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Abstract—Pond water quality is a pivotal factor that 

influences the productivity and health of biota in aquaculture 

systems. The monitoring and prediction of water quality 

parameters, including temperature, pH, and dissolved oxygen 

(DO) levels, are imperative for maintaining optimal 

environmental conditions. The objective of this research is to 

develop the Euclidean Distance algorithm as an optimization 

method in adaptive neuro-fuzzy inference system (ANFIS) 

modeling to enhance the accuracy of internet of things (IoT)-

based pond water quality prediction. Water quality parameter 

data is collected in real-time using IoT sensors connected to an 

ESP32 microcontroller and transmitted to a cloud storage 

platform for analysis. Subsequently, the data undergoes a series 

of processing steps, including min-max normalization and 

feature selection based on Euclidean distance. This process aims 

to generate a more representative and relevant subset of data 

for the subsequent model training process. The ANFIS model 

was trained using the optimized data and evaluated using MSE, 

MAD, MRSE and MAPE metrics. The training process 

involving four data sharing scenarios demonstrated a reduction 

in error when compared to the model that lacked optimization, 

specifically: The following proportions were determined: 50% 

versus 50% (0.11824 versus 0.15536), 70% versus 30% (0.18666 

versus 0.19454), 80% versus 20% (0.17843 versus 0.18833), and 

90% versus 10% (0.22477 versus 0.22859). The findings indicate 

that the incorporation of the Weighted Euclidean Distance 

algorithm within the IoT-based prediction system can markedly 

enhance the efficiency and precision of the ANFIS model. 

Keywords—ANFIS; Weighted Euclidean Distance; Water 

Quality Prediction; Aquaculture Monitoring; Data Optimization; 

IoT. 

I. INTRODUCTION 

Aquaculture plays a vital role in enhancing national 

fisheries productivity, particularly in shrimp farming [1]. The 

success of shrimp farming largely depends on the quality of 

pond water, which is influenced by several environmental 

parameters such as temperature, pH, and dissolved oxygen 

(DO) levels [2]. These parameters have been shown to 

significantly affect shrimp health and growth [3]. Therefore, 

effective water quality management is essential in 

aquaculture practices [4], [5]. However, farmers often face 

challenges in obtaining critical information about these 

parameters due to limited resources. These limitations can 

lead to suboptimal aquaculture outcomes and may even result 

in production failure. The integration of internet of things 

(IoT) technology in aquaculture presents innovative solutions 

by enabling real-time monitoring and data collection, thus 

reducing dependence on manual methods [6], [7]. An IoT 

system [8], [9], which includes sensors [10]-[12], 

communication modules, internet connectivity, and a user 

interface, enables accurate and efficient monitoring of water 

quality parameters. These sensors are used to measure 

temperature, pH, and dissolved oxygen (DO). The 

measurement results are displayed in real time, allowing for 

the optimization of pond conditions and supporting faster and 

more informed decision-making. 

The adaptive neuro-fuzzy inference system (ANFIS) has 

become a widely adopted modeling technique for predicting 

pond water quality, utilizing the analysis of relevant 

environmental parameters to generate accurate forecasts [13], 

[14]. Despite its advantages, ANFIS often faces challenges 

such as overfitting, which limits its ability to generalize to 

unseen data. To address this limitation, the present study 

proposes the implementation of a training data selection 

optimization algorithm based on the Euclidean distance 

metric. It is hypothesized that this approach will enhance the 

model’s predictive performance and generalization capability 

[15], [16]. The primary objective of this study is to integrate 

the Euclidean distance algorithm into IoT-based ANFIS 

modeling to improve the accuracy of pond water quality 

prediction. This approach is expected to support aquaculture 

practitioners in maintaining optimal pond conditions, thereby 

increasing productivity and promoting the sustainability of 

shrimp farming. This objective is consistent with previous 

research aimed at enhancing aquaculture efficiency through 

improvements in both IoT system performance and the 

predictive capabilities of ANFIS models. This section 

provides a comprehensive review of literature related to 

aquaculture, ANFIS, the Euclidean distance metric, and the 

internet of things (IoT). 

Satra et al. [17] Tiger shrimp farming constitutes a 

significant segment of Indonesia's fisheries industry, 

contributing substantially to the nation's foreign exchange 

earnings through the export of fishery products. Nevertheless, 

this sector continues to confront a range of challenges, 

particularly those associated with suboptimal yields. The 

success of tiger shrimp farming is contingent upon the water 

temperature in the pond, which is a primary factor in the 
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overall outcome. Temperatures that are unstable or outside 

the ideal range have been shown to inhibit shrimp growth and 

increase the risk of mortality. 

Woźniacka et al. [18] Inland freshwater and brackish 

water aquaculture plays a significant role in global food 

security. Nevertheless, its rapid growth can have deleterious 

effects on the environment [19]. Therefore, the future 

development of the aquaculture industry must be predicated 

on achieving a balance between the augmentation of food 

production and the sustainable utilization of natural resources 

[20]. The prospects for the future expansion of aquaculture 

are anticipated to be influenced by a variety of factors, 

including the availability and quality of natural resources 

[21], particularly freshwater, as well as concerns pertaining 

to contamination and salinity. 

Ouhssain et al. [22] the proposed adaptive network 

developed fuzzy inference system (ANFIS) is presented as a 

potential alternative to conventional methods due to its 

capacity to adapt and learn from data, thereby enhancing 

overall system performance. ANFIS possesses the capability 

to adapt to a range of operational conditions, facilitating the 

learning and optimization of its performance. This attribute 

renders it instrumental in enhancing the effectiveness of 

control systems [23]. The ANFIS model's capacity to adapt 

to variations in sensor data and perpetually enhance its 

performance renders it highly effective in elevating 

prediction accuracy and facilitating a more precise and 

responsive decision-making process [24]. 

Eaysin et al. [25] the ANFIS model demonstrates a high 

degree of predictive capability for response parameters, as 

evidenced by experimental validation that yields 

performance exceeding actual measurements. In comparison, 

the Brute Force algorithm is employed to determine the 

smallest combination required to attain the optimal parameter 

configuration. The Taguchi method is also employed to 

ascertain the most efficient set of process parameters. 

Iwata at al. [26] the distance between two points is 

determined through the application of the Euclidean metric. 

By repeatedly measuring the movement length between two 

points, the distance distribution about a given set can be 

determined. When two points are selected uniformly from the 

set, the distribution is influenced by the geometry of the set. 

This distribution has been utilized within the framework of 

shape analysis, playing a pivotal role in various practical 

techniques based on the Euclidean metric. 

Lahari et al. [27] the present study concentrates on the 

development of an electrochemical sensor that can be 

fabricated expeditiously. The sensor utilizes AuNPs on 

carbon filaments as working electrodes to detect Cd, Pb, Cu, 

and Hg ions in water. The findings of the study demonstrate 

the practical potential of this model, reflected by the 

satisfactory recovery rates in water samples from three 

different lakes. Notably, the model exhibited superior 

performance in the classification of metal ions, as evidenced 

by its high accuracy, precision, recall, and F1-score values. 

The primary contribution of this research is the 

enhancement of the precision of ANFIS clustering and 

prediction through the implementation of Euclidean Distance 

and data normalization to generate a more balanced and 

informative data representation. 

II. RESEARCH METHODOLOGY 

In the context of model training, data optimization refers 

to a set of techniques and methodologies used to prepare, 

modify, and structure data in a way that supports the model's 

learning process and improves its predictive accuracy [28]. 

The primary goal of this process is to enhance the quality of 

the data, streamline the training phase, and enable the model 

to more effectively identify and learn patterns. Specifically, 

in the training of models such as the adaptive neuro-fuzzy 

inference system (ANFIS) [29], [30], data optimization 

involves not only preprocessing the data before training but 

also optimizing how the data is presented to the model. This 

comprehensive approach ensures a more efficient learning 

process and contributes to the generation of more accurate 

prediction results [31]. 

A. Euclidean Distance Algorithm 

In the context of optimization processes, the Euclidean 

distance metric is commonly used in clustering techniques, 

such as the K-Means algorithm, to group data points based on 

their relative distances from one another [32]-[34]. Grouping 

similar data points allows the model to focus more effectively 

on identifying patterns within each cluster [35]-[39]. 

Moreover, Euclidean distance is a valuable metric for 

detecting outliers-data points that significantly deviate from 

the majority of values in the dataset [40]. Proper handling of 

these outliers, whether through removal or adjustment, can 

improve the predictive accuracy of the model. By 

incorporating Euclidean distance into the optimization 

process, the resulting dataset tends to exhibit more uniform 

characteristics, thereby enabling the model to learn more 

effectively and produce more accurate predictions. The 

formula used is as (1): 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|√∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1
 (1) 

B. Weighted Euclidwean Distance Algorithm 

Weighted Euclidean distance (WED) represents an 

enhancement of the traditional Euclidean distance metric by 

incorporating a weighted calculation of the distance between 

two data points [41], [42]. This improvement can offer 

greater analytical value, particularly in specific applications 

such as predicting pond water quality using ANFIS modeling. 

The core idea behind WED is to modify the standard 

Euclidean distance by assigning distinct weights to each 

dimension or feature during the distance computation. By 

doing so, WED enables more flexible and accurate analysis, 

especially when certain variables in the dataset carry different 

levels of importance. Essentially, weighted Euclidean 

Distance integrates variable weights to reflect their individual 

contributions to the overall distance measurement. being 

used. The following formula outlines the calculation of 

weighted Euclidean distance in (2). 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1779 

 

Muhammad Dahria, Development of Euclidean Distance Algorithm for ANFIS Optimization in IoT-based Pond Water Quality 

Prediction 

𝑊𝐸𝐷 = √∑ 𝑤𝑖. (𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (2) 

C. Min-Max Normalization 

Min-max normalization is a data scaling technique that 

transforms values into a specific range, typically between 0 

and 1 [43]. The process involves subtracting the minimum 

value of the dataset from each data point and then dividing 

the result by the data range, which is defined as the difference 

between the maximum and minimum values [44], [45]. By 

standardizing the scale of datasets with attributes that may 

vary significantly in range, min-max normalization ensures 

that all features are represented on a uniform scale [46]. This 

technique is especially important in modeling processes such 

as ANFIS, which are sensitive to differences in the  

scale of input data [47]. The formula employed for this 

process is as (3): 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3) 

D. ANFIS Structure 

The ANFIS structure is composed of five interconnected 

layers [48]-[57], each of which fulfills a distinct function in 

the modeling process, as shown in Fig. 1. 

 

Fig. 1. ANFIS Structure 

The neuro-fuzzy system comprises five layers with 

interconnected functions and characteristics. The ensuing 

section provides an exposition of these systems: 

● Layer 1: designated as the "fuzzyfication layer," is 

characterized by the following definition. Let O1,i denote 

the output of each node in layer 1. Each node i in this layer 

is an adaptive node with node function O1,i = μAi(x) for 

i = 1, 2; or O1,i = μBi(y) for i = 1, 2, where x is the input 

to node i and Ai is the linguistic label (small, large, etc.) 

corresponding to this node function. In certain cases, the 

bell-shaped membership function O1,i Bell-shaped 

membership function is defined as follows: where A1 and 

its membership degree are specific to a given x, 

adequately quantifying Ai. Among the most commonly 

used types of membership functions are bell-shaped and 

Gaussian functions. 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) =
1

1 +
𝑥 − 𝑐2𝑏

𝑎

 (4) 

The parameter b is generally positive, while c indicates 

the center of the curve. The Gaussian fit function is 

defined as (5): 

𝐴(𝑥) = 𝑒
(𝑥−𝑐)2

2𝑎2  (5) 

● Layer 2: This layer utilizes the t-norm (multiplication) 

operator to integrate the signals from Layer 1. The process 

entails the multiplication of all inputs, resulting in the 

production of an output. The formulation for this process 

is as (6): 

𝑂2,𝑖 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦) = 𝑊𝑖  (6) 

In this layer, each node represents the strength of a rule, 

and its output serves as a weight in the inference process. 

● Layer 3: The nodes in this layer normalize the weights 

produced by the previous product layer. The normalized 

output is calculated using the (7): 

𝑂3,𝑖 =
𝑊𝑖

𝑤1 + 𝑤2

 (7) 

● Layer 4: The nodes within this layer exhibit an adaptive 

nature, and the defuzzified output is computed using the 

(8): 

𝑂4,𝑖 = 𝑂3,𝑖(𝛼4,𝑖 = 𝑂3,𝑖(𝛼𝑖𝑥) + 𝛽𝑖𝑦 + 𝑌𝑖) (8) 

It is important to that αi, βi, and γi is imperative to 

delineate the linear parameters that are derived from the 

activation strength of the node i. 

● Layer 5: The total output layer is a component of the 

information processing system that functions by 

synthesizing the information transmitted from the fourth 

layer and returning the total output. This process is 

governed by a predetermined function that is 

implemented within the layer: 

𝑂5,𝑖 =
∑ 𝑤𝑖 𝑦𝑖

∑ 𝑤𝑖

 (9) 

E. Model Evaluation 

In the field of model evaluation, particularly within the 

framework of regression or prediction, variety of 

methodologies are utilized to evaluate the model's capacity to 

produce precise predictions. Commonly used evaluation 

metrics include Mean Absolute Deviation (MAD), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), 

and Mean Absolute Percentage Error (MAPE). The 

subsequent section will delineate the precise formulae for 

each of these metrics. 

𝑀𝐴𝐷 =
∑ |𝐴𝑡 − 𝐹𝑡|

𝑛
 (10) 

𝑀𝑆𝐸 =
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1

𝑛
 (11) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1

𝑛
 (12) 
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𝑀𝐴𝑃𝐸 =
∑

|𝐴𝑡 − 𝐹𝑡|
𝐴𝑡

𝑛
𝑡=1

𝑛
𝑥100% 

(13) 

In the development of predictive models, including 

ANFIS, the evaluation stage is of paramount importance. 

This stage is essential for testing the extent to which the 

model functions effectively. This stage involves the 

implementation of rigorous procedures to ascertain the 

efficacy of the model, both in terms of its performance on 

existing training data and its capacity to generate accurate 

results when confronted with novel data or data that has not 

been previously encountered by the model. 

F. Research Framework 

The stages in this research are meticulously arranged and 

implemented as a systematic guide for researchers, ensuring 

that the results achieved are congruent with the objectives 

that have been formulated, as shown in Fig. 2. These steps are 

meticulously designed to address and resolve the problems 

that are the focal point of the research. 

 

Fig. 2. Research framework 

G. Data Collecting 

The initial phase of this research entails the aggregation 

of pertinent, high-quality data from multiple sources. This 

study used 1,000 data, which after going through the selection 

process resulted in 100 data used as training data and test data 

on the ANFIS model in Table I. The data was obtained from 

the Marine and Fisheries Service of North Sumatra Province, 

Indonesia. This data encompasses historical data, 

experimental data, and data obtained from sensors. It is 

imperative to ascertain that the collected data encompasses 

the variables to be employed in the ANFIS model training. 

The ANFIS model is to be of a high caliber and representative 

of the conditions to be analyzed. Moreover, the ANFIS model 

will predict the water quality parameters that have been 

ascertained according to the stipulated requirements. 

TABLE I.  DATA COLLECTING 

No Temperature (C) pH DO (mg/L) Output 

1 27.80 7.70 4.60 4 

2 28.00 7.40 4.10 3 

3 28.30 7.40 4.70 4 

4 28.00 7.50 3.90 3 

5 28.00 7.40 3.80 3 

6 28.00 7.32 5.20 4 

7 28.00 7.00 4.15 3 

8 28.00 7.00 4.15 3 

9 28.15 6.95 4.52 4 

10 27.70 6.97 4.46 4 

… ….. ….. ….. … 

60 25.50 7.74 7.40 3 

61 31.00 6.80 6.50 4 

62 25.50 6.91 1.60 2 

63 24.70 7.00 5.80 3 

64 31.00 8.47 2.67 3 

65 25.00 7.00 2.30 2 

66 31.00 6.05 5.61 4 

… ….. ….. ….. … 

100 21.00 6.60 5.98 3 
 

H. ANFIS Implementation 

Fig. 3 shows the implementation of the ANFIS model in 

this study was carried out using MATLAB version R2024a 

with the Sugeno structure [58]-[62]. the Sugeno structure is 

known to have good nonlinear mapping capabilities in 

prediction systems. The model has been developed for the 

analysis and prediction of pond water quality parameters. The 

model utilizes three primary input variables: temperature pH. 

and dissolved oxygen (DO) levels [63], [64]. The selection of 

the ANFIS method with the Sugeno structure is predicated on 

its demonstrated efficacy in the management of complex 

systems characterized by elevated degrees of uncertainty. in 

addition to its capacity to exhibit adaptability in the face of 

variations in data patterns [65], [66]. This methodology 

enables the model to employ historical data for the purpose 

of learning. Thereby enhancing the precision of predictions.  

 

Fig. 3. ANFIS model structure 

III. RESULTS AND DISCUSSION 

The ANFIS training process is initiated with the input of 

pond water quality parameters. including temperature pH. 

and dissolved oxygen (DO) levels. as input data. into the 

system. These parameters then undergo a fuzzification stage. 

wherein each input value that remains in the numeric value is 
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converted into a collection value in a previously determined 

fuzzy set. The fuzzification process employs a membership 

function that is designed to evaluate the extent to which an 

input value belongs to a particular fuzzy set. 

The objective of determining the weight of each 

parameter in ANFIS data pre-processing with Weighted 

Euclidean Distance is to ensure that the contribution of each 

feature to training is proportional and informative. 

Parameters that exert a greater influence on the output are 

assigned higher weights, while those that are redundant or 

exhibit high variance are assigned lower weights. 

Consequently, the weights are indicative of the true 

contribution of each parameter, thereby enhancing the 

accuracy and representativeness of ANFIS training. 

A. Normalization of Euclidean Distance 

In the K-means clustering algorithm, Euclidean distance 

(ED) is used to measure the distance between each data point 

and the cluster centroid based on a specified metric. This 

calculation helps evaluate the similarity between the 

collected data and a predefined reference. Afterward, the data 

is sorted in ascending order and normalized to equalize the 

scale of different variables, ensuring fair and direct 

comparison. Normalization transforms all variables into a 

consistent range, such as 0 to 1 or -1 to 1, depending on the 

method applied, as shown in Table II. 

TABLE II.  NORMALIZATION EUCLIDEAN DISTANCE 

No Temperature pH DO Output 

1 0.5900 0.74215 0.4185 4 

2 0.6150 0.70852 0.4301 4 

3 0.6000 0.70852 0.3607 3 

4 0.6075 0.65807 0.4092 3 

5 0.6000 0.71973 0.3376 3 

6 0.6000 0.66368 0.3665 4 

7 0.6000 0.66368 0.3665 4 

8 0.5850 0.66031 0.4023 3 

9 0.5850 0.66031 0.4023 3 

10 0.5700 0.68610 0.3838 4 

11 0.6000 0.77578 0.3491 3 

12 0.6000 0.70852 0.3260 3 

13 0.6050 0.66368 0.4647 3 

14 0.6000 0.69955 0.4879 3 

15 0.6000 0.66368 0.4751 3 

16 0.6000 0.66368 0.4751 3 

17 0.6000 0.67489 0.4879 3 

18 0.6350 0.67040 0.4254 3 

19 0.6000 0.80942 0.4647 3 

20 0.6350 0.66031 0.4520 3 

21 0.6350 0.66031 0.4520 4 

22 0.6200 0.71300 0.3052 2 

23 0.5650 0.68610 0.3376 3 

24 0.6200 0.72085 0.5110 3 

25 0.5500 0.73094 0.4069 4 

26 0.6400 0.73094 0.4763 4 

27 0.6100 0.65247 0.4994 3 

28 0.5500 0.71973 0.3838 3 

29 0.6100 0.63453 0.3283 3 

30 0.6500 0.71973 0.3723 3 

B. Normalisasi of Weighted Eeuclidean Distance 

The calculation of data distance with weighted Euclidean 

distance (WED) entails the estimation of the distance 

between two points in a multidimensional space. with 

consideration given to the weights assigned to each 

dimension. These weights serve to reflect the relative 

importance of each dimension in the distance calculation. a 

process that is frequently executed based on statistical 

characteristics such as variance or standard deviation. 

Subsequent to this. the data is arranged in an ascending 

sequence. and then it undergoes normalization through the 

implementation of the Min-Max Normalization method. The 

application of this method ensures that the dataset is 

transformed into a new one. where all values have been 

successfully converted to the desired range. The outcome of 

this process is a dataset in which each element is now on a 

uniform scale. thereby facilitating further analysis and 

enhancing the utilization of machine learning algorithms that 

are sensitive to variations in scale between features. The 

normalized dataset is then prepared for the subsequent  

steps in the data analysis or processing process as shown in 

Table III. 

TABLE III.  NORMALIZATION WEIGHTED EUCLIDEAN DISTANCE 

No Temperature pH DO Output 

1 0.5900 0.74215 0.4185 4 

2 0.6000 0.70852 0.3607 3 

3 0.6150 0.70852 0.4301 4 

4 0.6000 0.71973 0.3376 3 

5 0.6000 0.66368 0.3665 4 

6 0.6000 0.66368 0.3665 4 

7 0.6075 0.65807 0.4092 3 

8 0.6000 0.70852 0.3260 3 

9 0.6000 0.69955 0.4879 3 

10 0.5850 0.66031 0.4023 3 

11 0.5850 0.66031 0.4023 3 

12 0.6000 0.77578 0.3491 3 

13 0.6050 0.66368 0.4647 3 

14 0.6000 0.66368 0.4751 3 

15 0.6000 0.66368 0.4751 3 

16 0.6000 0.67489 0.4879 3 

17 0.5700 0.68610 0.3838 4 

18 0.6200 0.71300 0.3052 2 

19 0.6200 0.72085 0.5110 3 

20 0.6000 0.80942 0.4647 3 

21 0.6100 0.65247 0.4994 3 

22 0.6350 0.67040 0.4254 3 

23 0.5850 0.66592 0.3029 4 

24 0.6000 0.65247 0.5110 3 

25 0.6000 0.65247 0.5110 3 

26 0.6100 0.63453 0.3283 3 

27 0.6250 0.68610 0.5087 4 

28 0.5650 0.68610 0.3376 3 

29 0.5750 0.71525 0.5225 3 

30 0.5800 0.71525 0.5341 4 

C. Model Training 

The training simulation employed in this study utilized 

the MATLAB R2024a software [67]. The ANFIS model 

training was conducted in two stages to identify the effect of 

data optimization on model performance and its accuracy 

level. In the first stage. the data underwent no additional 

optimization. and the distance between data points was 

calculated using only the Euclidean distance (ED) method. 

without considering special weighting for each parameter. In 

the second stage. the ANFIS model training used data that 

had undergone an optimization process using the weighted 

Euclidean distance (WED) method. Weighted Euclidean 

Distance-based optimization necessitates the weighting of 

each pond water quality parameter. including temperature. 

pH. and DO. The training dataset was partitioned into distinct 
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segments using various combinations of training and test 

data. ensuring variability in the utilization of both sets. The 

compositions employed included 50%:50%. 70%:30%. 

80%:20%. and 90%:10%. The ANFIS model training dataset. 

comprising a 70% and 30% composition of the 100 data sets. 

utilized a training dataset of 70 data sets. The results of the 

distance calculations employing the Euclidean distance (ED) 

metric are presented in Table IV. 

TABLE IV.  MODEL TRAINING DATASET (ED) 

No Temperature pH DO Output 

1 0.5900 0.21204 0.1237 4 

2 0.6150 0.20243 0.1271 4 

3 0.6000 0.20243 0.1066 3 

4 0.6075 0.18802 0.1209 4 

5 0.6000 0.20564 0.0998 3 

6 0.6000 0.18962 0.1083 3 

7 0.6000 0.18962 0.1083 3 

8 0.5850 0.18866 0.1189 4 

9 0.5850 0.18866 0.1189 4 

10 0.5700 0.19603 0.1134 3 

11 0.6350 0.18866 0.1336 4 

… …….. …….. …….. .. 

… …….. …….. …….. .. 

69 0.2500 0.17681 0.1708 3 

70 0.9400 0.19603 0.0348 2 
 

The ensuing findings. derived from the training of the 

ANFIS model. demonstrate that when the number of epochs 

is set to 100. the resulting error value is 0.19454. Fig. 4 shows 

the training result curve provides a visual representation of 

the model convergence process during iteration. wherein the 

error progressively diminishes until it attains the final value. 

 

Fig. 4. ED training yield curve 

The display of FIS test results functions as an indicator of 

the conformity between actual values and predicted results in 

Fig. 5. The closer the distance of the asterisk to the empty 

circle the superior the ANFIS model produced. 

The following dataset is comprised of the ANFIS model 

training set in Table V. which is composed of 70% and 30% 

of 100 data sets. as well as the results of calculations with 

WED. The shape of the ANFIS model training result curve 

after optimization with an error value of: 0.18666, as shown 

in Fig. 6. 

The display of FIS test results functions as an indicator of 

the conformity between actual values and predicted results. 

The closer the distance of the asterisk to the empty circle. the 

superior the ANFIS model produced, as shown in Fig. 7. 

 

Fig. 5. FIS Euclidean distance test results 

 

Fig. 6. WED training yield curve 

 

Fig. 7. FIS weighted Euclidean distance test results 
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TABLE V.  MODEL TRAINING DATASET (WED) 

No Temperature pH DO Output 

1 0.5900 0.2120 0.1237 4 

2 0.6000 0.2024 0.1066 3 

3 0.6150 0.2024 0.1271 4 

4 0.6000 0.2056 0.0998 3 

5 0.6000 0.2024 0.0963 3 

6 0.6000 0.1999 0.1442 4 

7 0.6000 0.1896 0.1083 3 

8 0.6000 0.1896 0.1083 3 

9 0.6075 0.1880 0.1209 4 

10 0.5850 0.1887 0.1189 4 

11 0.5650 0.1960 0.0998 3 

… …….. …….. …….. .. 

… …….. …….. …….. .. 

69 0.4350 0.2015 0.1804 3 

70 0.7500 0.1640 0.1756 4 

 

The subsequent section delineates the outcomes of the 

ANFIS model training. Encompassing the preliminary stages 

in addition to the post-optimization phase of the data. which 

was achieved through the implementation of two distinct 

methodologies: the Euclidean distance (ED) and weighted 

Euclidean distance (WED) algorithms, as shown in Table VI. 

Optimization is a process that is carried out with the objective 

of increasing prediction accuracy. This process occurs during 

the filtration and adjustment of data distribution stages prior 

to the training of a model.  

The evaluation of model performance is achieved through 

the implementation of training procedures that encompass a 

range of scenarios and data sets. Each scenario encompasses 

four training sessions. each comprising a distinct composition 

of training and test data. This approach was adopted to 

ascertain the extent to which data optimization affects 

prediction outcomes and the stability of the model under 

diverse conditions. Consequently. this study not only 

appraises the efficacy of the optimization method employed 

but also quantifies the reliability of the ANFIS model in 

generating more precise predictions. 

TABLE VI.  TRAINING RESULT ERROR VALUES 

Model Split Data Training Data Error Value 

ED 

50%:50% 50 dataset 0.15536 

70%:30% 70 dataset 0.19454 

80%:20% 80 dataset 0.18833 

90%:10% 90 dataset 0.22859 

WED 

50%:50% 50 dataset 0.11824 

70%:30% 70 dataset 0.18666 

80%:20% 80 dataset 0.17843 

90%:10% 90 dataset 0.22477 
 

The most substantial error reduction was observed in the 

50%: 50% composition. suggesting that WED optimization 

is more efficacious when the training and testing data are 

balanced. In general, WED optimization enhances model 

accuracy. though the extent of improvement diminishes in 

compositions with minimal testing data (e.g. 90%: 10%). The 

50%: 50% composition emerges as the optimal choice to 

ensure model performance. as evidenced by the error results 

depicted in the ensuing graph.  

The ensuing discussion will focus on a comparison of the 

results of the ANFIS model training. Both before and after 

optimization, shown in Table VII. The training was carried 

out using two different methods: the first method involved 

the use of only Euclidean distance (ED) to calculate data 

distance and the second method involved the use of weighted 

Euclidean distance (WED) to calculate data distance. The 

ensuing comparison illustrates the outcomes of the ANFIS 

model training. Both prior to and following the optimization 

stage, as shown in Fig. 8. 

TABLE VII.  DIFFERENCE IN TRAINING RESULT ERROR VALUES 

Split 

Data 

Number 

of 

training 

data 

Before 

optimization 

(ED Error) 

After 

optimization 

(WED 

Error) 

Difference 

in Error 

value 

50%:50% 
50 

dataset 
0.15536 0.11824 -0.03712 

70%:30% 
70 

dataset 
0.19454 0.18666 -0.00788 

80%:20% 
80 

dataset 
0.18833 0.17843 -0.00990 

90%:10% 
90 

dataset 
0.22859 0.22477 -0.00382 

 

 

Fig. 8. Illustration of error values from training results  

As illustrated in Table VII which presents a comparison 

of training results before and after data optimization. The 

findings can be interpreted as follows: 

1) Composition 50%:50% 

The application of WED data optimization techniques 

resulted in a substantial decrease in error values from 0.15536 

to 0.11824, exhibiting an error difference of -0.03712, as 

shown in Fig. 9. This outcome signifies a notable 

enhancement in the model's performance for this particular 

composition. 

2) Composition 70%:30% 

Following the implementation of the optimization 

process. the error value underwent a reduction from 0.19454 

to 0.18666, exhibiting an error difference of -0.00788, as 

shown in Fig. 10. The error reduction observed in this 

composition is less pronounced in comparison to the 

50%:50% composition 

3) Composition 80% :20% 

The result of the optimization process was a decrease in 

the error value from 0.18833 to 0.17843, with a difference of 

-0.00990, as shown in Fig. 11. Although not very significant. 

an increase in model performance is visible. 
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4) Composition 90%:10% 

In this composition. optimization reduces the error from 

0.22859 to 0.22477, with an error difference of -0.00382, as 

shown in Fig. 12. This indicates that optimization is less 

effective when the test data is severely limited. 

 
(a) 

 
(b) 

Fig. 9. Comparison chart of ED and WED split 50:50 

 
(a) 

 
(b) 

Fig. 10. Comparison chart of ED and WED split 70:30 

 
(a) 

 
(b) 

Fig. 11. Comparison chart of ED and WED split 80:20 

 
(a) 

 
(b) 

Fig. 12. Comparison chart of ED and WED split 90:10 

D. Model Testing 

Model testing constitutes a critical phase following the 

training process. With the objective being the evaluation of 
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the model's efficacy in predicting output based on test data 

that was not utilized during the training procedure. This stage 

is designed to assess the model's generalization capability in 

handling novel data and to ensure that the model does not 

experience overfitting.  

A condition in which a model exhibits overfitting to the 

training data. This results in decreased performance and less 

accurate predictions when the model is tested with new data 

with which it has no prior experience. In essence, the 

objective of model testing is to assess the extent to which the 

model can adapt patterns from the training data and apply 

them to new data that has not been previously encountered.  

In the context of ANFIS model testing. Previously 

prepared test data is provided as input to the trained model. 

The model then generates output based on the processing of 

the data, which is subsequently compared with the actual 

target value. The magnitude of prediction error is assessed 

using suitable evaluation metrics. Including mean absolute 

deviation (MAD), mean squared error (MSE), root mean 

squared error (RMSE), and mean absolute percentage error 

(MAPE). These evaluation metrics offer a thorough 

assessment of the model's predictive accuracy. enabling the 

assessment of its effectiveness in making predictions. 

The data set under consideration is divided into two parts: 

70% is allocated for training and 30% is designated for 

testing. This division is intended to maintain equilibrium 

between the training and testing processes. Thereby 

facilitating the model's recognition and comprehension of the 

patterns inherent in the data. It is noteworthy that the ANFIS 

model. once an adequate dataset has been amassed. The 

model's capacity to discern intricate relationships between 

inputs and outputs is enhanced. 

The utilization of 30% of the data as test data is intended 

to facilitate an objective evaluation of the model. With the 

data being drawn from a separate set that is not involved in 

the training process. This is imperative to assess the model's 

generalizability. That is. Its capacity to generate precise 

predictions on unseen data. By allocating a portion of the data 

for testing. Researchers can obtain a more objective 

assessment of the model's performance. While circumventing 

the potential pitfalls of overfitting or underfitting.  

Which can compromise the accuracy of predictions, as shown 

in Table VIII. 

The ensuing results are derived from the ANFIS model's 

testing. employing training data that has undergone 

optimization through WED, as shown in Table IX. 

As illustrated in the above graph, a comparison of the 

results for each scenario is presented in graphical form. The 

subsequent material will demonstrate the extent to which the 

model's predicted values correspond to the actual values. The 

purpose of this visualization is to provide a representation of 

the extent to which the model aligns with the data. There by 

facilitating a more profound understanding of the ANFIS 

model. Each graph contains a pattern of predictions produced 

by the model compared to actual data. Making it easier to 

identify areas where the model shows good performance or 

has weaknesses in capturing complex data patterns. 

TABLE VIII.  TESTING RESULTS BEFORE OPTIMIZATION 

No Temperature pH DO Forecast 

1 0.6500 0.20243 0.0007 2.460 

2 0.7500 0.23671 0.0577 2.075 

3 0.5500 0.19923 0.0007 2.450 

4 0.7500 0.16400 0.1756 3.761 

5 0.7500 0.18322 0.1886 3.729 

6 0.7500 0.23895 0.0550 2.025 

7 0.7850 0.21653 0.1250 4.489 

8 0.7850 0.21653 0.1250 4.489 

9 0.6950 0.20820 0.2296 3.502 

10 0.5500 0.20243 0.2433 3.645 

11 0.5500 0.23767 0.2398 3.507 

12 0.7500 0.16079 0.1824 3.730 

13 0.7500 0.17040 0.1896 3.714 

14 0.7000 0.23350 0.0140 2.139 

15 0.7850 0.17713 0.1230 4.100 

16 0.7850 0.17713 0.1230 4.100 

17 0.4750 0.21332 0.2193 3.589 

18 0.6500 0.20243 0.0007 2.460 

19 0.7500 0.23671 0.0577 2.075 

20 0.5500 0.19923 0.0007 2.450 

21 0.7500 0.16400 0.1756 3.761 

22 0.7500 0.18322 0.1886 3.729 

23 0.7500 0.23895 0.0550 2.025 

24 0.7850 0.21653 0.1250 4.489 

25 0.7850 0.21653 0.1250 4.489 

26 0.6950 0.20820 0.2296 3.502 

27 0.5500 0.20243 0.2433 3.645 

28 0.5500 0.23767 0.2398 3.507 

29 0.7500 0.16079 0.1824 3.730 

30 0.7500 0.17040 0.1896 3.714 

TABLE IX.  TESTING RESULTS AFTER OPTIMIZATION 

No Temperature pH DO Forecast 

1 0.6550 0.1079 0.1937 3.0000 

2 0.4100 0.1989 0.0550 1.4478 

3 0.8050 0.1947 0.1257 3.5203 

4 0.7850 0.1922 0.0458 3.2781 

5 0.7850 0.1922 0.0458 3.2781 

6 0.7850 0.1669 0.0687 2.8435 

7 0.4050 0.1960 0.1818 3.1636 

8 0.8000 0.2088 0.0690 3.4959 

9 0.8000 0.2120 0.1715 3.8715 

10 0.4300 0.2021 0.0178 0.2074 

11 0.3000 0.1960 0.1100 2.7313 

12 0.3000 0.1992 0.1373 3.6636 

13 0.6500 0.2857 0.3423 0.8023 

14 0.3000 0.1960 0.1715 3.1672 

15 0.3300 0.2117 0.2426 -0.5627 

16 0.8600 0.2505 0.0000 1.2031 

17 0.8400 0.1079 0.2040 3.0000 

18 0.9000 0.1685 0.1756 4.0248 

19 0.2850 0.1954 0.1240 2.9059 

20 0.2850 0.1954 0.1240 2.9059 

21 0.9350 0.1983 0.1145 3.0000 

22 0.9350 0.1903 0.0738 3.0000 

23 0.9350 0.1903 0.0649 3.0000 

24 0.2500 0.2024 0.1168 3.0000 

25 0.2500 0.2120 0.1373 3.0000 

26 0.2600 0.2063 0.1988 3.0000 

27 0.2500 0.1832 0.1500 3.0000 

28 0.9400 0.1960 0.0348 3.0000 

29 0.2500 0.1768 0.1708 3.0000 

30 0.2500 0.1768 0.1708 3.0000 
 

E. Model Evaluation 

The utilization of data analysis techniques is contingent 

upon the adherence to specific requirements. This necessity 

stems from the fact that data analysis techniques employed in 
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the forecasting process must adhere to specific criteria to 

ensure the accuracy of forecasts. Several widely used data 

analysis techniques in forecasting comprise mean absolute 

deviation (MAD), mean squared error (MSE), Mean absolute 

percentage error (MAPE), and root mean squared error 

(RMSE), as shown in Table X. 

TABLE X.  MODEL EVALUATION RESULTS 

Model Name 
Data 
Split 

ANFIS Model Evaluation Results 

MSE MAD RMSE MAPE 

ED-A 50%:50% 1.5848 0.9049 1.2589 30.46% 

ED-B 70%:30% 0.8377 0.7841 0.9152 25.53% 

ED-C 80%:20% 1.2079 0.8219 1.0991 30.67% 

ED-D 90%:10% 2.7018 1.2286 1.6437 42.71% 

WED-A 50%:50% 0.6170 0.6792 0.7855 25.93% 

WED-B 70%:30% 0.8196 0.5398 0.9053 20.79% 

WED-C 80%:20% 1.9606 0.9495 1.4002 10.26% 

WED-D 90%:10% 10.0698 2.6025 3.1733 86.78% 

 

F. Internet of Things (IoT) 

The practice of pond water monitoring through the 

implementation of the IoT entails the utilization of sensors 

[68]-[72]. Which facilitate the real-time and continuous 

assessment of water quality parameter [73]-[76]. These 

sensors then transmit the collected data via an internet 

network for subsequent monitoring and analysis. In this 

system. three types of sensors will be utilized temperature 

sensors, pH sensors, and oxygen sensors (DO) [77].  

Sensors are of paramount importance in the context of IoT 

systems. As they are the entities responsible for the collection 

of data that will subsequently undergo processing [78]-[81]. 

The utilization of direct data from sensors in research that 

employs ANFIS to predict or optimize pond water quality 

constitutes a highly relevant and effective approach [82].  

The internet of things (IoT) technology-based approach 

employed in this study utilizes three types of sensors (i.e. 

temperature sensors, pH sensors, and dissolved oxygen (DO) 

sensors) to collect real-time data from ponds. The data 

generated from these sensors will serve as the primary input 

for training and testing the ANFIS model. This 

methodological approach offers distinct advantages and is 

highly pertinent within the broader context of pond water 

quality management, as shown in Fig. 13 to Fig. 16. 

G. User Control View 

User control view is a user interface designed to monitor 

and control IoT systems directly, as shown in Fig. 17. In the 

context of a pond water quality monitoring system. User 

control view functions as a conduit between the data collected 

by IoT devices and the users who require it. This interface 

enables users to observe data transmitted from temperature, 

pH, and DO sensors in real-time. Facilitating data-driven 

decision-making. In this implementation. Sensor data is 

processed by the ESP32 microcontroller and transmitted to a 

cloud server over a Wi-Fi network [83]. Subsequently the 

data is transmitted to a Google Sheet, which serves as the user 

control view, Google Sheet presents the data in tabular, and 

graphical formats. offering a comprehensive representation 

of the pond's water quality conditions.  

The user control view in internet of things (IoT) systems 

serves as the final stage in the IoT workflow. wherein users 

engage with the data that has been collected. analyzed. and 

processed by the system. This interface or platform enables 

users to oversee. regulate. and respond to data generated by 

IoT devices. 

 

Fig. 13. Internet of things architecture 

 

Fig. 14. Internet of things device suite 

 

Fig. 15. Shrimp ponds are utilized for the execution of research endeavors 

 

Fig. 16. The process of collecting pond water parameter data 
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Fig. 17. User control view 

IV. CONCLUSION 

Following the application of weighted Euclidean distance 

(WED) optimization, a notable improvement in model 

performance was observed. The 50:50 data split (WED-A) 

achieved the lowest error value (0.11824), significantly 

outperforming the non-optimized counterpart. Similarly, the 

70:30 split (WED-B) showed improved accuracy with an 

error of 0.18666, slightly lower than the original (0.19454). 

The 80:20 configuration (WED-C) also improved, reducing 

the error to 0.17843 from 0.18833. Although the 90:10 split 

(WED-D) showed a modest improvement (0.22477 vs. 

0.22859), it still confirmed the benefit of WED optimization. 

While WED remained effective across different training 

proportions, its impact was most pronounced in balanced data 

splits. The WED-B model, using a 70:30 split, delivered the 

best overall performance with the lowest MSE, MAD, 

RMSE, and MAPE values, indicating high accuracy and 

consistency. Therefore, this model is recommended for 

ANFIS-based prediction due to its superior ability to capture 

data patterns efficiently. These results highlight the 

importance of balanced data division and the strategic use of 

optimization techniques to enhance predictive model 

performance. 
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