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Abstract—This paper proposed an Adaptive Robust 

Fractional Oder PID controller based on neural networks 

(ARFONNs) in order to improve the trajectory tracking of 

Robotic systems. Robots are nonlinear objects with uncertain 

models, they are always affected by noise in the working process 

such as the payload variation, nonlinear friction, external 

disturbances, ect. To address this problem of robot, a proposed 

controller inherits the advantages of neural network, adaptive 

method and sliding mode controller to achieve fast and accurate 

control. The neural network controller has simple architecture, 

better approximation for the unknown dynamic of robotic 

systems, and fast training capability. Moreover, due to its robust 

nature, Sliding Mode Control (SMC) is a widely adopted 

nonlinear control approach. Furthermore, the quality of the 

robot control system is improved based on combining the 

flexibility of Fractional Order PID. The adaptive laws of the 

ARFONNs are defined by selecting a suitable Lyapunov 

function to the control system obtain global stability. In 

addition, Simulation and experimental results of the ARFONNs 

controller are conducted on a two-link Cleaning and Detecting 

Robot. The simulation and experimental results have compared 

with the Adaptive Robust Neural networks (ARNNs) and The 

neural networks controller (NNs) to demonstrate the stability 

and robustness as well as the performance of the ARFONNs 

controller. 

Keywords—Trajectory Tracking Control; Adaptive Sliding 

Mode Controller; Fractional Order PID; Neural Network-Based 

Control; A Two-Link Clearning and Detecting Robot (CDR). 

I. INTRODUCTION  

The industry 4.0 revolution is happening strongly all over 

the world and Robots play an important role. The problem of 

robots has attracted the attention of many scientists. Robots 

are MIMO objects with strong nonlinearity, uncertain 

parameters and are subject to external disturbance during the 

working robot process. To improve the working efficiency of 

robots, besides enhancing accuracy in mechanical assembly 

steps, control also plays a crucial role. Therefore, designing a 

suitable controller is a challenging problem to solve. To deal 

with this problem, many solutions have been researched and 

proposed in [1]-[23] such as PID, adaptive controller, sliding 

mode controller, bacstepping controller, etc. Adaptive 

controller is the problem of syzthesizing controller to keep 

the system stable, even if unwanted disturbances, structural 

changes or unknown parameters of the control object occur 

during the working process. When there is a change in the 

object, the controller will automatically adjust the structure 

and parameters to ensure constant system quality [3]-[5]. 

Sliding mode control is known as a simple sustainable 

nonlinear control method, effective. This control method is 

less sensitive to variation of system parameters, has good 

resistance to interference, and reacts quickly. However, the 

difficulty in designing a sliding mode controller requires 

knowing clearly the mathematical model of the object as well 

as the upper limit of the uncertain components of the model. 

Besides, there is always a phenomenon of frequency 

oscillation around the sliding surface [22]-[23]. In recent 

years, intelligent controllers based on fuzzy logic and neural 

networks to control the position of robot manipulators have 

received attention [24]-[40]. Fuzzy logic control has been 

applied and has proven successful for the approximation 

nonlinear systems [41]-[57]. In [49], the W. Chang and 

fellow-workers proposed an adaptive backstepping controller 

based on fuzzy logic for flexible robot manipulators. The 

authors approximated the unknown system by fuzzy logic. 

With the proposed controller, all variables within the closed 

– loop system are guaranteed to stay bounded, and the system 

output can track the reference signal with high accuracy. In 

[57], to cope with uncertainties in serial robotic manipulators, 

the authors proposed an adaptive robust sliding mode control 

scheme in the task space using a fuzzy logic–based method. 

The proposed controller was built without prior knowledge of 

the robotic system, and the fuzzy controller’s rules were 

designed based on human experience and expertise to achieve 

good performance under uncertainties. However, human 

experience and expertise may not be sufficient, and designing 

appropriate membership functions and fuzzy rules remains a 

challenging task. To deal with this challenge, neural network-

based controllers were proposed for controlling robot 

manipulators [58]-[69]. To reject the unknown dynamics of 

robot model, the weights of the neural network were updated 

by online training rules during the working process of the 

control system. In [76], the authors developed a robust neural 

network-based output feedback control scheme for robot 

manipulators, where joint velocities were not directly 

measured but estimated using a neural network. The online 

learning laws of weight neural network were defined by using 

the Lyapunov theorem. So, the robustness and stability of 
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proposed controllers were improved. In [70], an adaptive 

control approach employing an RBF neural network was 

developed for a robotic manipulator with uncertainties. The 

application of RBFNN to the control system has helped to 

improve the approximation accuracy of uncertain dynamics 

and enhance control performance. In cases where the inputs 

move beyond the approximation domain of the RBFNN, the 

controller – incorporating either local or global bias-reverts 

to PID control to drive the states back and strengthen the 

robustness of the adaptive RBFNN controller. In [71], a 

neural network controller using RBF functions was proposed 

to solve with the uncertainties model in the biped robot 

system. In this control, the unknown dynamic behavior of the 

bipedal robot was approximated using a neural network 

framework. The robustness and stability of the proposed 

controller for biped robot systems were achieved and proved 

based on Lyapunov theorem. 

Recently, fractional-order differential equations have 

garnered significant attention and applications due to their 

capacity to accurately model a wide range of nonlinear 

systems. In addition, fractional order calculus theory and 

stability have also been applied to control systems [77]-[80]. 

In [81], the advanced version of the PID controller is the 

parallel form of the Fraction Order PID (FOPID). Two 

additional parameters were provided, which may make 

FOPID more robust due to its fractional degree structure. The 

FOPID has become a popular controller in robotics 

applications, it is rarely used for soft robotics [82], [83]. In 

[84], the authors proposed a controller that combines the 

FOPID with linear matrix inequality technique and genetic 

algorithm to improve current tracking in servo systems, 

positioning it as a feasible alternative to traditional 

proportional-integral controllers. The study in [85] focused 

on constructing an optimal fuzzy immune FOPID controller 

for robot tracking of a 3DOF robot manipulator. In [86], A 

fractional-order active disturbance rejection controller was 

introduced for time-delay systems to enable independent 

control of both servo and regulation actions. Experimental 

results demonstrated that the proposed controller successfully 

achieved this independent control and outperformed 

conventional time-delay controllers in terms of speed 

tracking, load disturbance rejection, and robustness against 

variations in plant parameters. 

In this study, a neural network-based adaptive fractional-

order PID controller is developed to ameliorate the control 

quality for the robot manipulator system. The proposed 

controller operates more flexibly by adjusting two parameters 

of the Fractional-order PID control compared to the classic 

PID controller [74]-[75]. When the proposed controller is 

used to the CDR, tracking efficiency and convergence speed 

are improved. 

This paper is structured as follows: Section 2 presents 

Dynamic of robot. RBF neural network model is described in 

Section 3. Section 4 presents Adaptive FONNs controller 

system. The simulation and experiment results of Cleaning 

and Detecting robot are proposed. Finally, Section 6 shows 

concluding remarks 

II. DYNAMIC OF ROBOT 

To design a controller for the robot system, it is first 

necessary to formulate the robot’s dynamic equations by 

Lagrange or Newton-Euler. According to Reference [74], the 

dynamic of n-link robot manipulators with uncertain models 

and external disturbances is shown as follows: 

𝑀𝐹𝑂(𝛿)𝛿̈ + 𝑉𝐹𝑂(𝛿, 𝛿̇)𝛿̇ + 𝐺𝐹𝑂(𝛿) + 𝐹𝐹𝑂(𝛿̇) + 𝜏𝐹𝑂𝑑
= 𝜏𝐹𝑂  

(1) 

where 𝛿 ∈ 𝑅𝑛×1 is the position vectors of joint (Rad), 

(𝛿̇, 𝛿̈) ∈ 𝑅𝑛×1 are the velocity vectors and acceleration 

vectors of joint (rad/s, rad/s2). 𝑀𝐹𝑂(𝛿) ∈ 𝑅
𝑛×𝑛 is the 

symmetric inertial Matrix, 𝑉𝐹𝑂(𝛿, 𝛿̇) ∈ 𝑅
𝑛×𝑛 is the vector of 

Coriolis and Centripetal forces, 𝐺𝐹𝑂(𝛿) ∈ 𝑅
𝑛×1 vector 

containing Gravity forces and torques, 𝐹𝐹𝑂(𝛿̇) ∈ 𝑅
𝑛×1 is a 

vector of friction term, 𝜏𝐹𝑂𝑑 ∈ 𝑅
𝑛×1 is the unknown 

disturbances input, and 𝜏𝐹𝑂 ∈ 𝑅
𝑛×1 is the joints’s torque 

input. 

Each component of the robot's dynamic model 

𝑀𝐹𝑂(𝛿), 𝑉𝐹𝑂(𝛿, 𝛿̇), 𝐺𝐹𝑂(𝛿), 𝐹𝐹𝑂(𝛿̇) contain both known and 

unknown parts. The known components are derived from the 

nominal physical parameters of the robot. However, 

uncertainties such as modeling errors, parameter variations, 

and external disturbances introduce unknown elements into 

these matrices, especially when masses, link lengths, or 

center-of-mass positions are inaccurately estimated. 

Assumption: the dynamics of robot manipulators (1) has 

known estimation terms and unknown uncertain terms. 

(𝑀̂𝐹𝑂0(𝛿) + 𝛥𝑀𝐹𝑂(𝛿)) 𝛿̈

+ (𝑉̂𝐹𝑂0(𝛿, 𝛿̇) + 𝛥𝑉𝐹𝑂(𝛿, 𝛿̇)) 𝛿̇

+ (𝐺̂𝐹𝑂0(𝛿) + 𝛥𝐺𝐹𝑂(𝛿))

+ (𝐹̂𝐹𝑂0(𝛿̇) + 𝛥𝐹𝐹𝑂(𝛿̇)) + 𝜏𝐹𝑂𝑑

= 𝜏𝐹𝑂 

(2) 

where 𝑀̂𝐹𝑂0(𝛿), 𝑉̂𝐹𝑂0(𝛿, 𝛿̇), 𝐺̂𝐹𝑂0(𝛿), 𝐹̂𝐹𝑂0(𝛿̇) are the 

nominal terms, and 𝛥𝑀𝐹𝑂(𝛿), 𝛥𝑉𝐹𝑂(𝛿, 𝛿̇), 𝛥𝐺𝐹𝑂(𝛿), and 

𝛥𝐹𝐹𝑂(𝛿̇) are the unknown parts. 

The dynamics of robot manipulator (2) can be rewritten 

as follows: 

𝑀̂𝐹𝑂0(𝛿)𝛿̈ + 𝛥𝑀𝐹𝑂(𝛿)𝛿̈ + 𝑉̂𝐹𝑂0(𝛿, 𝛿̇)𝛿̇

+ 𝛥𝑉𝐹𝑂(𝛿, 𝛿̇)𝛿̇ + 𝐺̂𝐹𝑂0(𝛿)

+ 𝛥𝐺𝐹𝑂(𝛿) + 𝐹̂𝐹𝑂0(𝛿̇) + 𝛥𝐹𝐹𝑂(𝛿̇)

+ 𝜏𝐹𝑂𝑑 = 𝜏𝐹𝑂 

𝑀̂𝐹𝑂0(𝛿)𝛿̈ + 𝑉̂𝐹𝑂0(𝛿, 𝛿̇)𝛿̇ + 𝐺̂𝐹𝑂0(𝛿) + 𝐹̂𝐹𝑂0(𝛿̇)

= 𝜏𝐹𝑂 − 𝛥𝑀𝐹𝑂(𝛿)𝛿̈

− 𝛥𝑉𝐹𝑂(𝛿, 𝛿̇)𝛿̇ − 𝛥𝐺𝐹𝑂(𝛿)

− 𝛥𝐹𝐹𝑂(𝛿̇) − 𝜏𝐹𝑂𝑑  

(3) 

III. RBF NEURAL NETWORK MODEL 

The RBFNNs controller has structure as shown in Fig 1, 

which comprises three layers: Input, Hidden and Output 

layer. 
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𝛿, 𝛿̇ are input signals of the input layer. 𝛩𝑀 , 𝛩𝑉 , 𝛩𝐺 , and 

𝛩𝐹  denote the hidden layer outputs. 𝑊𝑀𝐹𝑂 ,𝑊𝑉𝐹𝑂 ,𝑊𝐺𝐹𝑂 , and 

𝑊𝐹𝐹𝑂  are ideal weight value of RBF. 𝑊̂𝑀𝐹𝑂 , 𝑊̂𝑉𝐹𝑂 , 𝑊̂𝐺𝐹𝑂, and 

𝑊̂𝐹𝐹𝑂  are estimates of 𝑊𝑀𝐹𝑂 ,𝑊𝑉𝐹𝑂 ,𝑊𝐺𝐹𝑂, and 𝑊𝐹𝐹𝑂 , 

respectively. 𝛥𝑀𝐹𝑂(𝛿), 𝛥𝑉(𝛿, 𝛿̇), 𝛥𝐺𝐹𝑂(𝛿), and 𝛥𝐹𝐹𝑂(𝛿̇) are 

the output values of RBFNNs controller 

 

Fig. 1. Structure of RBF neural networks 

The output values of the RBFNNs controller are 

respectively defined as follows: 

𝛥𝑀𝐹𝑂(𝛿) = 𝑊𝑀𝐹𝑂
𝑇 𝛩𝑀(𝛿) + 𝛯𝑀𝐹𝑂 

𝛥𝑉𝐹𝑂(𝛿, 𝛿̇) = 𝑊𝑉𝐹𝑂
𝑇 𝛩𝑉(𝛿, 𝛿̇) + 𝛯𝑉𝐹𝑂 

𝛥𝐺𝐹𝑂(𝛿) = 𝑊𝐺𝐹𝑂
𝑇 𝛩𝐺(𝛿) + 𝛯𝐺𝐹𝑂 

𝛥𝐹𝐹𝑂(𝛿̇) = 𝑊𝐹𝐹𝑂
𝑇 𝛩𝐹(𝛿̇) + 𝛯𝐹𝐹𝑂 

(4) 

where; 𝛯𝑀𝐹𝑂 , 𝛯𝑉𝐹𝑂 , 𝛯𝐺𝐹𝑂, and 𝛯𝐹𝐹𝑂  are the error of 

𝛥𝑀𝐹𝑂(𝛿), 𝛥𝑉(𝛿, 𝛿̇), 𝛥𝐺𝐹𝑂(𝛿), and 𝛥𝐹𝐹𝑂(𝛿̇), respectively. 

𝛥𝑀̂𝐹𝑂(𝛿)𝛥𝑉̂,(𝛿, 𝛿̇), 𝛥𝐺̂𝐹𝑂(𝛿), and 𝛥𝐹̂𝐹𝑂(𝛿̇) denote the 

estimated values of the 𝛥𝑀𝐹𝑂(𝛿), 𝛥𝑉(𝛿, 𝛿̇), 𝛥𝐺𝐹𝑂(𝛿), and 

𝛥𝐹𝐹𝑂(𝛿̇), respectively. 

The output of the jth hidden neuron will determine as follow: 

𝛩𝑗 = 𝑒𝑥𝑝 (−‖𝑥 − 𝑐𝑗‖
2
/2𝑑𝑗

2) 

𝑐𝑗 , 𝑑𝑗 are center and width of the j-th neuron.  𝑐 selects by K-

means clustering method or randomly from training data. A 

single value 𝑑 is determined based on the distances between 

centers, the distances to nearest neighbors, or learning widths 

during training. 

The initial weight value of RBF will be taken based on 

the designer’s experience and then they will be updated 

during the system’s working process by the online update 

laws. 

The values of 𝛥𝑀̂𝐹𝑂(𝛿)𝛥𝑉̂,(𝛿, 𝛿̇), 𝛥𝐺̂𝐹𝑂(𝛿), and 𝛥𝐹̂𝐹𝑂(𝛿̇) 

defined, respectively as: 

𝛥𝑀̂𝐹𝑂(𝛿) = 𝑊̂𝑀𝐹𝑂
𝑇 𝛩𝑀(𝛿) 

𝛥𝑉̂𝐹𝑂(𝛿, 𝛿̇) = 𝑊̂𝑉𝐹𝑂
𝑇 𝛩𝑉(𝛿, 𝛿̇) 

𝛥𝐺̂𝐹𝑂(𝛿) = 𝑊̂𝐺𝐹𝑂
𝑇 𝛩𝐺(𝛿) 

𝛥𝐹̂𝐹𝑂(𝛿̇) = 𝑊̂𝐹𝐹𝑂
𝑇 𝛩𝐹(𝛿̇) 

(5) 

Where 𝑊̂𝑀𝐹𝑂 , 𝑊̂𝑉𝐹𝑂 , 𝑊̂𝐺𝐹𝑂, and 𝑊̂𝐹𝐹𝑂  are estimate of 

𝑊𝑀𝐹𝑂 ,𝑊𝑉𝐹𝑂 ,𝑊𝐺𝐹𝑂, and 𝑊𝐹𝐹𝑂 , respectively. 

IV. ARFONNS CONTROLLER SYSTEM 

This section, the ARFONNs controller is designed to 

improve the error tracking of robot manipulators. The 

proposed controller inherits the advantages of neural 

network, adaptive method and sliding mode controller. 

Substituting (4) into (3), we have: 

𝑀̂𝐹𝑂0(𝛿)𝛿̈ + 𝑉̂𝐹𝑂0(𝛿, 𝛿̇)𝛿̇ + 𝐺̂𝐹𝑂0(𝛿) + 𝐹̂𝐹𝑂0(𝛿̇)

= 𝜏𝐹𝑂 + 𝐹(𝑡) + 𝛤 
(6) 

With 𝐹(𝑡) = −𝑊𝑀𝐹𝑂
𝑇 𝛩𝑀(𝛿)𝛿̈ − 𝑊𝑉𝐹𝑂

𝑇 𝛩𝑉(𝛿, 𝛿̇)𝛿̇ −

𝑊𝐺𝐹𝑂
𝑇 𝛩𝐺(𝛿)-W𝐹𝐹𝑂

𝑇 𝛩𝐹(𝛿̇), 𝛤 = −𝛯𝑀𝐹𝑂𝛿̈ − 𝛯𝑉𝐹𝑂𝛿̇ − 𝛯𝐺𝐹𝑂 −

𝛯𝐹𝐹𝑂 − 𝜏𝐹𝑂𝑑 

The FOPID controller is defined as: 

𝜏𝑃𝐼𝐷 = 𝑘𝑝𝜀(𝑡) + 𝑘𝑖
𝑑−𝛽

𝑑𝑡
𝜀(𝑡) + 𝑘𝑑

𝑑𝛼

𝑑𝑡
𝜀(𝑡) (7) 

where 𝑘𝑝, 𝑘𝑑 , 𝑘𝑖 are the constants of proportionality, 

differentiation, and integration respectively. 𝛽, 𝛼 are real 

numbers. 

Definitions of the tracking error and sliding surface are 

give as follows: 

𝜀(𝑡) = 𝛿𝑑 − 𝛿 (8) 

𝑠(𝑡) =
𝑑𝜀(𝑡)

𝑑𝑡
+ 𝑘𝑝∫ 𝜀(𝑡)

𝑡

0

+ 𝑘𝑖
𝑑−𝛽−1

𝑑𝑡
𝜀(𝑡)

+ 𝑘𝑑
𝑑𝛼−1

𝑑𝑡
𝜀(𝑡) 

(9) 

where 𝑠(𝑡) indicates the error over time, and 𝑘𝑝, 𝑘𝑑, 𝑘𝑖 

respectively denote the proportional, derivative, and integral 

gains. 𝛽, 𝛼 are two additional parameters of the fractional 

order controller, and they are positive constants. The 

derivative of 𝑠(𝑡) and substituting (6), (2), we have: 

𝑠̇(𝑡) = 𝜀̈(𝑡) + 𝑘𝑝𝜀(𝑡) + 𝑘𝑖
𝑑−𝛽

𝑑𝑡
𝜀(𝑡) + 𝑘𝑑

𝑑𝛼

𝑑𝑡
𝜀(𝑡)

= 𝛿̈𝑑 − 𝛿̈ + 𝑘𝑝𝜀(𝑡)

+ 𝑘𝑖
𝑑−𝛽

𝑑𝑡
𝜀(𝑡) + 𝑘𝑑

𝑑𝛼

𝑑𝑡
𝜀(𝑡) 

𝑠̇(𝑡) = 𝛿̈𝑑 − 𝑀̂
−1
𝐹𝑂0(𝜏𝐹𝑂 + 𝐹(𝑡) − 𝑉̂𝐹𝑂0𝛿̇

− 𝐺̂𝐹𝑂0(𝛿) − 𝐹̂𝐹𝑂0) + 𝑘𝑝𝜀(𝑡)

+ 𝑘𝑖
𝑑−𝛽

𝑑𝑡
𝜀(𝑡) + 𝑘𝑑

𝑑𝛼

𝑑𝑡
𝜀(𝑡) 

(10) 
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The ARFONNs controller is defined as: 

𝜏𝐹𝑂 = 𝑀̂𝐹𝑂0𝛿̈𝑑 + 𝑉̂𝐹𝑂0𝛿̇ + 𝐺̂𝐹𝑂0(𝛿) + 𝐹̂𝐹𝑂0
+ 𝑀̂𝐹𝑂0𝜏𝑃𝐼𝐷 + 𝑀̂𝐹𝑂0𝜏𝑠𝑚𝑐
+ 𝑀̂𝐹𝑂0𝐹̂(𝑡) 

(11) 

With 𝜏𝑠𝑚𝑐  is a sliding model control term, 𝐹̂(𝑡) is considered 

an approximation of 𝐹(𝑡), and 𝐹̂(𝑡) is defined as follows: 

𝐹̂(𝑡) = −𝑊̂𝑀𝐹𝑂
𝑇 𝛩𝑀(𝛿)𝛿̈ − 𝑊̂𝑉𝐹𝑂

𝑇 𝛩𝑉(𝛿, 𝛿̇)𝛿̇ − 𝑊̂𝐺𝐹𝑂
𝑇 𝛩𝐺(𝛿)

− 𝑊̂𝐹𝐹𝑂
𝑇 𝛩𝐹(𝛿̇) 

The robust controller is designed as: 

𝜏𝑠𝑚𝑐 =
𝑠

‖𝑠‖
(
𝑘𝑀𝑊𝑀𝐹𝑂

2

4
+
𝑘𝑉𝑊𝑉𝐹𝑂

2

4
+
𝑘𝐺𝑊𝐺𝐹𝑂

2

4

+
𝑘𝐹𝑊𝐹𝐹𝑂

2

4
) + 𝑘𝑃 𝑠𝑔𝑛( 𝑠)

=
𝑠

‖𝑠‖
ϒ+ 𝑘𝑃 𝑠𝑔𝑛( 𝑠) 

(12) 

where ϒ =
𝑘𝑀𝑊𝑀𝐹𝑂

2

4
+

𝑘𝑉𝑊𝑉𝐹𝑂
2

4
+

𝑘𝐺𝑊𝐺𝐹𝑂
2

4
+

𝑘𝐹𝑊𝐹𝐹𝑂
2

4
 and 𝑘𝑃 >

𝛤. 

The online update laws of FONNs are proposed as: 

{
 
 

 
 𝑊̇̂𝑀𝐹𝑂 = −𝐹𝑀𝛩𝑀(𝛿)𝛿̈ + 𝑘𝑀𝐹𝑀‖𝑠‖𝑊̂𝑀𝐹𝑂

𝑊̇̂𝑉𝐹𝑂 = −𝐹𝑉𝛩𝑉(𝛿, 𝛿̇)𝛿̇ + 𝑘𝑉𝐹𝑉‖𝑠‖𝑊̂𝑉𝐹𝑂

𝑊̇̂𝐺𝐹𝑂 = −𝐹𝐺𝛩𝐺(𝛿) + 𝑘𝐺𝐹𝐺‖𝑠‖𝑊̂𝐺𝐹𝑂

𝑊̇̂𝐹𝐹𝑂 = −𝐹𝐹𝛩𝐹(𝛿, 𝛿̇, 𝛿̈) + 𝑘𝐹𝐹𝐹‖𝑠‖𝑊̂𝐹𝐹𝑂

 (13) 

where 𝑘𝑀 , 𝑘𝑉 , 𝑘𝐺 , 𝑘𝐹 , 𝐹𝑀, 𝐹𝑉 , 𝐹𝐺 , 𝐹𝐹 are the constant diagonal 

constant matrices and which are positive. 

Consider an n-link robotic manipulator described by 

equation (3). When the ARFONNs update law follows (13) 

and the SMC robust controller is defined as (12), it can be 

ensured that the tracking error and all system parameters 

converge to zero. The ARFONNs controller is defined as 

(11). Stability of the control system can be ensured based on 

Lyapunov analysis, provided that the Lyapunov function is 

positive definite and its derivative is negative semidefinite. 

Thus, ensuring the stability of the overall control system 

requires satisfying these conditions. Choosing a Lyapunov 

function as: 

𝐿(𝑡) =
1

2
𝑠𝑇𝑠 +

1

2
𝑡𝑟(𝑊̃𝑀𝐹𝑂

𝑇 𝐹𝑀
−1𝑊̃𝑀𝐹𝑂)

+
1

2
𝑡𝑟(𝑊̃𝑉𝐹𝑂

𝑇 𝐹𝑉
−1𝑊̃𝑉𝐹𝑂) 

+
1

2
𝑡𝑟(𝑊̃𝐺𝐹𝑂

𝑇 𝐹𝐺
−1𝑊̃𝐺𝐹𝑂) +

1

2
𝑡𝑟(𝑊̃𝐹𝐹𝑂

𝑇 𝐹𝐹
−1𝑊̃𝐹𝐹𝑂) 

(14) 

The derivative of 𝐿(𝑡) is: 

𝐿̇(𝑡) = 𝑠𝑇 𝑠̇ − 𝑡𝑟(𝑊̃𝑀𝐹𝑂
𝑇 𝐹𝑀

−1𝑊̇̂𝑀𝐹𝑂
)

− 𝑡𝑟(𝑊̃𝑉𝐹𝑂
𝑇 𝐹𝑉

−1𝑊̇̂𝑉𝐹𝑂)

− 𝑡𝑟(𝑊̃𝐺𝐹𝑂
𝑇 𝐹𝐺

−1𝑊̇̂𝐺𝐹𝑂
)

− 𝑡𝑟(𝑊̃𝐹𝐹𝑂
𝑇 𝐹𝐹

−1𝑊̇̂𝐹𝐹𝑂) 

(15) 

Applying (8) and (9) into (15), we have (16): 

𝐿̇(𝑡)

= 𝑠𝑇

(

 
−𝜏𝑃𝐼𝐷 − 𝜏𝑠𝑚𝑐 + 𝐹̃(𝑡) + 𝑘𝑝𝜀(𝑡) + 𝑘𝑖

𝑑−𝛽

𝑑𝑡
𝜀(𝑡)

+𝑘𝑑
𝑑𝛼

𝑑𝑡
𝜀(𝑡)

)

  

−𝑡𝑟(𝑊̃𝑀𝐹𝑂
𝑇 𝐹𝑀

−1𝑊̇̂𝑀𝐹𝑂) − 𝑡𝑟(𝑊̃𝑉𝐹𝑂
𝑇 𝐹𝑉

−1𝑊̇̂𝑉𝐹𝑂) 

−𝑡𝑟(𝑊̃𝐺𝐹𝑂
𝑇 𝐹𝐺

−1𝑊̇̂𝐺𝐹𝑂
) − 𝑡𝑟(𝑊̃𝐹𝐹𝑂

𝑇 𝐹𝐹
−1𝑊̇̂𝐹𝐹𝑂

) 

(16) 

with 𝐹̃(𝑡) = −𝑊̃𝑀𝐹𝑂
𝑇 𝛩𝑀(𝛿)𝛿̈ − 𝑊̃𝑉𝐹𝑂

𝑇 𝛩𝑉(𝛿, 𝛿̇)𝛿̇ −

𝑊̃𝐺𝐹𝑂
𝑇 𝛩𝐺(𝛿) − 𝑊̃𝐹𝐹𝑂

𝑇 𝛩𝐹(𝛿, 𝛿̇, 𝛿̈),  

Substituting (6) into (15), we have: 

𝐿̇(𝑡) = 𝑠𝑇(−𝜏𝑠𝑚𝑐 + 𝐹̃(𝑡)) − 𝑡𝑟(𝑊̃𝑀𝐹𝑂
𝑇 𝐹𝑀

−1𝑊̇̂𝑀𝐹𝑂)

− 𝑡𝑟(𝑊̃𝑉𝐹𝑂
𝑇 𝐹𝑉

−1𝑊̇̂𝑉𝐹𝑂)

− 𝑡𝑟(𝑊̃𝐺𝐹𝑂
𝑇 𝐹𝐺

−1𝑊̇̂𝐺𝐹𝑂)

− 𝑡𝑟(𝑊̃𝐹𝐹𝑂
𝑇 𝐹𝐹

−1𝑊̇̂𝐹𝐹𝑂) 

(17) 

By using (13), (17) can be rewritten as: 

𝐿̇(𝑡) = −𝑠𝑇𝜏𝑠𝑚𝑐 + 𝑠
𝑇𝛤 − 𝑡𝑟(𝑊̃𝑀𝐹𝑂

𝑇 𝑘𝑀‖𝑠‖𝑊̂𝑀𝐹𝑂)

− 𝑡𝑟(𝑊̃𝑉𝐹𝑂
𝑇 𝑘𝑉‖𝑠‖𝑊̂𝑉𝐹𝑂)

− 𝑡𝑟(𝑊̃𝐺𝐹𝑂
𝑇 𝑘𝐺‖𝑠‖𝑊̂𝐺𝐹𝑂)

− 𝑡𝑟(𝑊̃𝐹𝐹𝑂
𝑇 𝑘𝐹‖𝑠‖𝑊̂𝐹𝐹𝑂) 

𝛤 = −𝛯𝑀𝐹𝑂𝛿̈ − 𝛯𝑉𝐹𝑂𝛿̇ − 𝛯𝐺𝐹𝑂 − 𝛯𝐹𝐹𝑂 − 𝜏𝐹𝑂𝑑  

(18) 

Where 

𝑊̃𝑀𝐹𝑂 = 𝑊𝑀𝐹𝑂 − 𝑊̂𝑀𝐹𝑂; 𝑊̃𝑉𝐹𝑂 = 𝑊𝑉𝐹𝑂 − 𝑊̂𝑉𝐹𝑂; 

𝑊̃𝐺𝐹𝑂 = 𝑊𝐺𝐹𝑂 − 𝑊̂𝐺𝐹𝑂; 𝑊̃𝐹𝐹𝑂 = 𝑊𝐹𝐹𝑂 − 𝑊̂𝐹𝐹𝑂 
 

Applying (18) becomes: 

𝐿̇(𝑡) = −𝑠𝑇𝜏𝑠𝑚𝑐 + 𝑠
𝑇𝛤 + 𝑘𝑀‖𝑠‖𝑡𝑟𝑊̃𝑀𝐹𝑂

𝑇 (𝑊𝑀𝐹𝑂

− 𝑊̃𝑀𝐹𝑂) + 𝑘𝑉‖𝑠‖𝑡𝑟𝑊̃𝑉𝐹𝑂
𝑇 (𝑊𝑉𝐹𝑂

− 𝑊̃𝑉𝐹𝑂) + 𝑘𝐺‖𝑠‖𝑡𝑟𝑊̃𝐺𝐹𝑂
𝑇 (𝑊𝐺𝐹𝑂

− 𝑊̃𝐺𝐹𝑂) + 𝑘𝐹‖𝑠‖𝑡𝑟𝑊̃𝐹𝐹𝑂
𝑇 (𝑊𝐹𝐹𝑂

− 𝑊̃𝐹𝐹𝑂) 

𝑡𝑟𝑊̃𝑇(𝑊 − 𝑊̃) = (𝑊̃,𝑊) − ‖𝑊̃‖
2

≤ ‖𝑊̃‖‖𝑊‖ − ‖𝑊̃‖
2
 

(19) 

By using  

We have: 

𝐿̇(𝑡) ≤ −𝑠𝑇𝜏𝑠𝑚𝑐 + 𝑠
𝑇𝛤

+ 𝑘𝑀‖𝑠‖ (‖𝑊̃𝑀𝐹𝑂‖‖𝑊𝑀𝐹𝑂‖

− ‖𝑊̃𝑀𝐹𝑂‖
2
)

+ 𝑘𝑉‖𝑠‖ (‖𝑊̃𝑉𝐹𝑂‖‖𝑊𝑉𝐹𝑂‖

− ‖𝑊̃𝑉𝐹𝑂‖
2
)

+ 𝑘𝐺‖𝑠‖ (‖𝑊̃𝐺𝐹𝑂‖‖𝑊𝐺𝐹𝑂‖

− ‖𝑊̃𝐺𝐹𝑂‖
2
)

+ 𝑘𝐹‖𝑠‖ (‖𝑊̃𝐹𝐹𝑂‖‖𝑊𝐹𝐹𝑂‖

− ‖𝑊̃𝐹𝐹𝑂‖
2
) 

(20) 

Substituting (12) into (20), equation (20) becomes (21): 
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𝐿̇(𝑡) ≤ −𝑠𝑇 (
𝑠

‖𝑠‖
ϒ + 𝑘𝑃 𝑠𝑔𝑛( 𝑠)) + 𝑠

𝑇𝛤

+ 𝑘𝑀‖𝑠‖ (‖𝑊̃𝑀𝐹𝑂‖‖𝑊𝑀𝐹𝑂‖

− ‖𝑊̃𝑀𝐹𝑂‖
2
)

+ 𝑘𝑉‖𝑠‖ (‖𝑊̃𝑉𝐹𝑂‖‖𝑊𝑉𝐹𝑂‖

− ‖𝑊̃𝑉𝐹𝑂‖
2
)

+ 𝑘𝐺‖𝑠‖ (‖𝑊̃𝐺𝐹𝑂‖‖𝑊𝐺𝐹𝑂‖

− ‖𝑊̃𝐺𝐹𝑂‖
2
)

+ 𝑘𝐹‖𝑠‖ (‖𝑊̃𝐹𝐹𝑂‖‖𝑊𝐹𝐹𝑂‖

− ‖𝑊̃𝐹𝐹𝑂‖
2
) 

𝐿̇(𝑡) ≤ −𝑠𝑇 (
𝑘𝑀𝑊𝑀𝐹𝑂

2

4
+
𝑘𝑉𝑊𝑉𝐹𝑂

2

4
+
𝑘𝐺𝑊𝐺𝐹𝑂

2

4

+
𝑘𝐹𝑊𝐹𝐹𝑂

2

4
)

+ 𝑘𝑀‖𝑠‖ (‖𝑊̃𝑀𝐹𝑂
‖‖𝑊𝑀𝐹𝑂

‖

− ‖𝑊̃𝑀𝐹𝑂
‖
2
)

+ 𝑘𝑉‖𝑠‖ (‖𝑊̃𝑉𝐹𝑂‖‖𝑊𝑉𝐹𝑂‖

− ‖𝑊̃𝑉𝐹𝑂‖
2
)

+ 𝑘𝐺‖𝑠‖ (‖𝑊̃𝐺𝐹𝑂‖‖𝑊𝐺𝐹𝑂‖

− ‖𝑊̃𝐺𝐹𝑂‖
2
)

+ 𝑘𝐹‖𝑠‖ (‖𝑊̃𝐹𝐹𝑂‖‖𝑊𝐹𝐹𝑂‖

− ‖𝑊̃𝐹𝐹𝑂‖
2
) 

𝐿̇(𝑡) ≤ −𝑘𝑀‖𝑠‖ (‖𝑊̃𝑀𝐹𝑂‖ −
𝑊𝑀𝐹𝑂

2
)
2

− 𝑘𝑉‖𝑠‖ (‖𝑊̃𝑉𝐹𝑂‖ −
𝑊𝑉𝐹𝑂

2
)
2

− 𝑘𝐺‖𝑠‖ (‖𝑊̃𝐺𝐹𝑂‖ −
𝑊𝐺𝐹𝑂

2
)
2

− 𝑘𝐹‖𝑠‖ (‖𝑊̃𝐹𝐹𝑂‖ −
𝑊𝐹𝐹𝑂

2
)
2

 

(21) 

𝐿̇(𝑡) ≤ 0 (22) 

 

Consequently, 𝐿̇(𝑡) ≤ 0, 𝑠 tends to zero as 𝑡 →  ∞, which 

guarantees the global stability of the control system. 

V. SIMULATION AND EXPERIMENTAL RESULTS OF 

ARFONNS 

A. Simulation Results of ARFONNs 

In this section, the ARFONNs will be simulated on 

Matlab- Simulink for a cleaning and detecting robot (CDR) 

to demonstrate the effectiveness of the proposed controller. 

The parameters of the CDR model (Fig. 2) are given as: 

𝑀𝐹𝑂 = [
𝑀11 𝑀12

𝑀21 𝑀22
] ; 𝑉𝐹𝑂 = [

𝑉11 𝑉12
𝑉21 𝑉22

] ; 

𝐺𝐹𝑂 = [
𝐺1
𝐺2
] ; 𝐹𝐹𝑂 = [

𝐹1
𝐹2
] ; 𝜏𝐹𝑂𝑑 = [

𝜏1
𝜏2
] 

here: 𝑀11 = (𝑚1 +𝑚2)𝑙1
2 +𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2 𝑐𝑜𝑠(𝛿2) 

𝑀12 = 𝑀21 = 𝑚2𝑙2
2 +𝑚2𝑙1𝑙2 𝑐𝑜𝑠(𝛿2); 𝑀22 = 𝑚2𝑙2

2 

𝑉11 = −𝑚2𝑙1𝑙2 𝑠𝑖𝑛(𝛿2) 𝛿̇2; 𝑉12 = −𝑚2𝑙1𝑙2 𝑠𝑖𝑛(𝛿2) (𝛿̇1 +

𝛿̇2) 

𝑉21 = 𝑚2𝑙1𝑙2 𝑠𝑖𝑛(𝛿2) 𝛿̇1; 𝑉22 = 0 

𝐺1 = 𝑚2𝑔𝑙2 𝑐𝑜𝑠(𝛿2) (𝛿1 + 𝛿2) + (𝑚1 +𝑚2)𝑔𝑙2 𝑐𝑜𝑠(𝛿2) 

 

Fig. 2. The cleaning and detecting robot manipulator 

𝐺2 = 𝑚2𝑔𝑙2 𝑐𝑜𝑠(𝛿2) (𝛿1 + 𝛿2) 

𝐹𝐹𝑂(𝛿̇) = [
𝐹1(𝛿1̇)

𝐹2(𝛿2̇)
] = [

20𝛿1̇ + 5𝑠𝑔𝑛(𝛿1̇)

20𝛿2̇ + 5𝑠𝑔𝑛(𝛿2̇)
]; 𝜏𝐹𝑂𝑑 = [

𝜏1
𝜏2
] =

[
0.5 𝑠𝑖𝑛(20𝑡)

0.5 𝑠𝑖𝑛(20𝑡)
] 

where 𝑚1, 𝑚2 are links masses. 𝑙1, 𝑙2 are links lengths; 𝑔 =
9,8(𝑚/𝑠2) is acceleration of gravity. The CDR parameters 

are given as: 

𝑚1 = 2𝑘𝑔;𝑚2 = 1𝑘𝑔; 𝑙1 = 0,8𝑚; 𝑙2 = 1𝑚 

The desired position trajectories of the robot will be 

chosen by: 𝛿𝑑 = [𝛿𝑑1 𝛿𝑑2]
𝑇 = [0.1 𝑠𝑖𝑛( 𝑡),0.1 𝑠𝑖𝑛( 𝑡)]𝑇and 

Initial position joints and initial velocities of joints 

respectively 

𝛿0 = [𝛿01 𝛿02]
𝑇 = [0.0 0.0]𝑇(𝑟𝑎𝑑) and 𝛿̇0 = [𝛿̇01 𝛿̇02]

𝑇 =
[0.0 0.0]𝑇  (rad/s). 

The structure of ARFONNs can be characterized by n=4 

nodes. This is based on experience and testing during 

simulation. The proposed controller parameters are chosen 

as: 

𝑘𝑝 = 𝑑𝑖𝑎𝑔[60, 60]; 𝑘𝑑 = 𝑑𝑖𝑎𝑔[70, 70]; 

𝑘𝑖 = 𝑑𝑖𝑎𝑔[0.2, 0.2]; 𝛽 = 0.7;  𝛼 = 0.02 

𝐹𝑀 = 𝐹𝑉 = 𝐹𝐺 = 𝐹𝐹 = 10; 𝑘𝑀 = 𝑘𝑉 = 𝑘𝐺 = 𝑘𝐹 = 0.01; 

The mean square error (MSE) of the position tracking 

response is defined to quantify the respective control 

performance as: 

𝑀𝑆𝐸 =
1

𝑇
∑[𝛿(𝑡) − 𝛿𝑑(𝑡)]

2

𝑇

𝑡=1

 

 1, 1

 2, 2
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In which, T denotes the total number of sampling instants. 

The normalized mean square error (NMSE) of the position 

tracking response, calculated using a per-unit value of 1 rad, 

is employed to evaluate the control performance. 

We simulated the system in two cases. The first 

simulation case assumes that CDR does not carry a load. The 

simulated results show in Fig. 3. 

The second simulation case, a 0.5 kg payload is added to 

the mases of the two links CDR, whereas the desired input 

trajectories and the other parameters are unchanged from the 

first simulation case. 

The simulated result of the proposed ARFONNs, ARNNs 

[74] and NNs [75] are shown in Fig. 3 and Fig. 4. The 

simulated comparison NMSE values of controllers are also 

depicted in Table I. According to these simulated results, the 

ARFONNs, ARNNs and NNs can provide the good tracking 

positon. However, the proposed scheme achieves faster 

convergence of tracking errors compared to the ARNNs and 

NNs methods. In addition, according to the NMSE values 

presented in Table I, the proposed ARFONNs controller 

demonstrates superior position tracking performance 

compared to the ARNNs, and NNs schemes. The torque 

control inputs of the ARFONNs, ARNNs, and NNs are 

illustrated in Fig. 3 for case 1, and Fig. 4 for case 2. In case 1 

and 2, the control torque inputs for joint 1 produced by 

methods show good performance. While the proposed 

ARFONNs method demonstrates better torque inputs 

performance for joint 2 under parameter variation conditions 

compared to ARNNs, and NNs. Additionally, based on 

tracking errors of the links, it is observed that the ARFONNs 

exhibit the smallest tracking errors. This indicates that the 

ARFONNs provide better position tracking compared to the 

NNs and ARNNs. Furthermore, with the updated parameters 

in the dynamic structure of the ARFONNs and the adjustment 

of the number of law nodes, the approximation capability of 

the ARFONNs is superior to that of the NNs and ARNNs 

systems. The performance of the approximating functions 

and estimated parameters is excellent, demonstrating the 

correctness of the proposed method, including the robustness 

of the control system parameters. 

TABLE I.  SIMULATION RESULT COMPARISONS OF ARFONNS, ARNNS 

AND NNS SCHEMES 

NMSE 

(x10-4) 

Case 1 Case 2 

Link1 Link2 Link1 Link2 

ARFONNs 0.2254 0.0405 0.4024 0.0862 

ARNNs 1.1258 0.0605 1.8956 0.1825 

NNs 5.5126 1.7456 11.6281 4.6281 

  

  

  

Fig. 3. Simulated results of position tracking, tracking errors, control efforts of NNs, ARNNs and ARFONNs in the first simulated case 
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Fig. 4. Simulated results of position tracking, tracking errors, control efforts of NNs, ARNNs and the ARFONNs control system in the second simulated case 

B. Experiment results 

In this section, we have used the ARFONNs for CDR 

which are moveable in the condenser water chamber in our 

lab of intelligent automation technology (Fig. 5). An 

autonomous robot has been researched and tested to address 

the issue of condenser cleaning. Condensers are critical 

components in a wide range of industrial sectors, including 

thermal power plants, nuclear power plants, and other 

industrial facilities. A condenser system typically consists of 

tens of thousands of small-aperture tubes that function as cold 

sources, helping to lower turbine exhaust temperatures and 

steam pressure within the thermodynamic cycle, thereby 

enhancing overall thermal efficiency. Over time, and due to 

the harsh working environment, these condensers accumulate 

increasing amounts of dirt and debris. This buildup not only 

reduces the thermal efficiency of the cycle but can also lead 

to corrosion of the condenser pipes. As a result, the 

development of CDR is essential. In this experiment, the 

electrical control system of the CDR, as illustrated in Fig. 6, 

is designed based on a distributed control architecture that 

incorporates a multi-parallel processing system. The central 

unit of the main controller is connected to several co- 

processor modules via a CAN bus. These co-processor 

modules form the internal network responsible for managing 

the robot’s pose structure. This design enables the robot to 

achieve high-speed information processing and real-time 

communication capabilities. The CDR robot operates in both 

manual and automatic modes. In manual mode, an operator 

controls and supervises the system via remote control and 

cameras. In automatic mode, the CDRM autonomously 

verifies operating conditions, locates condenser tube 

positions, and optimizes cleaning parameters-including 

pressure, duration, and cycle count-based on input from 

cameras and sensors (e.g., cooling water, flow, pressure, and 

flow direction sensors). A high-pressure water jet is then used 

for cleaning. After each cycle, the system continues to 

monitor condenser tube cleanliness. 

 

Fig. 5. Mechanical structure of the CDR 
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Fig. 6. Electrical control structure of CDR 

The first experiment case assumes that CDR does not 

carry a load. The desired input trajectories and the other 

parameters are the same as in the first simulation case. The 

experiment results show in Fig. 7. 

The second experiment case assumes that 0.5kg payload 

is added in the masses of two links CDR, the desired input 

trajectories and the other parameters are the same as in the 

first experiment case. The experiment results show in Fig. 8. 
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Fig. 7. Experiment results of position tracking, tracking errors, control efforts of NNs, ARNNs and the ARFONNs control system in the first case 

 
 

  

  

Fig. 8. Experiment results of position tracking, tracking errors, control efforts of NNs, ARNNs and the ARFONNs control system in the second case 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1799 

 

Yen-Vu Thi, Neural Network-Based Adaptive Robust Fractional PID Control for Robotic Systems 

In the experimental work, the ARNNs and the proposed 

control scheme outperform the conventional NNs based 

system. The performance of the NNs control system is highly 

dependent on the choice of RBF and initial parameters, 

necessitating careful selection for optimal outcomes. The first 

case, Fig. 7 is represented tracking errors and control voltages 

for the NNs, ARNNs, and the ARFONNs strategies. In the 

second case, Fig. 8 illustrates the tracking errors and control 

voltages for the NNs, ARNNs, and ARFONNs strategies. A 

comparison of these figures shows that while both NNs and 

ARNNs achieve acceptable tracking performance, the 

ARFONNs strategy demonstrates faster error convergence. 

This improvement is also described by the NMSE results in 

Table II. However, due to dependencies on measurement 

devices and programming implementation, the results in 

Table II are not as favorable as those in Table I. Nevertheless, 

the robustness of the ARFONNs controller under parameter 

variations is clear evident when comparing the tracking 

performance and control signals in Fig. 7 and Fig. 8. Both 

simulation and experimental results confirm that the 

proposed ARFONNs controller offers superior control 

performance and robustness compared to the ARNNs and 

NNs controllers under varying conditions. 

TABLE II.  EXPERIMENT RESULT COMPARISONS OF ARFONNS, ARNNS 

AND NNS SCHEMES 

NMSE 

(x10-4) 

Case 1 Case 2 

Link1 Link2 Link1 Link2 

ARFONNs 0.4586 0.0547 0.8965 0.1852 

ARNNs 1.9125 0.1625 2.1754 0.3205 

NNs 13.2031 3.9161 17.5781 7.0508 

 

VI. CONCLUSIONS 

A robust adaptive fraction odder PID control using neural 

networks has been proposed to control for CDR. The 

ARFONNs controller is a combination of the adaptive 

mothed, Fraction odder PID controller, sliding mode robust 

term and neural networks to help CDR achieve the high exact 

position tracking. The unknown dynamic of CDR has been 

approximated by the RBFNNs and flexible of Fraction odder 

PID is helped to improve the performance and robustness of 

the control system. All the parameters of the ARFONNs are 

defined based on Lyapunov stability theory. From the 

Simulation and experimental results conducted on the CDR, 

it is evident that the performance of the ARFONNs control 

has been significantly improved. The ARFONNs controller 

can also be put into practice to control other nonlinear 

systems and uncertain models, such as AC servos and MMR 

systems. However, the selection of the parameters of the 

fractional order PID controller like 𝛽, 𝛼 is based on the 

authors’ experience and corrections during simulation and 

experiment. Therefore, we can use the optimization algorithm 

to determine those parameters to reduce the amount of 

calculation.    
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