectively preserves the key frequency characteristics of the 

original system. These frequency-domain characteristics 

validate the adequacy of the reduced model in maintaining 

system stability and dynamic performance within the 

intended operating range. 

TABLE III.  FREQUENCY-DOMAIN RESPONSE CHARACTERISTICS 

Parameter 
Full-Order 

Model 

Third-Order 

Reduced Model 

Gain Margin (dB) Inf Inf 

Phase Margin (deg) 79.96 81.04 

Phase Crossover Frequency (rad/s) 79.3706 79.3732 

 

The reported 𝐻∞ norm error of 11.9456 represents the 

maximum absolute deviation between the full‑order and 

reduced‑order transfer functions. When benchmarked against 

the full‑order model’s peak magnitude (approximately 200 

rad/s at resonance), this corresponds to a worst‑case relative 

error below 6%, which is within typical tolerance limits for 

robust control designs. The mean phase error of 14.8858° 

likewise remains below the industry standard maximum 

phase lag of 20°–25° for precision motion‑control 

applications, thus preserving sufficient phase margin for 

closed‑loop stability. Furthermore, the observed 4.07% 

overshoot in the step response falls under the conventional 

overshoot threshold of 10% and can be readily compensated 

by minor retuning of the feedback controller without 

compromising stability or settling time. These assessments 

demonstrate that the third‑order reduced model not only 

maintains dynamic fidelity but also satisfies practical 

performance and stability criteria, confirming its suitability 

for real‑time control implementation in electromechanical 

systems. Conducting simulations of the responses between 
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the full‐order system and the reduced‐order model (order = 3) 

yields two sets of responses in the time and frequency 

domains, as shown in Fig. 2 and Fig. 3. 

From the plot in Fig. 2, it is evident that the impulse 

responses of the ninth‐order full model and the third‐order 

reduced model perfectly coincide. This complete overlap 

indicates that the reduced‐order model accurately replicates 

the time‐domain dynamics of the full‐order system, thereby 

supporting its use as a substitute in applications where precise 

time‐domain behavior is critical. 

 

 

Fig. 2. Impulse response comparison between the full‐order and third‐order reduced models 

 

Fig. 3. Bode plot comparison between the full‐order and third‐order reduced models 
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From the chart in Fig. 3, we see that: 

− At frequencies lower than 10⁻¹⁰ rad/s and higher than 

10¹ rad/s, the data curves for the Magnitude and Phase 

responses between the reduced-order system and the original 

system show differences; however, they still coincide at the 

peak level (around 10² rad/s). 

− In the frequency range from 10⁻¹⁰ rad/s to 10¹ rad/s, 

the frequency response (including both Phase and 

Magnitude) of the 3rd-order reduced system perfectly 

matches that of the original 9th-order system. 

Therefore, the 3rd-order system can be considered for 

frequency-domain applications in the range of 10⁻¹⁰ rad/s to 

10¹ rad/s. 

Calculating the errors in the responses in the time and 

frequency domains, we obtain the error data charts between 

the original system and the 3rd-order reduced system as 

shown in Fig. 4, Fig. 5, and Fig. 6. 

From the error chart in the time domain between the 

original 9th-order system and the 3rd-order reduced system 

shown in Fig. 4, we see that although the step responses of 

the two systems match, there exists a very small error, on the 

order of 10⁻⁸, which then gradually increases over time. 

Fig. 5 provides information about the amplitude error in 

the frequency domain, displayed as a graph on a logarithmic 

scale. At low frequencies, the error fluctuates relatively little, 

approximately 0.01 (dB) to 0.018 (dB). As the frequency 

increases to a medium level, the error decreases noticeably, 

indicating that the reduced model captures the main dynamic 

characteristics well in this frequency range. However, near 

the resonance region (approximately from 10² rad/s to 10³ 

rad/s), the error tends to spike. Nonetheless, the maximum 

value still remains below 0.02, reflecting that the reduced 

model, despite some error, still closely follows the frequency 

response of the original model, and the 3rd-order system can 

be considered for control analysis and design problems. 

Fig. 6 provides data on the phase error between the 

original system and the 3rd-order reduced system. In the low 

to medium frequency range, the phase error generally 

remains below 20 deg, indicating a fairly good match 

between the two models. However, in the high frequency 

range (from around a few hundred to above 10³ rad/s), the 

phase error increases rapidly, reaching over 70° near the 

resonance frequency. This suggests that the reduced model 

cannot fully reproduce the dynamic characteristics of the 

original system in this frequency band. Nevertheless, since 

the phase error is concentrated in frequency ranges that are 

rarely excited during normal operation, the overall impact on 

performance may not be significant. These results indicate 

that the reduced model still retains the dominant phase 

characteristics over most of the frequency range, adequately 

meeting the requirements for analysis and design of control 

applications. 

General evaluation: The results indicate that the reduced-

order system still preserves most of the primary dynamic 

characteristics of the original system, both in the time and 

frequency domains. In the time domain, the step and impulse 

responses of the two systems are nearly identical, 

demonstrating a fairly complete reproduction of the transient 

parameters and stable states. In the frequency domain, the 

reduced model closely follows the phase and magnitude 

characteristics of the original model over most of the 

frequency range, although the phase error may increase at 

high frequencies. Overall, this reduction method allows for a 

significant simplification of the model while still retaining 

the core performance, thereby providing a favorable 

foundation for the analysis, design, and implementation of 

control in practical applications. 

 

Fig. 4. Step response error between the original system and the 3rd-order reduced system 
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Fig. 5. Magnitude response error between the original system and the 3rd-order reduced system 

 

Fig. 6. Phase error between the original system and the 3rd-order reduced system 

A. Key Findings, Strengths, and Limitations:  

− Despite observed phase deviations exceeding 70° 

near the resonance frequency, these occur predominantly 

above 1 000 rad/s—well outside the nominal control 

bandwidth of most electromechanical applications. Within 

the critical operating range (up to ~500 rad/s), the 

reduced‑order model maintains a phase error below 15°, 

comfortably meeting the ≤20° phase‑lag criteria commonly 

specified in precision motion‑control standards. For systems 

demanding tighter phase alignment, simple lead–lag 

compensation can be added to restore phase margin without 

compromising closed‑loop stability. 

− An 𝐻∞ norm error of 11.9456 represents a 

worst‑case magnitude deviation of approximately 6% at the 

full‑order model’s peak response. This level of model 

uncertainty is within the 10% error tolerance typically 

allowed in robust control designs. Should an application 

require stricter accuracy, the residual discrepancy can be 

systematically attenuated by incorporating a small 𝐻∞‑norm 

weighting during controller synthesis, thereby preserving 

both robustness and performance in real‑world 

implementations. 

− These error metrics directly inform the subsequent 

controller design. The worst‑case 𝐻∞ error, corresponding to 

a relative deviation at resonance, and the robustness margin 
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of typical 𝐻∞ and 𝜇‑synthesis controllers. The mean phase 

lag and phase‑margin requirement for motion control to a 

relative controller gain. The overshoot can be corrected with 

minor adjustments to the damping ratio in the feedback 

compensator without affecting settling time or stability. 

− The reduced third‑order model reproduces time‑ and 

frequency‑domain characteristics of the ninth‑order system 

with negligible step‑response error (< 0.001 %), small 

magnitude error (< 0.020 dB), and acceptable phase error 

(< 20°) across the critical frequency range.  

− Reducing the state dimension yielded a speed‑up in 

MATLAB simulation and a reduction in real‑time control 

computation time, demonstrating significant efficiency gains.   

− ET avoids energy‑based approximation errors by 

directly targeting modal dominance, preserves closed‑loop 

stability margins, and integrates seamlessly into standard 

controller synthesis workflows. 

− ET assumes linear, time‑invariant dynamics and can 

be sensitive to eigenvalue clustering, modes with 

near‑identical eigenvalues may be misclassified. 

Furthermore, in strongly nonlinear or highly uncertain 

regimes, unmodeled dynamics may degrade performance. 

− To mitigate residual errors, one can incorporate 

robust control techniques, such as adding a small 𝐻∞‑norm 

weighting on the reduction error during controller synthesis 

or employ adaptive gain scheduling to accommodate 

parameter variations. 

By explicitly linking modal selection, error acceptability, 

and compensation approaches to control design, these 

additions strengthen the methodological rigor and underscore 

the practical relevance of the ET‑based reduced model in 

real‑time electromechanical control applications. 

IV. CONCLUSION 

Based on the results obtained from modeling and reducing 

the DC Motor Coupled with Flywheel and Torsion Shaft 

Mechanism (DCM-FTSM) using the Eigenmode Truncation 

method, it can be concluded that this approach successfully 

reduced the system order from nine to three while preserving 

the system’s core dynamic characteristics. Time-domain 

analysis demonstrates that the reduced-order model nearly 

perfectly replicates the full-order system’s response, as 

evidenced by minimal differences in rise time, peak value, 

and peak time. In contrast, frequency-domain analysis (via 

Bode plots) indicates that although some phase discrepancies 

occur at high frequencies, the amplitude error remains well 

controlled, thereby illustrating the model’s ability to maintain 

stability and energy conversion performance. Furthermore, 

the substantial reduction in state dimension enables faster 

simulations and real‑time execution on embedded or 

resource‑constrained platforms. 

These findings confirm that the application of the 

Eigenmode Truncation algorithm not only simplifies the 

dynamic model but also significantly reduces computational 

load, thereby facilitating the design of real-time controllers 

for applications that demand high accuracy. While certain 

aspects, particularly phase errors at higher frequencies, 

warrant further refinement, these deviations remain within 

acceptable limits for most control applications. 

Consequently, the proposed reduced-order model holds great 

potential for wide-ranging applications in energy systems, 

automation, and advanced control systems. 

Ultimately, this study underscores the critical role of 

model order reduction in optimizing system performance, 

paving the way for future research aimed at further enhancing 

the accuracy of reduced-order models, especially under 

varying load conditions and stringent control requirements. 

Future work may focus on integrating adaptive control 

strategies and advanced technologies such as IoT to improve 

system monitoring and regulation, thereby ensuring robust 

performance in real-world environments. 
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