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Abstract—Achieving robust multimodal biometric 

identification requires advanced feature extraction strategies 

and effective integration of diverse data modalities. 

Conventional methods often encounter limitations such as 

computational complexity and degradation of critical 

information during feature transformation. Although deep 

learning models address feature extraction challenges, their 

heavy architectures hinder real-world deployment. Moreover, 

traditional fusion strategies, based mainly on simple 

concatenation, overlook critical intermodal correlations, 

leading to suboptimal recognition accuracy. In this study, we 

propose a lightweight Gabor Attention Network framework 

designed for efficient multimodal biometric recognition. Our 

approach utilizes learnable Gabor filters to capture detailed 

local and directional features with enhanced precision and 

reduced computational burden compared to standard 

convolutions. We further introduce a convolutional attention 

mechanism that adaptively refines intermediate feature 

representations, and a novel attention-driven fusion 

architecture that dynamically models and exploits intermodal 

dependencies. Extensive experiments on two multimodal 

datasets demonstrate that our model achieves superior 

performance compared to several state-of-the-art methods, 

attaining up to 99.49% accuracy and 0.35% Equal Error Rate, 

while maintaining high efficiency with only 10.6M parameters, 

0.85 GFLOPs, and 60 FPS inference speed. These results 

highlight the effectiveness of our biologically inspired and 

attention-enhanced design for achieving high-accuracy, low-

complexity multimodal biometric identification. 

Keywords—Gabor Attention Networks; Dynamic Attention 

Mechanism; Feature Fusion; Multimodal Biometrics; Biometric 

Recognition. 

I. INTRODUCTION 

The continuous evolution of information technology has 

significantly influenced personal identification mechanisms, 

making them critical components of contemporary security 

infrastructures [1]. Traditional identification approaches, 

such as passwords and physical tokens, inherently suffer from 

vulnerabilities including loss, theft, and easy compromise. 

Consequently, biometric recognition methods, which identify 

individuals based on unique physiological or behavioral 

characteristics, have attracted considerable interest due to 

their superior reliability and security. Prominent biometric 

methods include facial recognition, fingerprint scanning, 

finger-vein identification, palmprint verification, and iris 

recognition. Recently, extensive research efforts in unimodal 

biometric identification systems have demonstrated 

promising results, highlighting their remarkable effectiveness 

in various security-related scenarios [2]-[15]. Despite these 

advancements, unimodal biometric approaches have inherent 

limitations. Environmental noise can distort biometric 

images, reducing the signal-to-noise ratio (SNR) and 

degrading feature extraction accuracy. Variations in 

biometric traits due to aging or sensor inconsistencies further 

impair model generalization. Moreover, unimodal systems 

are particularly vulnerable to spoofing attacks, wherein 

artificial replicas of biometric traits (e.g., fake fingerprints, 

3D face masks) can significantly deceive recognition 

systems, with attack success rates reported as high as 70% in 

some benchmarks. These factors collectively lead to 

unreliable authentication outcomes in practical deployments. 

To overcome these challenges, researchers have proposed 

multimodal biometric systems that integrate multiple 

biometric modalities [16]-[19]. By leveraging 

complementary features across different biometric traits, 

multimodal systems aim to enhance recognition accuracy, 

robustness, and anti-spoofing resistance. Consequently, 

multimodal biometrics has emerged as an essential area of 

study, offering enhanced performance in identity verification, 

security monitoring, and other critical applications. Extensive 

research has explored combinations such as face-fingerprint, 

face-palmprint, and palmprint-iris fusion. Among these, 

finger-based modalities, including finger-vein, fingerprint, 

palmprint, and knuckle print, have garnered particular 

attention due to user convenience, stable acquisition, and 

multimodal complementarity. However, effectively 

integrating multimodal biometric features remains 

challenging. Traditional fusion strategies often rely on naive 

feature concatenation, which ignores semantic 

inconsistencies and fails to model intrinsic intermodal 

correlations, resulting in redundant feature spaces and 

degraded classification performance. Additionally, existing 

deep learning approaches frequently suffer from excessive 

computational complexity, making real-time deployment on 

resource-constrained systems difficult. Thus, despite its 

promising potential, the full advantages of multimodal 

biometrics have yet to be fully realized. 

Deep learning, particularly Convolutional Neural 

Networks (CNNs), has recently demonstrated extraordinary 

success across a wide array of applications, particularly in 

computer vision tasks such as image classification, object 

detection, and biometric identification. CNNs’ ability to 

automatically learn hierarchical features from raw data 

without extensive manual preprocessing has led to significant 

performance enhancements. Beyond traditional vision tasks, 

deep learning has also been effectively applied in diverse 

domains such as dentistry (e.g., image segmentation and 
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treatment planning), voice and deepfake detection, UAV path 

planning, epileptic seizure detection, sign language 

recognition, diabetes prediction, intrusion detection in IoT, 

river water level estimation, pediatric psychological 

evaluation through children’s drawings, and dengue disease 

prediction [20]-[40]. These broad applications underscore the 

adaptability and robustness of CNNs and other deep learning 

models in solving complex, real-world problems. 

Importantly, the success of deep learning in these varied 

fields further motivates its application in the multimodal 

biometrics domain, where accurate, efficient, and robust 

feature learning across heterogeneous modalities remains a 

significant challenge requiring more specialized architectural 

innovations. 

Based on this analysis, we propose a novel and 

lightweight Gabor attention framework specifically designed 

for multimodal biometric recognition. Unlike traditional 

convolutional methods, our approach utilizes learnable Gabor 

filters to accurately capture both local texture and directional 

edge features, thereby improving recognition precision while 

reducing computational cost. In addition, we integrate a 

convolutional attention mechanism to strengthen 

intermediate feature representations by adaptively 

emphasizing salient spatial and channel-wise information. 

Furthermore, we develop an advanced attention-driven fusion 

architecture capable of dynamically modeling intermodal 

correlations, enabling optimal synergy between distinct 

biometric modalities. Extensive evaluations performed on 

two publicly available multimodal datasets confirm that our 

proposed framework significantly outperforms conventional 

methods, achieving superior accuracy, lower Equal Error 

Rates (EER), and reduced model complexity, thereby 

offering a highly effective and efficient solution for practical 

multimodal biometric identification. 

The remainder of this paper is organized as follows. 

Section II reviews recent developments in multimodal 

biometric systems, highlighting relevant advances and 

existing challenges. Section III details the proposed 

lightweight attention-based feature fusion framework, 

including the Gabor layer, feature enhancement, and feature 

fusion mechanisms. Section IV presents the experimental 

setup, performance evaluation, and critical discussions. 

Finally, Section V concludes the paper and outlines future 

research directions. 

II. LITERATURE REVIEW 

Multimodal biometrics, combining two or more biometric 

traits (e.g., face, fingerprint, iris, voice), have attracted 

growing attention in the past five years due to their ability to 

address the shortcomings of unimodal systems [41]. By 

consolidating multiple sources of evidence, these approaches 

typically yield higher accuracy and stronger anti-spoofing 

resistance than any single modality [42]. An illustrative 

example is an Android-based authentication mechanism that 

integrates face and voice, which significantly reduced error 

rates on resource-constrained devices [43]. In other cases, 

researchers have combined different pairs of physiological 

and behavioral biometrics (e.g., heart signals, iris) to enhance 

robustness and combat noise [44]. Several works also 

underscore how kernel-based fusion or correlation methods 

can successfully align ear, face, and other traits to improve 

recognition performance [45]. Moreover, the design of novel 

architectures for multimodal authentication continues to 

evolve, leading to deeper exploration of convolutional 

strategies [46]. 

Recently, deep learning has emerged as the primary driver 

of multimodal biometric integration, automating the 

extraction of discriminative features for diverse traits [47]. 

One of the earliest deep learning-based multimodal 

prototypes fused face, iris, and finger vein data, achieving 

greater reliability than unimodal counterparts [41]. 

Subsequent efforts employed deep score-level fusion, such as 

combining face and palmprint classifiers to outperform older 

late-fusion approaches [48]. Alongside these achievements, 

comprehensive surveys emphasize that modern CNN- and 

DNN-based architectures can effectively handle the 

complexity of multi-biometric input data [49]. Furthermore, 

advanced systems have successfully incorporated voice and 

face traits in tandem, yielding higher matching accuracy for 

user authentication tasks [50]. 

In terms of fusion strategies, researchers have 

investigated feature-level, score-level, and decision-level 

integration [51]. Weighting the match scores from fingerprint 

and iris proved remarkably robust under fluctuating image 

quality, outperforming simpler rule-based combinations [52]. 

Similarly, some studies used correlation-based approaches to 

align face, iris, and fingerprint features in a unified space, 

while others combined parallel pipelines through SVM- or 

RF-based fusion for high reliability [53]. A classic example 

is Garg et al.’s method that performed a novel face-

fingerprint feature integration to handle noisy data [54]. 

Score-level strategies have likewise attracted attention for 

their simplicity in combining unimodal classifiers [55]. 

Beyond these, additional work has explored real-time iris 

recognition pipelines, highlighting the necessity of stable 

feature extraction methods for effective multimodal synergy 

[56]. Some researchers also have studied cross-spectral 

matching, bridging data from differing sensors (e.g., visible 

and near-infrared) [57]. 

Recently, attention mechanisms and transformers have 

become highly influential in multimodal biometrics, enabling 

adaptive weighting of each modality’s contribution [58]. For 

instance, a framework combining fingerprint images with 

heart signals leveraged a vision-transformer-based module 

that drastically improved detection of spoofing attacks [59]. 

Another study devised a dual-branch CNN with branch 

attention to emphasize the most salient aspects of each 

modality’s feature map. In a federated learning context, an 

attention-based fusion aggregator was introduced for IoT-

based biometric systems, demonstrating robust performance 

with a decentralized approach [60]. Building on these ideas, 

AuthFormer was proposed for elderly user authentication, 

dynamically adjusting the relative importance of each 

modality at inference time [61]. For security-critical 

scenarios, hashing-based methods can be layered onto 

attention-based fusion to safeguard stored templates [62]. 

Complementary investigations have examined advanced 

feature-level integrations, highlighting the value of synergy 

in bridging multiple biometric data streams [63]. Meanwhile, 

high-level reviews call for even broader information fusion 
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research to tackle emerging challenges in real-world 

deployments [64]. 

Moreover, an increasing number of works emphasize 

lightweight and IoT-friendly models that allow for on-device 

or edge-based deployment [65]-[68]. One representative 

system uses a mobile face-voice approach with carefully 

designed CNN blocks to limit the computational footprint 

[69]. Another focuses on finger multimodal fusion but 

employs depthwise separable convolutions to keep resource 

usage low [70]. Practical solutions also appear in federated 

learning setups, reducing the need to centralize potentially 

sensitive data. Additional efforts present narrower network 

topologies or specialized compression schemes to support 

high-speed processing while maintaining accuracy [71]. 

Some authors have also studied sensor-level concerns, 

outlining the challenge of inconsistent data quality in real-

world settings [72]. Current progress in contactless 

fingerprint recognition and iris analysis further indicates that 

efficient deep learning components can preserve speed and 

performance [73]. Despite significant advances, tackling 

noise, variability, and scalability remains an ongoing pursuit. 

Overall, recent years have seen transformative progress in 

multimodal biometrics, evolving from CNN-based feature 

extractors to attention-enabled transformers and lightweight 

architectures. These developments underscore how 

consolidating multiple biometric signals can enhance both 

accuracy and resilience, thereby overcoming fundamental 

hurdles of single-modality systems. Nonetheless, unresolved 

challenges persist in aligning heterogeneous data streams, 

improving interpretability, and maintaining user privacy as 

large-scale multimodal deployments become increasingly 

common. Addressing these dimensions will be crucial to 

further refining multimodal biometric technology in the years 

ahead. 

III. METHODOLOGY 

A. Overall Structure 

Our proposed model, as shown in Fig. 1, is a lightweight 

attention-based feature fusion framework specifically 

designed for multimodal biometric identification using 

finger-vein and palmprint images. It comprises four primary 

stages: Gabor-based feature extraction, attention-driven 

feature enhancement, attention-driven feature fusion, and a 

final classification step. By appropriately leveraging the 

complementary information provided by these two biometric 

modalities, the model achieves robust and accurate 

recognition results while preserving a low computational 

footprint. 

The network begins with two parallel branches, each 

dedicated to processing one of the modalities. For each 

branch, the input data first passes through a Gabor layer, 

which captures orientation- and frequency-sensitive features 

significant for identifying subtle edge and texture patterns. 

This layer is followed by a series of lightweight convolutional 

blocks involving operations like 3×3 convolutions, batch 

normalization, and ReLU activations that refine and expand 

the extracted features into more discriminative 

representations. Next, each modality-specific feature map 

proceeds to an attention mechanism for feature enhancement 

(AMFE). This component applies both channel-wise and 

spatial attention to adaptively emphasize the most relevant 

biometric cues within each feature map. By focusing on 

critical channels and spatial locations, the AMFE effectively 

diminishes noise and highlights essential information, 

ensuring that each modality retains its unique advantages 

before the fusion process. 

Once the feature maps have been enhanced, the network 

merges them using an attention mechanism for feature fusion, 

referred to as AMFF. This module addresses potential 

inconsistencies in semantic features by adaptively aligning 

and combining the modality-specific representations, 

consolidating complementary details from finger-vein and 

palmprint images. Through careful weighting of these 

multimodal features, the AMFF produces a cohesive 

representation with heightened discriminatory power. 

Finally, the fused feature map undergoes a classification step 

to finalize the identification or verification outcome. 

This streamlined approach ensures that the model remains 

computationally efficient while still capitalizing on the rich 

information present in both finger-vein and palmprint 

modalities. By integrating biologically inspired Gabor 

filtering, attention-enhanced feature extraction, and attention-

based fusion, this lightweight framework delivers robust 

multimodal biometric performance suitable for real-world 

applications. 

 
Fig. 1. Overview of the proposed lightweight attention-based feature fusion framework for multimodal biometric identification 
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B. Gabor Layer 

Motivated by recent successes in deploying Gabor filters 

for efficient training convergence and effective feature 

extraction, our multimodal biometric recognition backbone 

integrates a specially designed Gabor layer as its initial 

feature extraction stage. This choice is influenced by the 

strong ability of Gabor filters to highlight image textures and 

edges, properties analogous to the early stages of human 

visual perception. Incorporating such biologically inspired 

characteristics ensures a more natural and robust extraction 

of features from multimodal biometric data, thus promoting 

enhanced recognition performance. 

Specifically, the Gabor layer leverages a Gabor filter 

derived from a sinusoidal function modulated by a Gaussian 

envelope. This carefully designed mathematical construct 

fulfills key requirements, including differentiability, 

smoothness, and localized spatial-frequency characteristics. 

To mathematically represent the real part of the Gabor filter, 

the following formulation is used: 

ℎ(𝑢, 𝑣, 𝑓, 𝛼, 𝛽, 𝛾) = exp(−
𝑢′

2
+ 𝛾2𝑣′

2

2𝛽2
)cos(2𝜋𝑓𝑢′ + 𝛼) (1) 

with rotated coordinates defined as: 

𝑢′ = 𝑢𝑐𝑜𝑠(𝛷) + 𝑣𝑠𝑖𝑛(𝛷) (2) 

𝑣′ = −𝑢𝑠𝑖𝑛(𝛷) + 𝑣𝑐𝑜𝑠(𝛷) (3) 

Here, 𝑓 denotes the spatial frequency of the sinusoidal factor, 

controlling the granularity of features captured; 𝛽 represents 

the scale or standard deviation of the Gaussian envelope, 

defining the size of the receptive field; 𝛷 indicates the 

orientation angle, governing the directional sensitivity; 𝛼 

specifies the phase offset; and 𝛾 represents the spatial aspect 

ratio, determining the ellipticity of the Gabor kernel. The 

parameters 𝑓, 𝛼, 𝛽, 𝛷, and 𝛾 are all learnable during network 

training to ensure optimal adaptability to the input biometric 

data. To effectively initialize these parameters and facilitate 

training stability, frequency and orientation parameters are 

defined as follows: 

𝑓𝑚 =
𝜋

2
. 2−

(𝑚−1)
2 , 𝑚 ∈ [1,5] (4) 

𝛷𝑛 =
𝜋

8
(𝑛 − 1), 𝑛 ∈ [1,8] (5) 

The phase offset 𝛼 is initialized uniformly from a distribution 

𝑈[0, 𝜋), ensuring diverse initial feature extraction 

capabilities. 

 For an input biometric image 𝑋, the feature representation 

obtained by applying the Gabor layer for each output feature 

map 𝐹𝑖 is computed by convolving the input channels with 

their respective Gabor filters and aggregating the results: 

𝐹𝑖 = ∑𝑋𝑐 ∗ 𝐺𝑖𝑐
𝑐

 (6) 

where 𝑋𝑐 is the c-th input channel, the symbol ∗ denotes the 

convolution operation, and 𝐺𝑖𝑐 represents the learned Gabor 

convolution kernel weights corresponding to the c-th input 

channel and the i-th output feature channel. Each kernel 𝐺𝑖𝑐 

is defined as: 

𝐺𝑖𝑐(𝑢, 𝑣) = exp (−
𝑢′

2
+ 𝛾𝑖𝑐

2𝑣′
2

2(𝛽𝑖𝑐
2 + 𝜖)

) cos(2𝜋𝑓𝑖𝑐𝑢
′

+ 𝛼𝑖𝑐) .
1

2𝜋(𝛽𝑖𝑐
2 + 𝜖)

 

(7) 

where 𝜖 is a small positive constant added to prevent division 

by zero, ensuring numerical stability. This normalization 

term ensures scale invariance, allowing consistent extraction 

of features irrespective of input image resolutions and scales. 

Such normalization results in smoother gradient distributions, 

improving training convergence and network stability. 

 Overall, the integration of this flexible and learnable 

Gabor layer significantly enhances the backbone's ability to 

accurately and efficiently extract discriminative biometric 

features across multiple modalities, paving the way for 

improved multimodal biometric recognition accuracy and 

robustness. Although Gabor convolutions are initially heavier 

than simple convolutions, their compact kernels (7×7 or 

smaller) and sparse feature selection reduce downstream 

computational loads, improving the overall efficiency of the 

pipeline. 

C. Attention Mechanism for Feature Enhancement 

To further improve the network’s capability of selectively 

focusing on essential biometric features, we introduce a 

specialized attention mechanism for feature enhancement 

(AMFE), as shown in Fig. 2. This module strategically 

combines channel-wise and spatial attention maps to 

effectively highlight crucial regions and relevant channels in 

the biometric feature maps. By explicitly modeling 

interdependencies within and across feature channels and 

spatial dimensions, the proposed attention mechanism 

enables the network to adaptively prioritize informative 

features while suppressing irrelevant ones, significantly 

enhancing the accuracy of multimodal biometric 

identification. 

In particular, channel attention focuses on identifying and 

emphasizing critical feature channels, serving as a selector 

that dynamically prioritizes channels containing the most 

discriminative biometric information. Traditional approaches 

typically rely solely on average pooling to condense spatial 

information, potentially missing significant discriminative 

details. Conversely, our approach leverages a combined 

pooling strategy, simultaneously applying average pooling 

and max pooling operations independently across spatial 

dimensions. The motivation behind this dual pooling 

operation arises from the observation that average pooling 

efficiently captures general contextual information, whereas 

max pooling excels at isolating prominent and distinctive 

feature responses. These complementary spatial descriptors 

are then individually processed through a shared network 

consisting of 1×1 convolutional layers, followed by an 

element-wise summation, producing the refined channel 

attention map 𝑀𝑐ℎ. The channel attention map is computed as 

eq. (8).
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Fig. 2. Architecture of the attention mechanism for feature enhancement (AMFE), which incorporates both channel-wise and spatial attention modules to 

amplify the most discriminative biometric features from each modality 

𝑀𝑐ℎ = 𝜎(𝐶𝑜𝑛𝑣1×1(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝐶𝑜𝑛𝑣1×1(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (8) 

Here, 𝜎 represents the sigmoid activation function, 𝐶𝑜𝑛𝑣1×1 

denotes a convolutional layer with kernel size 1×1, and 𝐹 

indicates the input feature map. Dual pooling captures both 

global context (via average pooling) and prominent features 

(via max pooling), leading to a more comprehensive attention 

descriptor. Compared to single pooling, dual pooling 

introduces minor computational cost but improves 

robustness, particularly for heterogeneous biometric data. 

Additionally, to strengthen the spatial focus of the 

network, we introduce a spatial attention mechanism 

explicitly designed to capture significant spatial regions 

across various biometric modalities. Unlike channel 

attention, spatial attention targets local regions within feature 

maps, highlighting spatially relevant positions. We 

independently apply channel-wise average pooling and max 

pooling operations, concatenating these pooled features along 

the channel dimension to create a more informative 

descriptor. Subsequently, we utilize a multi-scale 

convolutional approach employing convolutional layers with 

kernel sizes of 3×3, 5×5, and 7×7 to robustly capture spatial 

information at multiple scales. The spatial attention map 𝑀𝑠𝑝 

is computed using the following formula: 

𝑀𝑠𝑝

= 𝜎(𝐶𝑜𝑛𝑣3×3[𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]
+ 𝐶𝑜𝑛𝑣5×5[𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]
+ 𝐶𝑜𝑛𝑣7×7[𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]) 

(9) 

Here, 𝐶𝑜𝑛𝑣3×3, 𝐶𝑜𝑛𝑣5×5, and 𝐶𝑜𝑛𝑣7×7 represent 

convolutional operations with different kernel sizes, and the 

brackets [. ; . ] indicate channel-wise concatenation. While 

multi-scale convolutions slightly increase FLOPs, they 

provide significantly stronger feature localization across 

different biometric scales, improving model generalization. 

All convolutions are lightweight (small number of channels), 

ensuring minimal overhead. 

Building upon these two distinct yet complementary 

attention maps, the attention mechanism further integrates 

channel and spatial attention to achieve optimal feature 

enhancement. The channel attention map initially emphasizes 

important biometric feature channels, while the subsequent 

spatial attention map precisely locates these significant 

features within the spatial domain. Through sequential 

combination, the proposed module effectively highlights 

essential biometric information while filtering out redundant 

or noisy features. Consequently, the fusion of channel and 

spatial attention maps generates a refined and enhanced 

feature representation 𝑀𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 , defined as follows: 

𝑀𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑀𝑐ℎ. 𝑀𝑠𝑝 . 𝐹 (10) 

In the above expression, . denotes element-wise 

multiplication, 𝑀𝑐ℎ is the channel attention map, 𝑀𝑠𝑝 is the 

spatial attention map, and 𝐹 is the original input feature map. 

 The AMFE block with specialized attention mechanisms 

significantly enhances multimodal biometric feature 

extraction by explicitly guiding the network to emphasize 

highly discriminative channels and spatial locations, thereby 

effectively improving both recognition accuracy and 

generalization capabilities. 

D. Attention Mechanism for Feature Fusion 

To effectively address the challenge of inconsistent 

semantic representations across multimodal biometric 

features, we propose a specialized attention mechanism 

explicitly designed for feature fusion (AMFF). This 

attention-based fusion module integrates diverse biometric 

modality features by adaptively aligning their semantic 

content, ensuring consistency and enhancing overall 

recognition accuracy. The structure of our fusion module, as 

illustrated in Fig. 3, comprises two distinct attention 

branches, each dedicated to the specific characteristics of its 

respective biometric modality. 
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For biometric modalities characterized by richer semantic 

content or superior quality (e.g., palm-print), we implement a 

global attention (GA) mechanism. This mechanism is 

particularly efficient in capturing comprehensive global 

context information within feature maps. The GA module 

first utilizes global average pooling to summarize the spatial 

dimensions, extracting a robust representation of the global 

feature context. Subsequently, these pooled representations 

are processed through a Multi-Layer Perceptron (MLP), 

effectively refining the global contextual details. The final 

global semantic vectors obtained through this process 

robustly preserve the comprehensive contextual information 

inherent to high-quality biometric modalities. 

Conversely, for biometric modalities typically subject to 

lower quality or significant noise (e.g., finger-vein), we 

employ a local attention (LA) mechanism. This localized 

attention approach excels in isolating and highlighting 

essential fine-grained biometric details that may otherwise be 

obscured by noise or artifacts. Specifically, the LA 

mechanism leverages global max pooling, which focuses 

explicitly on the most prominent spatial features, capturing 

distinct and discriminative local patterns. The pooled results 

are then refined through an MLP network, ensuring the 

effective preservation and enhancement of local 

discriminative features critical to biometric identification. 

Formally, let the enhanced features of two biometric 

modalities be represented as 𝐹𝐴 and 𝐹𝐵, respectively. These 

features are individually processed to derive modality-

specific attention vectors 𝐴 and 𝐵: 

𝐴 = 𝑀𝐿𝑃(𝐺𝐴𝑃(𝐹𝐴)) (11) 

𝐵 = 𝑀𝐿𝑃(𝐺𝑀𝑃(𝐹𝐵)) (12) 

where 𝐺𝐴𝑃 and 𝐺𝑀𝑃 denote global average pooling and 

global max pooling operations, respectively. The vectors 𝐴 

and 𝐵 capture essential modality-specific semantic 

characteristics, effectively resolving inconsistencies between 

the two modalities. 

 Subsequently, the modality-specific attention vectors 

undergo an element-wise interaction, producing a cross-

modality attention vector. This vector serves as a dynamic 

fusion weight, ensuring optimal integration of modality-

specific semantics: 

𝐹𝐴
′ = 𝜎(𝐴⊗ 𝐵)⊗ 𝐹𝐴 (13) 

𝐹𝐵
′ = 𝜎(𝐴⊗ 𝐵)⊗ 𝐹𝐵 (14) 

where 𝜎 represents the Sigmoid activation function, and ⊗ 

denotes element-wise multiplication. This procedure 

selectively amplifies semantic features with complementary 

information across modalities, enhancing the semantic 

consistency of the fused representation. 

 To achieve precise fusion, we further employ 

convolutional operations with a kernel size of 1×1 to combine 

these attention-enhanced features, followed by a Softmax 

activation function. This combination allows the network to 

adaptively segregate and integrate multimodal features, 

optimizing their representations for biometric identification. 

The fusion of modality-specific feature maps is formulated 

as: 

�̃�𝐴, �̃�𝐵
= 𝑆𝑝𝑙𝑖𝑡(𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑣1×1(𝐹𝐴

′), 𝐶𝑜𝑛𝑣1×1(𝐹𝐵
′ )))) (15) 

The final fused feature map 𝐹𝑓𝑢𝑠𝑒 leveraging complementary 

semantic strengths from both modalities is computed by 

integrating the original modality-enhanced features with 

attention-refined outputs: 

𝐹𝑓𝑢𝑠𝑒 = �̃�𝐴 ⊗𝐹𝐴
′ + �̃�𝐵 ⊗𝐹𝐵

′  (16) 

This dual-branch fusion dynamically adapts to modality 

characteristics, substantially improving semantic consistency 

and achieving better multimodal integration compared to 

simple concatenation or static fusion. By explicitly 

addressing the issue of semantic inconsistency through this 

adaptive attention-based fusion approach, our method 

significantly enhances the semantic alignment between 

multimodal biometric features, thereby substantially 

improving biometric identification accuracy and robustness. 

 
Fig. 3. Diagram of the attention mechanism for feature fusion (AMFF), showing modality-specific attention branches and their dynamic semantic alignment 

and integration process 
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IV. RESULTS AND DISCUSSIONS 

A. Datasets 

We evaluated our proposed model using one publicly 

available palmprint dataset (PALM [74]) and two open‐

access finger vein datasets (FV1 [75] and FV2 [76]). From 

these sources, we constructed two multimodal datasets, called 

PALM+FV1 and PALM+FV2, to investigate the 

effectiveness and robustness of our method under different 

scenarios. 

In the PALM database, 300 participants contributed 

images across two separate sessions. For each session, every 

individual provided 10 palmprint images, resulting in 600 

distinct classes, each containing 20 total samples and 

culminating in 12,000 images in total. We extracted the 

regions of interest (ROI) following the process described in 

[74], generating 200×100-pixel ROIs. The FV1 finger vein 

database includes samples from 156 individuals, each 

providing six images for both index and middle fingers, 

totaling 312 distinct fingers. After applying the extraction 

approach in [75], each ROI measured 81×333 pixels. 

Meanwhile, the FV2 finger vein database involves 123 

participants, each providing six images per session for four 

different fingers, yielding 492 distinct finger classes in total. 

Across two sessions, 5904 images were collected, with each 

ROI sized at 300×100 pixels. 

We combined the palmprint and finger vein data in two 

distinct ways. First, PALM+FV1 aligns the palmprints of 210 

classes from PALM with the corresponding 210 classes from 

FV1. Since FV1 supplies 12 finger vein images per finger 

across two sessions, we took the first six images from both 

PALM sessions to match this structure. Second, PALM+FV2 

pairs 492 classes from PALM with the 492 classes from FV2, 

which has 12 samples per class. We chose 12 images per class 

from both sessions of the PALM dataset to ensure 

consistency in class size and session alignment. These two 

new multimodal datasets, PALM+FV1 and PALM+FV2, 

provide a comprehensive basis for evaluating the 

performance of biometric recognition methods that fuse 

palmprint and finger vein information. By ensuring parallel 

class structures and session counts, we offer a robust 

framework for testing cross‐modal and cross‐session 

generalization in a single experimental setting. 

B. Experimental Setups 

All experiments were conducted on a workstation 

equipped with an Intel Core i7‐14700K CPU and an NVIDIA 

RTX 4080 GPU. Our implementation relied on PyTorch as 

the deep learning framework. We ran each experiment for a 

total of 100 epochs, using the AdamW optimizer to update 

network parameters. An initial learning rate of 0.0001 proved 

effective in balancing convergence speed and stability, and 

we applied a weight decay of 0.00001 to mitigate overfitting. 

We used a batch size of 32 for training and a batch size of 64 

for evaluation. During training, we randomly divided each 

dataset into training (70%), validation (10%), and test (20%) 

sets. To capture the natural variability of biometric data and 

improve generalization, we employed data augmentation 

strategies such as random horizontal flipping and random 

cropping on the palmprint images, as well as random rotation 

on the finger‐vein images. We used cross‐entropy loss as the 

primary objective function for all model variants. 

We followed a 5‐fold repetition strategy, reinitializing 

model parameters and data splits at each run. This repetition 

helped confirm that our performance metrics reflect 

consistent improvements rather than singular, luck‐based 

results. At inference time, our method computes class 

probabilities for each test sample, returning the most probable 

class as the final prediction. Throughout these experiments, 

we measured performance using accuracy and Equal Error 

Rate (EER). Unless explicitly noted, we report the average 

and standard deviation of these metrics over the 5‐fold trials. 

This combination of hardware capabilities, training 

protocols, and evaluation methods ensures a rigorous 

examination of the proposed model’s behavior under various 

conditions. 

C. Multimodal Identification Results 

In Fig. 4, the training accuracy curves for the proposed 

approach steadily decrease over the course of 100 epochs, 

reflecting stable convergence without significant fluctuations 

or abrupt spikes. Concurrently, the training accuracy rises 

consistently and plateaus at a high level, indicating that the 

network effectively learns discriminative representations for 

both palmprint and finger‐vein data. Notably, the validation 

curves exhibit a similar trend, suggesting minimal overfitting 

and a well‐generalized model. A closer look at the curves 

reveals that the Gabor layer and attention modules help 

maintain a relatively smooth training process compared to 

standard CNN‐based methods, with fewer oscillations in the 

loss. Overall, these observations underscore the effectiveness 

of the lightweight attention design and confirm that the 

training procedure progresses in a controlled and efficient 

manner. 

 
Fig. 4. Training and validation accuracy curves over 100 epochs for the 

proposed model 

Table I demonstrates the superior classification 

performance of our method compared to various benchmark 

techniques across both PALM+FV1 and PALM+FV2 

datasets. For PALM+FV1, our model achieves a remarkable 

98.73% accuracy and a minimal EER of 0.89%, surpassing 

other methods such as NLNet and Enhanced DenseNet by 

noticeable margins in both metrics. In particular, the 

inclusion of Gabor‐based feature extraction appears to 

capture essential edge and texture details that complement the 

more conventional convolutional representations. Attention‐

driven feature enhancement and fusion further amplify this 
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advantage by selectively focusing on critical channels and 

spatial regions, thereby mitigating the impact of noise and 

redundant cues. Similarly, on the PALM+FV2 dataset, our 

model attains a leading 99.49% accuracy with an EER of 

0.35%, setting a new benchmark and reflecting the 

approach’s robustness to variations in sample quality and 

texture patterns. The margin of improvement over other 

fusion‐based strategies, such as Att‐CNN and FAB‐AEF, 

emphasizes the importance of adapting attention mechanisms 

to both global and local details across multiple modalities. 

Moreover, the consistently low EER values indicate that the 

proposed model maintains stable performance even under 

stricter false acceptance or false rejection constraints. These 

comprehensive gains across two distinct multimodal sets 

suggest that the network architecture, with its attention‐

driven and Gabor‐oriented design, can capture nuanced 

biometric traits that remain elusive to standard CNNs. 

Overall, the results highlight the synergy of leveraging 

biologically inspired filters and attention‐based fusion to 

deliver both high accuracy and robust error‐tolerance for 

multimodal identification tasks. 

TABLE I.  COMPARISON OF BIOMETRIC IDENTIFICATION PERFORMANCE 

(ACCURACY AND EQUAL ERROR RATE) FOR VARIOUS BENCHMARK 

MODELS AND THE PROPOSED METHOD ACROSS PALM+FV1 AND 

PALM+FV2 DATASETS 

Dataset Model Accuracy EER 

PALM+FV1 

FPV [77] 92.16 3.42 

LC-CNN [78] 93.29 4.25 

NLNet [79] 96.45 1.88 

Enhanced DenseNet [80] 95.37 3.63 

Att-CNN [79] 91.55 5.61 

FAB-AEF [81] 91.19 5.68 

Our model 98.73 0.89 

PALM+FV2 

FPV [77] 97.69 0.76 

LC-CNN [78] 96.41 2.80 

NLNet [79] 98.64 0.84 

Enhanced DenseNet [80] 98.86 0.68 

Att-CNN [79] 95.42 3.10 

FAB-AEF [81] 95.19 3.15 

Our model 99.49 0.35 

 

Turning to model complexity in Table II, our proposed 

framework balances a relatively modest parameter count 

(10.6 million) and FLOPs (0.85 G) while sustaining a high 

inference speed of 60 FPS. Notably, this parameter count is 

lower than several other architectures, including Att‐CNN 

and FAB‐AEF, which exhibit substantially higher complexity 

yet lower throughput. The reduced FLOPs highlight the 

computational efficiency of combining Gabor filters with 

streamlined attention modules, avoiding the heavy overhead 

often associated with deep and wide CNN layers. Despite 

being lightweight, the network’s ability to process 60 frames 

per second suggests that it can handle real‐time applications, 

a crucial advantage in security and authentication scenarios 

where latency must be minimized. Although some alternative 

models, like NLNet and Enhanced DenseNet, also achieve 

respectable FLOPs and FPS, our design consistently offers 

strong trade‐offs between speed, memory usage, and 

accuracy. The Gabor‐based convolution units account for a 

significant portion of the efficiency gains by implicitly 

encoding orientation‐selective features that reduce the burden 

on subsequent layers. Additionally, the attention mechanisms 

are carefully tailored to apply only where necessary, thus 

avoiding substantial computational overhead. Collectively, 

these attributes demonstrate that the proposed architecture 

maintains high performance levels while remaining both 

resource‐friendly and well‐suited for deployment in real‐

world multimodal biometric systems. 

Despite the overall strong performance, several 

limitations warrant discussion. First, while our model 

effectively handles moderate noise and variations, 

performance degradation is observed under extreme lighting 

conditions, severe occlusions, or excessive image noise. Such 

cases, common in real-world biometric applications, pose 

challenges due to disrupted textural and directional feature 

integrity, which Gabor-based filters heavily rely on. Second, 

the two datasets used in this study differ slightly in terms of 

image resolution, acquisition devices, and quality variability. 

Although the model achieves strong cross-dataset results, 

these differences could potentially bias its generalization 

capability. Future work should evaluate GANet on more 

diverse datasets, particularly those exhibiting larger intra-

class variations or cross-sensor discrepancies. These 

limitations highlight the need for robustness enhancements 

under edge conditions. 

TABLE II.  MODEL COMPLEXITY ANALYSIS COMPARING PARAMETER 

COUNT, FLOPS, AND INFERENCE SPEED (FPS) FOR THE PROPOSED 

METHOD AND BASELINE ARCHITECTURES 

Model Parameters FLOPs FPS 

FPV [77] 21.6 M 2.0 G 18 

LC-CNN [78] 18.0 M 0.94 G 42 

NLNet [79] 15.4 M 0.8 G 67 

Enhanced DenseNet [80] 6.8 M 0.43 G 54 

Att-CNN [79] 26.4 M 12.6 G 15 

FAB-AEF [81] 71.0 M 9.4 G 12 

Our model 10.6 M 0.85 G 60 

 

D. Ablation Study 

In this section, we investigate the impact of each primary 

component within our framework through an ablation study. 

We remove or replace modules from the final model 

configuration, measuring the resultant performance on both 

the PALM+FV1 and PALM+FV2 multimodal datasets. 

Specifically, we analyze (i) the effect of omitting the Gabor 

layer for initial feature extraction, (ii) the influence of 

excluding the attention mechanism for feature enhancement 

(AMFE), and (iii) the contribution of discarding the attention 

mechanism for feature fusion (AMFF). A baseline CNN 

without any specialized Gabor or attention layers is also 

included for comparison. Table III summarizes these results, 

reporting accuracy and EER values over five experimental 

runs. 

TABLE III.  ABLATION STUDY RESULTS FOR PALM+FV1 AND 

PALM+FV2 

Method 
PALM+FV1 (Acc 

/ EER) 

PALM+FV2 (Acc 

/ EER) 

Baseline CNN 91.20 / 5.84 95.60 / 3.42 

+ Gabor layer only 94.50 / 3.98 97.40 / 1.70 

+ Gabor + AMFE 95.70 / 2.85 98.20 / 1.08 

+ Gabor + AMFF 96.40 / 2.15 98.70 / 0.94 

+ Gabor + AMFE + 

AMFF (Full model) 
98.73 / 0.89 99.49 / 0.35 
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First, the baseline CNN configuration shows the weakest 

performance across both datasets. By replacing its standard 

first convolutional block with the Gabor layer, accuracy 

improves notably, indicating that Gabor-based kernels 

capture valuable orientation and texture details early in the 

pipeline. Comparing the baseline to the "+Gabor layer only" 

variant, we observe an improvement of over 3% in accuracy 

for PALM+FV1 and over 1% for PALM+FV2, confirming 

the ability of Gabor filters to learn discriminative edge and 

ridge patterns that help distinguish subtle biometric features. 

Next, reintroducing the attention mechanism for feature 

enhancement (AMFE) while excluding the attention 

mechanism for fusion yields a further performance boost, 

underscoring the importance of selectively emphasizing 

salient channels and spatial regions within each modality-

specific branch. The model’s accuracy surpasses that of the 

"Gabor layer only" variant by 1–2% on both datasets, and the 

EER decreases more significantly on PALM+FV1, 

suggesting that channel and spatial attention jointly reduce 

errors related to noisy or low-contrast local features. 

Finally, adding back the attention mechanism for feature 

fusion (AMFF) to yield the complete model leads to the 

highest recognition accuracy and the lowest EER across 

PALM+FV1 and PALM+FV2. This outcome demonstrates 

that the global and local attentions within AMFF serve to 

reconcile the remaining discrepancies between modality‐

specific representations, maximizing the synergy of 

complementary palmprint and finger‐vein features. Notably, 

accuracy climbs to 98.73% for PALM+FV1 and 99.49% for 

PALM+FV2, matching or exceeding state‐of‐the‐art results 

in Table I and further highlighting that fully leveraging both 

inter‐ and intra‐modal attention produces the most robust and 

reliable multimodal feature embeddings. 

While the proposed framework shows excellent potential, 

its adaptability to other multimodal systems (e.g., face-iris, 

face-fingerprint) should be further validated. Comparative 

studies with alternative lightweight architectures (e.g., 

MobileNetV3, EfficientNet-Lite with customized fusion 

strategies) are planned for future work to explore broader 

applicability. Additionally, future improvements may 

include: (i) developing robust pre-processing techniques to 

mitigate extreme noise and occlusion; (ii) implementing 

dynamic parameter tuning for Gabor filters based on 

environmental conditions; and (iii) evaluating performance 

under cross-sensor and cross-session biometric settings. 

V. CONCLUSION 

In this paper, we introduced a lightweight, attention-

driven framework for multimodal biometric identification 

that systematically integrates palmprint and finger-vein data. 

Our design leverages a specialized Gabor filter layer to 

capture orientation-specific and directional edge features, 

complementing conventional convolutional extraction 

techniques. Furthermore, we integrated two tailored attention 

modules: the Attention Mechanism for Feature Enhancement 

(AMFE) to emphasize salient channels and spatial regions 

within each modality, and the Attention Mechanism for 

Feature Fusion (AMFF) to harmonize intermodal 

inconsistencies for robust and efficient feature fusion. 

Comprehensive evaluations on two publicly available 

multimodal biometric datasets demonstrated that our method 

achieves state-of-the-art performance, yielding notable gains 

in both recognition accuracy and error rates compared to 

conventional CNN-based fusion strategies. Additionally, the 

framework maintains a modest computational footprint, 

making it practical for real-time or resource-constrained 

deployments. 

While these results are promising, several limitations 

merit consideration. The model’s performance can degrade 

under extreme lighting variations, severe occlusions, or high 

noise levels, which are commonly encountered in real-world 

biometric applications. Moreover, although the framework 

demonstrates strong performance on palmprint and finger-

vein data, its adaptability to other biometric modalities (e.g., 

face, iris, gait) remains an open question requiring further 

validation. The potential trade-off between lightweight 

design and the richness of extracted features in highly 

complex or cross-domain biometric environments also 

warrants further exploration. 

Looking forward, several research directions remain. 

Future work will explore the model’s scalability to larger 

datasets and evaluate its resilience against adversarial attacks, 

a critical consideration for security-sensitive applications. 

Investigating the model’s performance in cross-sensor, cross-

session, and cross-spectral biometric settings is another 

important avenue. Furthermore, enhancing interpretability 

and developing privacy-preserving mechanisms for 

multimodal biometric systems will be prioritized to address 

emerging ethical and regulatory challenges. 

Overall, our findings highlight the effectiveness of 

combining biologically inspired feature extraction with 

targeted attention mechanisms in multimodal biometric 

recognition. The proposed framework offers a promising step 

toward bridging the gap between high discriminative 

performance and computational efficiency, while also 

opening pathways for further innovation in robust, adaptable, 

and secure multimodal biometric systems. 
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