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Abstract—Recent research has shown that utilizing mobile
robot data collection from sensor nodes is one of the most
critical schemes to prolong the network lifetime in wireless sensor
networks (WSNs). By overcoming some limitations of traditional
methods where sensing data is sent to a static data collection
node through multiple routing paths, the mobile data collection
robot-based approaches can completely avoid "hotspot" problem,
energy-holes issues thereby balancing node energy consumption
in the network. Consequently, many ideas and publications on
improving network lifetime in WSNs by utilizing mobile data
collection robot(s) have been proposed. However, there is little
research that has studied the impact of mobile robot trajectory
types on network lifetime improvement. Therefore, it becomes
very interesting to investigate data collection process of mobile
robots in wireless sensor network. In this paper, we proposed a
geometric solution to find optimal trajectories of utilized mobile
robots (MRs). Our proposed solution consists of four main stages.
In the first stage, the number of cluster head nodes is estimated
based on the network size and the density of sensor nodes in
the WSN. The second stage involves estimating the spatial region
that each mobile robot must cover to collect sensed data from all
assigned sensor nodes. In the third stage, an optimal trajectory
for each mobile robot is determined. In the fourth and final stage,
the Network Control Center (NCC) proceeds to assign optimized
trajectories to the remaining mobile robots until all cluster head
nodes in the network have been visited. The proposed optimal
trajectory for the mobile robot is designed not only to ensure
timely collection of all sensed data in the field, but also to minimize
the energy consumption of sensor nodes, thereby improving the
overall network lifetime. A large number of numerical tests were
carried out to evaluate the performance of our proposed algorithm.
The simulation results demonstrate that our proposed algorithm
achieves a 5.4% improvement in network lifetime compared to
other traditional algorithms. Nevertheless, the network lifetime
improvement remains dependent on several assumptions made in
this study. To address this limitation, the discussion section of
the paper outlines potential directions for future work aimed at
enhancing the practical applicability of the proposed solution.

Keywords—WSNs; Energy-Efficient Trajectory Optimization for
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I. INTRODUCTION

It is known that the network lifetime is one of the most
important factors in wireless sensor network (WSNs) studies
[1]–[6]. To improve the network lifetime through mobility mod-
els, which not only avoid the hotspot problem [7]–[12] in the
network but also guarantee the balanced energy consumption
among nodes in WSNs [1], [13]–[16], is one of the main
concerns in WSNs [17], [18]. To enhance data acquisition
efficiency, in [17], a mobile sink is employed to navigate
through the sensing area and collect data from distributed sensor
nodes. During the data gathering time, the residual energy
information of sensor nodes is collected for scheduling the
next stopping position of the mobile sink [19]–[21]. By this
way, the mobile sink tends to move toward the high residual
energy nodes. As a result, the imbalanced energy consumption
among nodes in the network persists and which becomes a
major factor contributing to reduce the network lifetime.To
address this limitation, various solutions have been proposed,
including clustering algorithms, multi-hop routing protocols,
and mobile sink deployment strategies. Among these, the use
of mobile sinks has shown great promise in balancing energy
consumption and extending network lifetime by dynamically
collecting data from different locations in the network. In [22]–
[24], the authors focused on improving the network lifetime
by proposing a new routing scheme, which selects the num-
ber of utilized mobile sinks and their corresponding parking
positions. In [1], two approaches named OMS1 and OMS2,
which utilize mobile sinks for data collection, are proposed.
These approaches have demonstrated that employing mobile
sinks with adaptive mobility schemes significantly enhances
network lifetime and improves the network reliability com-
pared to stationary or fixed-trajectory sink models. Similar
conclusions are presented in [25]. The authors in [25] have
investigated the use of a mobile robot for data collection and
data transmission. In this study, the locations of the WSNs
nodes are assumed to be known in advance by a mobile robot
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and this location information is utilized to solve the Traveling
Salesman Subset-tour Problem (TSSP) in order to determine
an optimal trajectory of a mobile robot. The experimental and
simulation results demonstrate the effectiveness in enhancing
the network reliability of the WSNs. In a recent study, Bilal
R. Al-Kaseem et al., in [26] have proposed an optimized
energy-efficient path planning approach, which mitigated the
limitation of energy challenges in WSNs when integrated into
the Internet of Things (IoT). The authors have developed
three optimization techniques, based on the multi-objective
evolutionary algorithms, to evaluate the trajectory of deployed
mobile sinks. The simulation results show that by the proposed
approach, the network lifetime of the WSNs can be prolonged
up to 66% compared to the existing approaches. As a result,
several studies in the literature have integrated the mobile robot
platform for environmental monitoring schemes [27]–[35]. In
[27], the combination between robotics and internet of things
(IoT) [36]–[45] is used for monitoring agriculture fields. The
mobile robots are developed for data gathering from agricultural
fields or greenhouses [46]–[48]. The gathered data is then
posted to the web application for monitoring purposes via IoT
devices. By this way, the proposed design scheme showed the
advantage of applying mobile robot platforms in agricultural
environments [49], [50]. In another study, Ashish Gupta et
al., (2018) proposed a prototype for a real-time monitoring
agriculture sensor network [51], [52]. In this system, a single
mobile sink, which is attached to a tractor moving along a
predetermined path, is utilized for data collection. The sensing
data from each sensor node is transmitted to the mobile sink via
Wi-Fi. The proposed prototype results show that the velocity
of the mobile sink and the sampling rate of the sensor nodes
affect the quality of the monitoring data. Unfortunately, there
is insufficient evidence to demonstrate that the aforementioned
solutions are effective in extending the lifetime of wireless
sensor networks while simultaneously ensuring data integrity
i.e., guaranteeing that all sensor measurements are transmitted
completely and in a timely manner to the control center.

Therefore, this paper addresses the problem: how to collect
the sensing data in the sensing fields in time with the smallest
energy consumption? The main objective is to find the smart
trajectories of mobile robots [53]–[59] that enable efficient data
collection with minimal energy expenditure. To address this
problem, we extend the approaches introduced in [3], [60]
and obtain an optimal trajectory of the mobile robot. The
research contribution is a novel multi-parameter optimization
algorithm for trajectory planning of mobile robots in wireless
sensor networks. Unlike previous approaches that focus solely
on minimizing travel distance or energy usage, this method
integrates network geometry, residual energy of sensor nodes,
and communication latency with cluster heads. This holistic de-
sign enables energy-aware and communication-efficient paths,
ensuring timely data collection while reducing sensor node

workload. As a result, the approach enhances network lifetime,
improves load balancing, and demonstrates strong performance
across various deployment scenarios.

The remainder of the paper is organized as follows:

• In Section 2, we present the model of system and the basic
assumptions.

• In Section 3, we describe the proposed approach.
• The performance of the our algorithm is analyzed and

compared to the other algorithms in Section 4.
• Finally, in Section 5, we conclude this paper and give some

suggestions for future works.

II. SYSTEM MODEL AND ASSUMPTION

A. Basic Assumptions

To begin with, we would like to specify more precisely the
general assumptions about the wireless sensor network (WSN)
model adopted in this study.

• Sensor nodes (N ) in the network are distributed uniformly
with limited initial energy E0 and are stationary after
deployment.

• The MR can move freely in the monitoring area with
unconstrained energy and storage capacity. The MR does
not receive any data packets while in motion. The MR
only receives sensed data from a CH when it falls inside
that CHs transmission range. We assume that the network
lifetime is not affected by MRs operation and movement
because they can periodically return to the support center
for recharging themselves.

• In every operation round, after cluster head election, all the
geographic position information of the CHs will be sent to
the Network Control Center (NCC), where this information
is carefully analyzed to optimize the trajectory of the MR.
The NCC is also known as the depot in the Vehicle Routing
Problem (VRP), where the MRs start and end their data
collecting tour.

• In this paper, the network lifetime is defined as the number
of operation rounds until 85 percentage of the network
nodes run out of energy.

• Within reporting time ξ, all buffered data of the CH must
be transmitted to the MR in order to avoid overflow.

• In this research, (Tr) is a cycle time in which sensing data
from all (N) sensor nodes in the network can be collected
at the NCC successfully.

• In every operation round, each sensor node has a data
sample of γ-bit data packet which must be transmitted to
its corresponding CH.

In the following section, we present the network and energy
models employed in our proposed scheme.
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B. Network Model

Fig. 1 illustrated the structure of WSN with N = 30
sensor nodes are randomly deployed on the monitoring area
A. This area (A) will be divided into M = 6 equal parts
{A1, A2, ..., AM}. The value of subareas (M) is the func-
tion of sensing field acreage (H) and the node density (ρ),
M = f(H, ρ), which guarantees that one CH only need one
MR to collect data.

Fig. 1. Wireless sensor networks structure

In each operational round, the cluster head election will be
repeated, resulting in changes to the positions of the CHs.
Therefore, our objective is to find the optimal movement
strategy for the MR that can collect all sensing data within
a desired time deadline while minimizing energy consumption
thereby improving the overall network lifetime.

C. Energy model

The source node has to spend an amount of energy ETX if
it transmits m-bit data packet to the destination node over a
distance d. It can be calculated by (1) [61].

ETX = γEelec + Eamp(γ, d) (1)

or
ETX = γEelec + γεdχ (2)

where
{

ε = εfs;χ = 2 if d < d0
ε = εmp;χ = 4 otherwise,

Eelec is the electronic energy, Eamp(γ, d) is the energy needed
by the radio amplifier circuit to send γ bits to the receiver node
over d meters. To receive γ-bit data packet, the received node
also has to consume ERX amount of energy power, and it is
calculated as

ERX = γEelec. (3)

The load Lk(t) of node k during round tth is the total power
that node consumes to receive and transmit data on that round:

Lk(t)= ETX(t)+ERX(t). (4)

The lifetime of a sensor node (LF k) refers to the time when
its residual energy is less than a threshold (θ). Therefore, we
have:

E0 −
LFk∑
t=1

Lk(t) = θ, {k = 1, ..., N} (5)

It is clear that the higher the load Lk(t) on node k, the
shorter its lifetime. Therefore, to maximize the overall network
lifetime, it is essential to minimize the network load and
enhance load balancing among the nodes in WSN.

III. THE PROPOSED APPROACH

A. Estimating the Number of Cluster M for Energy Efficient
Deployment Scheme in WSNs

In this subsection, we develop an approach to estimate the
optimal number of clusters within the sensing field, which
ensures full coverage of the WSN, and timely collection of
all sensed data.

Without loss of generality, we consider a wireless sensor
network with rectangle field as can be seen in Fig. 2. l1,
and l2 are length and width of rectangle sensing field. In the
initial network deployment, every sensor node has the same
transmission area with transmission radius l0. The location of
the NCC is center of the sensing field. In order to optimize
the number of clusters in sensing field, we state the following
theorem.

Fig. 2. Estimating the number of clusters (M) in the sensing field
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Theorem 1
Let lmax denote the maximum distance between the NCC and
one sensor node in sensing field, R is transmission rate between
a CH and the MR, v indicates the speed of the MR. It will be
an optimal scheme to divide sensing field into M equal parts
if it satisfies (6).

M =
γl1l2v

πl0
2R (ξ0v − 2lmax)

(6)

Proof
In order to achieve a fully coverage in WSN, the transmission
area of all N sensor nodes has to cover all targets in sensing
field [62]. It means that:

Nπl0
2 = l1l2 (7)

We have:
N =

l1l2

πl0
2 (8)

Let Nm,m ∈ [1,M ] denote the number nodes in cluster Am,
therefore, we have:

NmM = N =
l1l2

πl0
2 (9)

or
Nm =

l1l2

Mπl0
2 (10)

In order all sensing nodes can be collected in time, and it
is no need to spend more than one MR to visit one cluster
head for data collection, the total spending time of the MR for
traveling (ttr0) and collecting data (tcol0) from one furthest CH
is less than a threshold of reporting time (ξ0).

ttr0 + tcol0 ≤ ξ0 (11)

The longest duration required for the robot’s movement is
defined as the time taken to travel from the NCC to the farthest
sensor node (at a distance lmax), and subsequently return to the
NCC. This duration is quantified by Equation (12).

ttr0 =
2lmax
v

(12)

The spending time of the mobile robot to collect all sensed data
from Nm nodes is computed by Equation (13).

tcol0 =
γNm

R
(13)

From Equations (12), (13), we can rewrite the equation (11) as
follows.

2lmax
v

+
γNm

R
≤ ξ0 (14)

where R indicates the transmission rate from transmitter to
receiver. γ indicates total data packets that is generated by each
sensor node in each round. We have

Nm ≤ R

γ

(
ξ0 −

2lmax
v

)
(15)

By inserting 10 into 15, we have

M ≥ γl1l2v

πl0
2R (ξ0v − 2lmax)

.

B. Optimizing the Trajectory of the Mobile Robot for Data
Collection

According to the M cluster heads locations [63]–[65], several
MRs will be sent from the NCC to its assignment area to
collect data. The question here is how to find the optimal
trajectories of MRs, which can collect all data from N nodes
in the network with the smallest energy consumption, within
a predefined running time ξ0, and minimizing the number of
utilized mobile robots (F )?

The basic idea of our proposed algorithm is based on the
geometric solutions to optimize the Trajectory of the MR
(OTMR), which helps total spending time of the MRf for
traveling and collecting data in its assignment area is within the
reporting time. We assume that there are Nf nodes inside the
assignment area of the MRf . To facilitate the OTMR algorithm,
we firstly introduce following theorem that helps to construct
the infrastructure of our algorithm.
Theorem 2
Let ℜf (t) denote the total length of the MRf trajectory in its
assignment area at the current round tth. In order to collect
all sensed data from Nf sensor nodes within a threshold of
reporting time ξ0, the MRf has to move with speed v(t) after
collecting data at each CH position with the transmission rate
R. One is called as an efficient algorithm for data gathering
without loss of sensed data if only if:(

ℜf (t)

v(t)
+

γNf

R

)
≤ ξ0 (16)

Proof
In order to collect data from all sensor nodes inside the
assignment area of the MRf without loss of data, the reporting
time at every cycle time (ξ(t)) has to be lower or equal to the
threshold of reporting time ξ0.

ξ(t) = ttravelling(t) + tcollecting(t) ≤ ξ0 (17)

The total traveling time of the MRf at the current round tth
is calculated in Equation (18)

ttravelling(t) =
ℜf (t)

v(t)
(18)

And the total time, which the MRf spends for collecting data
from Nf sensor nodes, is given in (19).

tcollecting(t) =
γNf

R
(19)

By inserting (18), (19) into (17), the reporting time can be given
as in (20).

ξ(t) =
γNf

R
+

ℜf (t)

v(t)
. (20)
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Therefore, total spending time of the MRf in each operation
round is given as (

ℜf (t)

v(t)
+

γNf

R

)
≤ ξ0 .

The question here is how to determine the optimal trajectory
of the MR within its assigned area, where each MR can travel
with reasonable speed (v(t)) along the shortest possible path
to collect data, as defined in (16)? To answer this question,
we propose a heuristic solution to find the optimal trajectory
of the mobile robot by solving the vehicle routing problem.
The proposed solution is designed to satisfy the following
requirements:

• Minimizing the total length of the mobile robot’s trip.
• Each cluster head node has to be visited by a mobile robot

within a threshold of reporting time ξ0, which means that
no CH can be overflowed.

• Mobile robots are supposed to complete their individual
trajectories within a threshold of reporting time ξ0.

• In order to minimize the system cost, the trajectory of each
mobile robot is designed to be non-overlapping.

• There is also no overlap between two or more trajectories
of different mobile robots.

We consider that, all cluster head nodes, to be visited by a
mobile robot, are distributed over a region of circular sector.
The sector vertex will be on the NCC, which serves as both
the starting and ending point of the mobile robots trajectory.
It can be seen in Fig. 4, in order to find the trajectory of the
MR, the circular sector is divided into three parts including two
right triangles (∆C1C2C3, ∆C1C3C4) and a circular segment
∆C4C5C2. As indicated in [66], when connecting all visiting
points (CHs’ positions) in each part, we will get three open
paths. Fig. 4b illustrates the open path of each path. The
trajectory of the MR will be found when we join these paths
together. The trajectory of the MR is shown in Fig. 4c.

The total path length of the MRs depends not only on the
sector angle φf , f ∈ (1, ..., F ), number of CHs need to visit,
total number of sensor nodes within the assignment area of
the MRf , but also on the geographic positions of the CHs.
Therefore, according to the threshold ξ0, the sector angle φf

will be adjusted in order each cluster head node in the circular
sector will be visited within the reporting time.
Choosing the sector angle for each MR
As can be seen in Fig. 4a, if the average radius of circular
sector is lf = 0.5 (lf1 + lf2), the acreage of the circular sector
is

Hf =
φf l

2
f

2
(21)

The number of nodes inside the assignment area of the MRf

is:

Nf = ρHf (22)

Inserting (21), (22) into (16), we have:

φf ≤ 2R

γρl2f

(
ξ0 −

ℜf (t)

v(t)

)
(23)

Considering the Assignment Area of The MRf , we have

min {ℜf (t)} ≥ 2lf (24)

Therefore, the equation (23) can be rewritten as

φf ≤ 2R

γρ2f

(
ξ0 −

2lf
v(t)

)
(25)

By (25), we can choose the suitable sector angle (φf ) of the
MRf assignment area, which guarantees that all sensing data
can be transmitted in time to the BS.
Optimizing the Trajectory of the MRf Inside Its Assign-
ment Area
Let G = (V,E) be a connected digraph including a set of M+1
visiting points (M CHs and one NCC), each of which can be
visited only within a threshold visiting time ξ0, and E is the
set of edges.
Parameters:
• xijf ∈ {0, 1}, 0 if there is no arc from node i to

node j, and 1 otherwise i ̸= j; i, j ∈ {0, 1, ..., N}; f ∈
{0, 1, ..., F};

• N total number of nodes;
• M total number of clusters;
• F total number of utilized mobile robots;
• ξij denotes a cost (execution time for data propagation and

the MRs traveling from node i to node j).
Objective:

min


N∑
i=0

N∑
j=0

F∑
i ̸=j,f=1

ξijxijf

 (26)

Subject to:

F∑
f=1

N∑
j=0

xij ≤ F, for i = 0 (27)

N∑
i=1

xijk = 1 for j = 0 and f ∈ {1, ..., F} (28)

N∑
j=1

xijk = 1 for i = 0 and f ∈ {1, ..., F} (29)

F∑
f=1

N∑
j=0,j ̸=i

xijk = 1 for i ∈ {1, ..., N} (30)

F∑
f=1

N∑
i=0,i ̸=j

xijk = 1 for j ∈ {1, ..., N} (31)
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N∑
i=0

N∑
j=0,i ̸=j

ξijxijk ≤ ξ0 for f ∈ {1, ..., F} (32)

Constraint (27) enforces the number of utilized mobile robots
is always less or equal to F , whose trajectories start and end
from the NCC (i, j = 0). Constraint (28) implies that each
MR has only one outgoing arc from the NCC. Constraint
(29) ensures that there is only one entering arc into the NCC.
Constraints (30) and (31) guarantee that one CH is only visited
by a MR. Finally, constraint (31) guarantees that total time of
a MR for traveling and collecting data is always smaller than
the threshold reporting time. The optimal trajectory of the MR
is shown in Fig. 5.

The process of optimizing the trajectory of the mobile robot
is given in algorithm 1 and Fig. 3.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, the simulation results of our algorithm is
performed in MATLAB environment.

A. Simulation Environment

In our simulations, the setting parameters are given in Table
I. One sensor node can neither transmit, nor sense data, is called
dead node if its residual energy is lower than θ = 0.0001(J).

TABLE I. THE SETTINGS OF SIMULATION PARAMETERS

Parameter Value
Node deployment & Random Uniform

initial energy (E0) 0.1 (J)
Energy for data aggregation (EDA) 5 (nJ/bit)

Eelec 50 (nJ/bit)
εfs 10 (pJ/bit/m2)
εmp 0.0013 (pJ/bit/m4)

Maximum speed (vmax) 25 (m/s)
Packet length (m) 4000 (bits)

Transmission range (r) 30 (m)
Data transmission rate (R) 250 (Kb/s)

Reporting time (ξ0) 60 (s)

B. Numerical results and discussion

a) Performance Analysis of the Mobile Robot Trajectory:
In this section, a series of numerical experiments were carried
out in order to measure the execution time (ξf , f ∈ {1, ..., F}),
and the length ℜf (t), f ∈ {1, ..., F} of each utilized mobile
robot trajectory. Figure 5 shows the optimal trajectory of the
MR with the smallest spending time. Table II summaries the
results from two scenario experiments with different network
size (200x200, 150x150) and the number of node deployment
(N= 250, 200). The simulation results show that all the case
experimental results, each mobile robot travels in the shortest
path to collect all sensed data in its assignment area within the
the reporting time. In the first scenario, 250 sensor nodes are
deployed uniformly over 200m x 200 m area.

Algorithm 1 The OTMR algorithm

1: Input: Parameters of model: Number of sensor nodes N ,
Network size l1xl2; The velocity of the mobile robot (v);
Initial energy E0; Threshold of reporting time ξ0; γ-bit data
packet; Node density (ρ); Transmission range R;

2: Output:
⋆ The number of optimal subareas M ;
⋆ The number of utilized mobile robots F ;
⋆ Assignment area to collect data for each MR φf ;
⋆ The optimal trajectory of each MR at each operation

round ℜf (t).

3: Estimate the number of cluster (M ) for energy efficient
deployment scheme in WSNs based on equation (6);

4: Estimate the assignment area (25) for each MR and then
calculating the number of MRs need to be utilized for
data collection. Steps 3 and 4 will be done by the NCC.
After these steps, the NCC will flood this information to all
sensor nodes in the sensing field. By this way, every sensor
node know its cluster and the MR’s assignment area, where
it belongs to. Then every sensor node in each cluster will
elect their cluster head node. The locations of these cluster
head nodes will be sent back to the NCC to find the optimal
trajectories of F mobile robots.

5: Finding the optimal trajectory of each MR in its assigned
area can now be considered as a vehicle routing problem
(VRP). It notices that, the NCC knows all the CH locations
in each MR assignment area.

6: Begin the trajectory of the MRf starting from the NCC
(the depot) ℜi=0

f .

7: Among all unvisited CHs inside the assignment area of
MRf , select the farthest CH from the NCC and add into
the current trajectory of the MRf : ℜi=1

f .

8: If all CHs are visited, then goto step 11. else: Go to step
10 if the reporting time ξ(t) of the MRf involved in the
current trajectory ℜi

f is exceeded. Find the best candidate
node among unvisited CHs, which the MRf is expected to
visit with the smallest spending time.

9: Pick the CH with the smallest spending time and add it into
the current trajectory ℜi=i+1

f . Update the reporting time
ξ(t) of the MRf . Go to step 8

10: Start new trajectory of the new mobile robot f = f + 1;
goto step 7.

11: The algorithm will be terminated with F optimal trajec-
tories of the mobile robots.
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Fig. 3. The Flowchart of the Proposed Algorithm

(a) The division of the circular sector (b) The open path of each part (c) The trajectory of the MR

Fig. 4. The MR Trajectory by Solving the Geometric Traveling Salesman Problem

It is observed that four mobile robots are required to simul-
taneously collect data from the nodes in sensing field. Each
robot moves at a speed of 8 m/s within the individual travel
time ranging from 54.2 seconds to 59.5 seconds. In the second
scenario, 200 sensor nodes are deployed within a 150 Œ 150 m
sensing area. It shows that the network density is significantly
lower compared to the first case. As shown in the Table II, to
ensure complete data collection from all nodes, three mobile
robots are required, each traveling at a speed of 7 m/s. These
results suggest an effective distribution of the data collection
workload and indicate that the proposed approach is able to

adjust automatically the number of deployed mobile robots in
a flexible manner, while consistently ensuring that all sensed
data are collected completely, reliably, and within the allowable
time constraints.

We further conducted experiments by varying the network
density to evaluate its impact on network lifetime and to
determine the number of utilized mobile robots to ensure all
the sensed data is collection within a specified time. The
simulation results presented in Table III indicate that increasing
the transmission radius of each sensor node leads to a significant
reduction in the overall network lifetime.
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TABLE II. ESTIMATES THE LENGTH TRAJECTORY AND THE EXECUTION TIME OF THE MR

No. Network size
N ξ0 F v (m/s) Length of MR trajectory (m) Execution time ξ (s)

l1 (m) l2 (m) ℜ1(t) ℜ2(t) ℜ3(t) ℜ4(t) ξ1(t) ξ2(t) ξ3(t) ξ4(t)
1 200.0 200.0 250.0 60.0 4.0 8.0 397.5 391.8 395.1 399.3 58.1 54.2 56.4 59.3
2 200.0 200.0 250.0 60.0 4.0 8.0 395.4 399.3 396.3 397.5 56.6 59.3 57.3 58.1
3 200.0 200.0 250.0 60.0 4.0 8.0 391.5 394.5 399.0 398.1 54.0 56.0 59.1 58.5
4 200.0 200.0 250.0 60.0 4.0 8.0 389.4 395.1 391.2 394.5 52.6 56.4 53.8 56.0
5 200.0 200.0 250.0 60.0 4.0 8.0 399.3 391.5 399.6 396.0 59.3 54.0 59.5 57.1
6 200.0 200.0 250.0 60.0 4.0 8.0 399.6 399.3 398.1 399.6 59.5 59.3 58.5 59.5
7 200.0 200.0 250.0 60.0 4.0 8.0 391.8 397.2 396.9 394.8 54.2 57.9 57.7 56.2
8 200.0 200.0 250.0 60.0 4.0 8.0 395.1 399.0 394.2 395.1 56.4 59.1 55.8 56.4
9 200.0 200.0 250.0 60.0 4.0 8.0 396.6 392.4 397.5 397.8 57.5 54.6 58.1 58.3

10 200.0 200.0 250.0 60.0 4.0 8.0 394.8 393.6 395.4 398.7 56.2 55.4 56.6 58.9
11 150.0 150.0 200.0 60.0 3.0 7.0 348.1 349.3 349.2 0.0 49.5 50.8 50.7 0.0
12 150.0 150.0 200.0 60.0 3.0 7.0 349.6 348.4 347.6 0.0 51.1 49.8 49.0 0.0
13 150.0 150.0 200.0 60.0 3.0 7.0 350.0 348.2 348.8 0.0 51.5 49.6 50.2 0.0
14 150.0 150.0 200.0 60.0 3.0 7.0 347.9 349.7 349.7 0.0 49.3 51.2 51.2 0.0
15 150.0 150.0 200.0 60.0 3.0 7.0 348.6 347.9 347.2 0.0 50.0 49.3 48.6 0.0
16 150.0 150.0 200.0 60.0 3.0 7.0 348.2 348.8 348.7 0.0 49.6 50.2 50.1 0.0
17 150.0 150.0 200.0 60.0 3.0 7.0 349.3 349.1 348.1 0.0 50.8 50.6 49.5 0.0
18 150.0 150.0 200.0 60.0 3.0 7.0 348.6 347.6 349.3 0.0 50.0 49.0 50.8 0.0
19 150.0 150.0 200.0 60.0 3.0 7.0 348.3 348.9 349.6 0.0 49.7 50.3 51.1 0.0
20 150.0 150.0 200.0 60.0 3.0 7.0 349.7 349.9 348.4 0.0 51.2 51.4 49.8 0.0

Fig. 5. The Optimal Trajectory of the Mr by Solving the Geometric Traveling Salesman
Problem

This phenomenon is clearly supported by Equation (2), which
demonstrates that the energy consumption for wireless com-
munication increases exponentially with transmission range.
Conversely, when the transmission range is reduced, more
mobile robots are required to ensure complete data collection,
thereby increasing operational costs. This also introduces ad-
ditional complexity in robot coordination and data aggregation
from multiple sources. These findings highlight a fundamen-
tal trade-off between communication energy consumption and
mobility-related costs. Larger transmission ranges reduce the
need for robot mobility but accelerate energy depletion at the
sensor nodes, thereby shortening network lifetime. In contrast,
minimizing node-level communication energy by using shorter
transmission ranges requires a greater number of mobile robots,

thereby increasing system-level costs and control complexity.
Therefore, an optimal configuration must balance transmission
power and robot deployment to ensure both energy efficiency
and scalability in practical WSN applications.

TABLE III. NETWORK LIFETIME UNDER VARYING THE NETWORK SIZES AND THE
NETWORK DENSITIES

No. Network size N r (m) F Network lifetimel1(m) l2(m)
1

200 200 250

10.0 6.0 3417.0
2 15.0 5.0 3364.0
3 20.0 5.0 3311.0
4 25.0 4.0 3258.0
5 30.0 4.0 3125.0
6 35.0 4.0 3056.0
7 40.0 3.0 2542.0
8 45.0 3.0 2318.0
9 50.0 2.0 1872.0

10 55.0 2.0 1561.0
11

150 150 200

10.0 4.0 3381.0
12 15.0 4.0 3325.0
13 20.0 4.0 3247.0
14 25.0 3.0 3115.0
15 30.0 3.0 3057.0
16 35.0 3.0 2465.0
17 40.0 2.0 2084.0
18 45.0 2.0 1912.0
19 50.0 2.0 1815.0
20 55.0 2.0 1673.0

b) Performance Analysis of the Network Lifetime: Pro-
longing the network lifetime of WSNs is an important issue
in many studies [1], [67]–[79]. It is also proved that employ-
ing mobile robots is among the most effective strategies for
enhancing network longevity to improve the network lifetime
[1]. In this subsection, the performance of our proposed OTMR
algorithm is evaluated and compared with three similar meth-
ods. The first traditional method is utilizing mobile sinks nodes
which moving along the network boundary for data collection

Duyen Thi Nguyen, Enhancing Network Lifetime and Data Integrity in WSNs via Optimized Mobile Robot Trajectories



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2268

[22], [80].
The second algorithm is OMS1 [1], a single mobile sink

moving on the shortest path for data collection. The final
algorithm is OMS2 [1], which sends a number of mobile sinks
to their network field for data collection. The simulation esults
of network lifetime with varying numbers of sensor nodes
from 10 to 250 are presented in Fig. 6. From Fig. 6, one can
infer that our proposed OTMR algorithm outperforms the other
two algorithms in [22] and OMS1 algorithm in [1]. In [22],
the mobile sinks move along the network boundary to gather
monitored data in different location areas. In this case, some
sensor nodes were located in the center of the field, which were
far from the parking positions of mobile sinks, may consume
more energy than other sensor nodes. In OMS1 algorithm [1],
the cluster head nodes have to change their transmission range,
which may increase the energy consumption exponentially.
These factors lead to an imbalanced energy consumption among
nodes in the network.

Fig. 6. The comparison of the network lifetime

Therefore, achieving balanced energy consumption among
sensor nodes [81]–[83] in the network after each operational
round is a critical factor, which affects the network lifetime.
Given higher balance energy consumption among sensor nodes
in the network, our proposed OTMR algorithm and OMS2
algorithm in [2] achieve higher network lifetime than OMS1
algorithm and the algorithm proposed in [22]. Based on the
results obtained from 350 experimental trials, the maximum
network lifetime achieved using the OMS2 algorithm was
2,964 rounds. In contrast, our proposed algorithm consistently
outperformed OMS2 under identical experimental conditions,
achieving a higher average maximum network lifetime of
3,125 rounds. This represents an improvement of approximately
5.4%. To assess the statistical significance of this difference,
we performed a two-sample t-test, which confirmed that the
observed improvement is statistically significant at the 95%
confidence level (p < 0.05). These findings suggest that our
algorithm not only extends network longevity but also maintains
consistent performance, underscoring its practical advantage
in real-world sensor network deployments. It means that our
proposed algorithm can improve the network lifetime by up to

5.4% compared to the OMS2 algorithm. Based on these numer-
ical results, our proposed method outperforms the traditional
methods and can be applied in any application that requires
the timely transmission and reception of monitored data at the
lowest cost.

Our proposed approach for sensed data collection in the
sensing field involves interdependent steps, including estimating
the number of clusters (M ), assigning a great number of mobile
robots to their assigned subregions, and solving the Vehicle
Routing Problem (VRP) to determine optimal trajectories. The
clustering phase is based on geometric partitioning, which has
linear complexity O(N) with respect to the number of sensor
nodes N . Unfortunately, the optimal trajectory-finding process
is based on the VRP, which is NP-hard. To address this, we
use a heuristic approach that reduces the per-robot complexity
to approximately O(K), where (K) is the number of cluster
heads in the sensing field. This ensures practical feasibility
for medium-scale networks, while further optimization may be
needed for large-scale or dynamic scenarios.

However, our achieve results in this study are based on
several assumptions regarding the structure of WSN, as given
in Section II. First, it is assumed that N sensor nodes in the
network are uniformly distributed in the sensing field. However,
the density of the WSNs may vary depending on the criticality
of the sensed data in each monitoring area. Second, the utilized
mobile robots are assumed can move freely in the sensing
field without energy constraints. Specifically, this study assumes
that the residual energy of each mobile robot is continuously
monitored. If its residual energy is lower than a predefined
threshold (the remaining energy is insufficient to complete its
next assigned task), these mobile robots automatically return
to the NCC for recharging themselves. Nevertheless in practice
the energy consumption of mobile robots is highly dynamic
and cannot always be accurately predicted. Furthermore, the
energy storage capacity of the mobile robots is limited and
they may not be able to harvest sufficient renewable energy
in a timely manner to sustain its continuous operation. These
practical constraints should be carefully considered in the real
field conditions.

V. CONCLUSIONS

This paper presented a geometric solution to find optimal
trajectories of the mobile robots, enabling them to collect all
sensed data in sensing filed within a desired deadline with
the smallest energy consumption. The main advantage of the
proposed approach is that the trajectory of each mobile robot
is optimized based on solving the traveling salesman problem.
Another advantage of our proposed approach is that it can
estimate both the number of required mobile robots and their
respective trajectories which help to find an efficient data
gathering without loss of sensed data. Compared to traditional
multi-hop or cluster-based routing approaches, the use of mo-
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bile robots for data collection significantly enhances energy
efficiency by reducing long-range transmissions. Additionally,
mobile robots improve the network coverage, particularly in
agricultural applications. By reducing the collisions of data
packet through short-range communication, the utilized mobile
robot for data collection approach is also proven in improving
the data fidelity. The simulation results have clearly proven
the superiority of our proposed approach, which prolong the
network lifetime up to 5.4% than other traditional approaches.
We conclude from the proposed approach results that the bal-
ancing node energy consumption of the mobile data collection
approaches play an important role on the network lifetime
improvement.

This work, however, dose not consider the irregular topolo-
gies of the network or the security issues associated with data
transmission in WSNs based on mobility model. Additionally,
limited storage capacity at each sensor node and the computa-
tional complexity of path planning poses additional challenges
for our proposed approach. Therefore, one of our possible work
will focus on enhancing the security of data transmission in
WSNs by integrating secure data aggregation techniques into
the system architecture. Moreover, secure data collection will
be considered to prevent spoofing and replay attacks during data
collection. To overcome the limited storage capacity of sensor
nodes, some data collection techniques in WSNs, such as data
compression and filtering to eliminate redundant data, will be
implemented and reported in future publications.

ACKNOWLEDGMENT

The work reported here supported by the granted T2024 -
04 - 18 TD sponsored by the Vietnam National University of
Agriculture.

REFERENCES

[1] L. Nguyen and H. T. Nguyen, “Mobility based network lifetime in
wireless sensor networks: A review, Computer networks, vol. 174, 2020,
doi: 10.1016/j.comnet.2020.107236.

[2] H. T. Nguyen, L. Van Nguyen, and H. X. Le, “Efficient Approach
for Maximizing Lifespan in Wireless Sensor Networks by Using Mo-
bile Sinks, ETRI Journal, vol. 39, no. 3, pp. 353363, 2017, doi:
10.4218/etrij.17.0116.0629.

[3] H. Ayadi, A. Zouinkhi, T. Val, A. van den Bossche and M. N. Ab-
delkrim, “Network Lifetime Management in Wireless Sensor Networks,"
in IEEE Sensors Journal, vol. 18, no. 15, pp. 6438-6445, 2018, doi:
10.1109/JSEN.2018.2840830.

[4] I. J. Meem, S. Osman, K. M. H. Bashar, N. I. Tushar, and R. Khan,
“Semi Wireless Underwater Rescue Drone with Robotic Arm, Jour-
nal of Robotics and Control, vol. 3, no. 4, pp. 496504, 2022, doi:
10.18196/jrc.v3i4.14867.

[5] A. P. Atmaja, A. El Hakim, A. P. A. Wibowo, and L. A. Pratama,
“Communication Systems of Smart Agriculture Based on Wireless Sensor
Networks in IoT, Journal of Robotics and Control, vol. 2, no. 4, pp. 297–
301, 2021, doi: 10.18196/jrc.2495.

[6] M. Anisi, A. Abdullah and S. Razak, “Energy-Efficient Data Collection
in Wireless Sensor Networks," Wireless Sensor Network, vol. 3 no. 10,
2011, pp. 329-333. doi: 10.4236/wsn.2011.310036.

[7] D. Jain, P. K. Shukla, and S. Varma, “Energy efficient architecture for
mitigating the hot-spot problem in wireless sensor networks, Journal
of Ambient Intelligence and Humanized Computing, vol. 14, no. 8, pp.
1058710604, 2022, doi: 10.1007/s12652-022-03711-5.

[8] O. I. Khalaf, C. A. T. Romero, S. Hassan and M. T. Iqbal, “Mitigating
hotspot issues in heterogeneous wireless sensor networks, Journal of
Sensors, 2022, doi: 10.1155/2022/7909472.

[9] R. Elkamel, A. Messouadi, and A. Cherif, “Extending the lifetime of
wireless sensor networks through mitigating the hot spot problem, Journal
of Parallel and Distributed Computing, vol. 133, pp. 159-169, 2019, doi:
10.1016/j.jpdc.2019.06.007.

[10] D. Jain, P. K. Shukla, and S. Varma, “Energy ef- ficient architecture
for mitigating the hot-spot problem in wireless sensor networks, Journal
of Ambient Intelligence and Humanized Computing, vol. 14, no. 8, pp.
10587- 10604, 2023, doi: 10.1007/s12652-022-03711-5.

[11] K. Nirmaladevi and K. Prabha, “Augmented network stability and lifetime
of selforganization based clustering in MANET using group mobility,"
International Journal of System Assurance Engineering and Management,
pp. 113, 2022, doi: 10.1007/s13198-022-01714-1.

[12] Y. Yang, M. I. Fonoage, and M. Cardei, “Improving network lifetime with
mobile wireless sensor networks, Computer Communications, vol. 33, no.
4, pp. 409419, 2010, doi: 10.1016/j.comcom.2009.11.010.

[13] M. Elhoseny, X. Yuan, Z. Yu, C. Mao, H. K. El-Minir and A. M. Riad,
“Balancing Energy Consumption in Heterogeneous Wireless Sensor Net-
works Using Genetic Algorithm," in IEEE Communications Letters, vol.
19, no. 12, pp. 2194-2197, 2015, doi: 10.1109/LCOMM.2014.2381226.

[14] Z. Zhao, K. Xu, G. Hui and L. Hu, “An energy- efficient clustering routing
protocol for wireless sensor networks based on AGNES with balanced
energy consumption optimization, Sensors, vol. 18, no. 11, 2018, doi:
10.3390/s18113938.

[15] A. A. Jasim et al., “Energy-Efficient Wireless Sensor Network with
an Unequal Clustering Protocol Based on a Balanced Energy Method
(EEUCB), Sensors, vol. 21, no. 3, 2021, doi: 10.3390/s21030784.

[16] D. Wu, S. Geng, X. Cai, G. Zhang, and F. Xue, “A many-objective opti-
mization WSN energy balance model, KSII Transactions on Internet and
Information Systems, vol. 14, no. 2, 2020, doi: 10.3837/tiis.2020.02.003.

[17] B. Nazir and H. Hasbullah, “Mobile Sink based Routing Protocol (MSRP)
for Prolonging Network Lifetime in Clustered Wireless Sensor Network,"
2010 International Conference on Computer Applications and Industrial
Electronics, pp. 624-629, 2010, doi: 10.1109/ICCAIE.2010.5735010.

[18] F. Tashtarian, M. H. Y. Moghaddam and S. Effati, “Energy efficient
data gathering algorithm in hierarchical wireless sensor networks with
mobile sink," 2012 2nd International eConference on Computer and
Knowledge Engineering (ICCKE), pp. 232-237, 2012, doi: 10.1109/IC-
CKE.2012.6395384.

[19] V. Agarwal, S. Tapaswi, and P. Chanak, “A Survey on Path Planning
Techniques for Mobile Sink in IoT-Enabled Wireless Sensor Networks,
Wireless Personal Communications, vol. 119, no. 1, pp. 211238, 2021,
doi: 10.1007/s11277-021-08204-w.

[20] N. Temene, C. Sergiou, C. Georgiou, and V. Vassiliou, “A Survey on
Mobility in Wireless Sensor Networks, Ad Hoc Networks, vol. 125, 2022,
doi: 10.1016/j.adhoc.2021.102726.

[21] N. Kumar and D. Dash, “Flow based efficient data gathering in wireless
sensor network using path-constrained mobile sink, Journal of Ambient
Intelligence and Humanized Computing, vol. 11, no. 3, pp. 11631175,
2020, doi: 10.1007/s12652-019-01245-x.

[22] J. Wang et al., “An energy efficient distance-aware routing algorithm with
multiple mobile sinks for wireless sensor networks, Sensors, vol. 14, no.
8, 2014, doi: 10.3390/s140815163.

[23] W. Guo, C. Yan, and T. Lu, “Optimizing the lifetime of wireless
sensor networks via reinforcement-learning-based routing, International
Journal of Distributed Sensor Networks, vol. 15, no. 2, 2019, doi:
10.1177/1550147719833541.

[24] R. Yarinezhad, “Reducing delay and prolonging the lifetime of wireless
sensor network using efficient routing protocol based on mobile sink and
virtual infrastructure, Ad Hoc Networks, vol. 84, pp. 4255, 2019, doi:
10.1016/j.adhoc.2018.09.016.

[25] O. Tsilomitrou, A. Tzes and S. Manesis, “Mobile robot trajectory planning
for large volume data-muling from wireless sensor nodes," 2017 25th

Duyen Thi Nguyen, Enhancing Network Lifetime and Data Integrity in WSNs via Optimized Mobile Robot Trajectories



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2270

Mediterranean Conference on Control and Automation (MED), pp. 1005-
1010, 2017, doi: 10.1109/MED.2017.7984249.

[26] B. R. Al-Kaseem, Z. K. Taha, S. W. Abdulmajeed and H. S. Al-
Raweshidy, "Optimized Energy Efficient Path Planning Strategy in WSN
With Multiple Mobile Sinks," in IEEE Access, vol. 9, pp. 82833-82847,
2021, doi: 10.1109/ACCESS.2021.3087086.

[27] C. Zhu, S. Wu, G. Han, L. Shu and H. Wu, “A Tree-Cluster-Based Data-
Gathering Algorithm for Industrial WSNs With a Mobile Sink," in IEEE
Access, vol. 3, pp. 381-396, 2015, doi: 10.1109/ACCESS.2015.2424452.

[28] N. Temene, C. Sergiou, C. Georgiou, and V. Vassiliou, “A Survey on
Mobility in Wireless Sensor Networks, Ad Hoc Networks, vol. 125, 2022,
doi: 10.1016/j.adhoc.2021.102726.

[29] H. Durmu and E. O. Güne, “Integration of the Mobile Robot and
Internet of Things to Collect Data from the Agricultural Fields," 2019 8th
International Conference on Agro-Geoinformatics (Agro-Geoinformatics),
pp. 1-5, 2019, doi: 10.1109/Agro-Geoinformatics.2019.8820578.

[30] A. Gupta et al., “A Real-time Precision Agriculture Monitoring System
using Mobile Sink in WSNs," 2018 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), pp. 1-5,
2018, doi: 10.1109/ANTS.2018.8710048.

[31] R. Popli, I. Kansal, J. Verma, V. Khullar, R. Kumar, and A. Sharma,
“ROAD: Robotics-assisted onsite data collection and deep learning
enabled robotic vision system for identification of cracks on diverse
surfaces," Sustainability, vol. 15, no. 12, 2023, doi: 10.3390/su15129314.

[32] F. Luleci, A. AlGadi and F. N. Catbas, Multimodal data collection using
mobile robotics for rapid structural assessment, In Bridge Maintenance,
Safety, Management, Digitalization and Sustainability, CRC Press, pp.
742- 749, 2024.

[33] P. Kim et al., “UAV-assisted autonomous mobile robot navigation for asis
3D data collection and registration in cluttered environments, Automation
in Construction, vol. 106, 2019, doi: 10.1016/j.autcon.2019.102918.

[34] S. Yin, W. Ji, and L. Wang, “A machine learning based energy efficient
trajectory planning approach for industrial robots, Procedia CIRP, vol.
81, pp. 429434, 2019, doi: 10.1016/j.procir.2019.03.074.

[35] E. T. Baek and D. Y. Im, “ROS-based unmanned mobile robot plat-
form for agriculture, Applied Sciences, vol. 12, no. 9, 2022, doi:
10.3390/app12094335.

[36] W. Rahmaniar and A. E. Rakhmania, “Mobile robot path planning in
a trajectory with multiple obstacles using genetic algorithms, Journal
of Robotics and Control (JRC), vol. 3, no. 1, pp. 17, 2022, doi:
10.18196/jrc.v3i1.11024.
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