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Abstract—Designing a stable and accurate controller for 

nonlinear systems remains a significant challenge, mainly when 

the system contains uncertain factors or is affected by external 

disturbances. This study proposes an adaptive control method 

based on a Radial Basis Function Neural Network (RBFNN) to 

effectively estimate the uncertain components in nonlinear 

systems. The gradient descent algorithm updates the RBFNN 

parameters, and the control system's stability is rigorously 

proven based on the Lyapunov theory. The designed controller 

ensures accuracy under changing conditions and can adapt to 

nonlinear disturbances and system fluctuations flexibly. 

Through 45 consecutive test cycles, the system significantly 

improves precision and outperforms other control methods in 

comparative tests. This study opens up the potential for broad 

application in highly uncertain nonlinear MIMO systems, 

thanks to the effective combination of adaptive learning ability, 

stability, and simple implementation structure of the proposed 

controller. 

Keywords—Nonlinear Uncertain Systems; MIMO Systems; 

Lyapunov Stability; Radial Basis Function Neural Network 

(RBFNN); Adaptive Parameter Tuning. 

I. INTRODUCTION 

In robotics, trajectory tracking is one of the most 

important and long-standing challenges, especially when the 

system is subject to unforeseen disturbances or the dynamic 

model is not fully known. Various control methods have been 

proposed to address this problem, primarily based on 

Lyapunov stability theory, including adaptive force and 

vision tracking control [1], adaptive force/position control 

[2], [3], coordinated control [4], [5], conduction control [6], 

and adaptive impedance control [7]. However, designing 

controllers for unknown physical systems to ensure the 

required accuracy is challenging and complex in many 

control applications [8], [9]. The main reasons come from the 

difficulties in constructing accurate dynamic models, the 

errors in the modeling process, the influence of complex 

environmental factors, and unpredictable disturbances [10]-

[18]. These factors degrade the stability and significantly 

affect the accuracy of nonlinear systems [11]. In particular, in 

collaborative applications between robots to perform tasks 

such as polishing, assembly, or monitoring [12], the design of 

a consensus tracking controller is extremely necessary to 

ensure operational efficiency and accuracy, even in the face 

of uncertainties and disturbances [13]-[14]. Therefore, in 

cases where system parameters and external environmental 

influences are not well defined or continuously varying, 

linear controllers often become difficult to apply in practice 

[15]-[18]. 

Control methods such as PID [19] and fuzzy control 

systems [20]-[22] are often favored because they do not 

require complex mathematical models, but instead rely on 

parameter tuning from system feedback to optimize accuracy. 

However, their major drawback lies in the difficulty of 

optimizing control parameters. Therefore, various control 

methods have emerged, including adaptive control [23]-[25], 

robust control [25], sliding mode control [26]-[27], 

disturbance rejection control [28], and disturbance 

observation-based methods [29], [30]. Among them, sliding 

mode control [31]-[34] derived from the theory of Variable 

Structure Control Systems (VSCS) stands out due to its 

outstanding advantages: resistance to parameter uncertainty, 

low sensitivity to external disturbances, and high response 

speed [35]-[38]. However, SMC still has limitations when 

requiring precise understanding of the mathematical model 

and physical parameters of the system, leading to difficulties 

in practical application and reduced efficiency in some cases 

[38]-[39]. 

Although current methods offer some advantages in 

dealing with problems such as parameter uncertainty, 

incomplete dynamic models, and disturbances, limitations 

still affect the system's accuracy. These limitations include 

high-gain feedback [40], bandwidth constraints [41], and 

chattering phenomena [42]-[43], all of which affect the 

controllability, reachability, and adaptability of the system 

[44]-[46]. When the system faces significant disturbances, 

achieving complete stability is no longer practical from an 

engineering perspective [47]. Since the target state of the 
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system may be mathematically uncertain and the actual state 

of the system may fluctuate around this target, the concept of 

asymptotic stability is considered practically appropriate and 

acceptable in engineering applications [47]-[48]. Studies on 

disturbance estimation have been carried out for uncertain 

nonlinear systems in [49]-[50] for specific uncertain 

nonlinear systems. The development of robust adaptive 

controllers that do not require precise information about 

uncertainty bounds has been addressed in [50]. In this study, 

the authors have combined adaptive control technology and 

sliding mode control theory. In addition, other control 

methods, such as neural networks and fuzzy control, have 

attracted considerable attention due to their ability to 

approximate functions and flexibility in tuning the system 

[51]-[53]. 

A disturbance-aware control strategy has also been 

proposed for systems with multiple controllers and saturated 

inputs using Radial Basis Function Neural Networks 

(RBFNN) [54]. The global learning capability of neural 

networks makes them helpful in capturing uncertainties in 

robot control. In particular, controllers that combine neural 

networks with fast online learning and convergence 

capabilities, such as RBFNN, are becoming a prominent trend 

in robot control [55]-[59]. 

This paper proposes an intelligent controller for MIMO 

systems, which is capable of effectively handling uncertain 

constraints and disturbances from the environment. The 

highlight of the method is the use of Radial Basis Function 

Neural Network (RBFNN) to accurately estimate the 

dynamic model of the control system. Thanks to the powerful 

approximation and online learning capabilities of RBFNN, 

the controller can enhance its adaptiveness to unpredictable 

fluctuations and disturbances. The effectiveness and 

feasibility of the controller have been verified through 

practical experiments, confirming the potential application in 

control systems. 

The main contributions of this work can be summarized 

as follows:  

1. The parameters of the RBFNN controller are optimized 

using the gradient descent method. Specifically, stability 

is guaranteed through a Lyapunov-based approach.  

2. A prominent strength of the proposed method is that it 

does not require linear conditions for the robot 

parameters, which expands its applicability to complex 

nonlinear systems. Therefore, this method can be applied 

to many types of uncertain MIMO systems due to the 

adaptability of the controller. 

3. The accuracy and reliability of the proposed controller 

were verified through testing on an actual model. 

Experimental results demonstrate the stable operation of 

the controller in managing the robot system. 

The paper is organized as follows: Section 2 discusses the 

issues in uncertain systems. Next, Section 3 introduces the 

theory of RBFNN and proves its stability using Lyapunov. 

Section 4 introduces the robust controller and demonstrates 

the stability of the added component using Lyapunov stability 

analysis. The experimental process of the proposed controller 

is presented in Section 5. Finally, Section 6 summarizes and 

draws conclusions based on the presented information. 

II. SYSTEM DESCRIPTION 

The state vector equation of the five-bar parallel robot 

system is found in [66] and defined as follows: 

𝑥̈ = 𝑓(𝑥̱) + 𝑔(𝑥̱)𝑢 (1) 

where 𝑥(𝑡) ∈ ℜ
𝑚

 represent the system's output, 𝑚 indicates 

the number of input or output dimensions. The control input 

vector 𝑢 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑚]𝑇 ∈ ℜ𝑚, 𝑥̱ =

[𝑥𝑇 , 𝑥̇𝑇 , ⋯ , 𝑥(𝑛−1)𝑇]
𝑇

∈ ℜ𝑚×𝑛 encompasses the system's 

states, including the output and its derivatives up to the (𝑛 −
1)𝑡ℎ order. 𝑓(𝑥̱) is the nominal function representing the 

system's nonlinear dynamics and 𝑔(𝑥̱) is the nominal 

constant gain matrix that influences the control input 𝑢. Eq. 

(1) can be expressed as state as follows: 

𝑥̈ = [𝑓𝑛(𝑥̱) + 𝛥𝑓(𝑥̱)] + [𝑔𝑛(𝑥̱) + 𝛥𝑔(𝑥̱)]𝑢
= 𝑓𝑛(𝑥̱) + 𝑔𝑛(𝑥̱)𝑢 + 𝑑 

(2) 

The system dynamics are represented by standard 

functions 𝑓𝑛(𝑥̱) ∈ ℜ
𝑚

 and 𝑔𝑛(𝑥̱) ∈ ℜ𝑚×𝑚, which are 

assumed to be bounded and can be determined. The terms 

𝛥𝑓(𝑥̱) and 𝛥𝑔(𝑥̱) are the respective uncertain terms in 𝑓(𝑥̱) 

and 𝑔(𝑥̱). 𝑑 = 𝛥𝑓(𝑥̱) + 𝛥𝑔(𝑥̱)𝑢  is the sum of the uncertain 

components inside and outside the system. 

The primary goal of the overall control strategy is to 

ensure that the system’s trajectory 𝑥 aligns with a desired 

reference trajectory 𝑥𝑑 ∈ ℜ
𝑚

. To achieve this, the tracking 

error 𝑒 ∈ ℜ𝑚 is defined as: 𝑒 = 𝑥𝑑 − 𝑥. Therefore, 

considering the state vector 𝑥, the tracking error vector 𝑒̱ for 

the system is defined as follows: 

𝑒̱ = [𝑒𝑇 , 𝑒̇𝑇 ⋯ , 𝑒(𝑛−1)𝑇]
𝑇
 (3) 

The first step is to select a sliding surface to implement. 

Then, design a control law so that the system state trajectories 

converge and remain on the sliding surface, which can be 

defined as follows: 

𝑠 = 𝑒(𝑛−1) + 𝜅1𝑒(𝑛−2) + ⋯ + 𝜅𝑛−1𝑒 (4) 

where 𝑠 = [𝑠1, 𝑠2, ⋯ , 𝑠𝑚]𝑇, 𝜅𝑖 = 𝑑𝑖𝑎𝑔(𝜅𝑖1, 𝜅𝑖2, ⋯ , 𝜅𝑖𝑗) for 

𝑖 = 1,2, ⋯ , 𝑛; with each element in 𝜅𝑖𝑗 being a positive 

constant satisfying the Hurwitz characteristic polynomial. 

Assuming that the components 𝑓𝑛(𝑥̱), 𝑔𝑛(𝑥̱) and the sum 

of the uncertain components 𝑑 have been determined, the 

ideal controller can be designed as follows: 

𝑢 = 𝑔𝑛
−1(𝑥̱)[𝑥̈𝑑 −  𝑓𝑛(𝑥̱) − 𝑑 + 𝜅𝑖𝑒

(𝑛−1)

+ 𝜎𝑠𝑔𝑛(𝑠)] 
(5) 

Differentiating 𝑠 for time leads to: 

𝑠̇ = 𝑒(𝑛) + 𝜅𝑖𝑒
(𝑛−1) (6) 

Consider the candidate Lyapunov function in the 

following form: 

𝑉1(𝑠) =
1

2
𝑠2 (7) 
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Differentiating Eq. (7) and using Eq. (6): 

𝑉̇1(𝑠) = 𝑠𝑠̇ = 𝑠[𝑥̈𝑑 − 𝑥̈ + 𝜅𝑖𝑒
(𝑛−1)] 

= 𝑠[𝑥̈𝑑 − 𝑓𝑛(𝑥̱) − 𝑔𝑛(𝑥̱)𝑢 − 𝑑 + 𝜅𝑖𝑒
(𝑛−1)] 

= 𝑠[𝑥̈𝑑 − 𝑓𝑛(𝑥̱) − [𝑥𝑑
(𝑛)

−  𝑓𝑛(𝑥̱) − 𝑑 + 𝜅𝑖𝑒
(𝑛−1)

+ 𝜎𝑠𝑔𝑛(𝑠)] − 𝑑 + 𝜅𝑖𝑒
(𝑛−1)] 

= 𝑠[−𝜎𝑠𝑔𝑛(𝑠)] ≤ −𝜎|𝑠| ≤ 0 

(8) 

The sliding-mode controller ensures stability according to 

the Lyapunov theorem [60]. However, a high control gain σ 

typically leads to significant chattering effects. Besides, the 

uncertainty components 𝑑 are generally unknown in practical 

scenarios. Therefore, the ideal control input 𝑢 in Eq. (5) is 

unavailable. Therefore, an RBFNN control system, which 

consists of a RBFNN combined with a robust controller, is 

proposed to address trajectory tracking: 

𝑢𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 𝑢𝑅𝐵𝐹𝑁𝑁 + 𝑢𝑅𝐶 (9) 

In this control structure, the main controller, denoted as 

𝑢𝑅𝐵𝐹𝑁𝑁 , is designed to approximate the components 𝑓𝑛(𝑥̱)  

and 𝑔𝑛(𝑥̱) in the ideal controller in Eq. (5). 𝑢𝑅𝐶  is a robust 

controller used to compensate the approximation error 

between 𝑢𝑅𝐵𝐹𝑁𝑁 and 𝑢. 

III. CONTROLLERS DESIGN 

A. Definition of RBFNN Controller 

The Radial Basis Function Neural Network (RBFNN), 

introduced by J. Moody and C. Darken in the late 1980s, is a 

neural network model with a three-layer structure: input 

layer, hidden layer, and output layer [61]-[63]. The RBFNN 

is characterized by its ability to accurately approach and 

approximate any continuous function, thanks to its operating 

mechanism, which resembles that of human neurons. RBFNN 

differs from backpropagation (BP) neural networks by its 

strong local approximation ability and significantly faster 

training time [64]-[65].  

In terms of structure, each layer of the RBFNN contains 

many nodes, equivalent to neurons, and these nodes are fully 

connected between adjacent layers. The input data is 

transmitted linearly from the input layer to the hidden layer, 

where it undergoes a nonlinear transformation before being 

further transmitted and transformed linearly to the output 

layer. RBFNN often uses the Gaussian function as the radial 

basis function, allowing it to process input data efficiently and 

accurately. 

ℎ𝑖𝑗 = 𝑒𝑥𝑝 [
−(𝑥𝑖 − 𝑐𝑗)

2

2𝑏𝑗
2 ] , 𝑖 = 𝑓, 𝑔 (10) 

where 𝑐𝑗 is the center vector of the j-th node of the network 

and 𝑏𝑗 is the base width parameters of the node j= 1,2, ⋯ , 𝑚, 

and it is a number greater than zero. The weight vectors of 

network nodes in hidden layer: 

𝑊 = [𝑤11 ⋯ 𝑤1𝑘 ⋯ 𝑤𝑗1 ⋯ 𝑤𝑗𝑘] 

The output of network is described by 

𝑓∗ = 𝑊∗𝑇ℎ𝑓 + 𝜀𝑓

𝑔∗ = 𝑉∗𝑇ℎ𝑔 + 𝜀𝑔

 (11) 

where 𝑊∗ and 𝑉∗ are the ideal weights of the network 

structure, 𝜀𝑓 and 𝜀𝑔 are the approximation errors. The output 

of the RBFNN is defined: 

𝑓(𝑥̱) = 𝑊̂𝑇ℎ𝑓 + 𝜀𝑓

𝑔̂(𝑥̱) = 𝑉̂𝑇ℎ𝑔 + 𝜀𝑔

 (12) 

where ℎ𝑓 and ℎ𝑔 are the Gaussian functions of the RBFNN. 

The ideal controller 𝑢 in Eq. (5) is rewritten as follows: 

𝑢𝑅𝐵𝐹𝑁𝑁 = 𝑔̂−1(𝑥̱)[𝑥̈𝑑 −  𝑓(𝑥̱) − 𝑑 + 𝜅𝑖𝑒
(𝑛−1)

+ 𝜎𝑠𝑔𝑛(𝑠)] 
(13) 

B. Adaptive Law of Parameters in Weight Layer and Gauss 

Function 

Eq. (6) is rewritten by substituting Eq. (9) into Eq. (1) and 

using Eq. (5): 

𝑠̇ = 𝑒(𝑛) + 𝜅𝑖𝑒
(𝑛−1) = 𝑥̈𝑑 − 𝑥̈ + 𝜅𝑖𝑒

(𝑛−1) 

= 𝑔𝑛(𝑥̱)(𝑢 − 𝑢𝑅𝐵𝐹𝑁𝑁 − 𝑢𝑅𝐶) − 𝜎𝑠𝑔𝑛(𝑠) 
(14) 

The gradient descent algorithm is the origin of the 

parameter learning algorithm, and its goal is to minimize 𝑠𝑠̇ 

so that 𝑠 converges fast. In this method, the adaptive 

parameters are designed with a law as follows: 

𝑊̇̂ = −𝛾1

 ∂𝑠𝑠̇

 ∂𝑊̂
= −𝛾1

 ∂𝑠𝑠̇

  ∂𝑢𝑅𝐵𝐹𝑁𝑁

  ∂𝑢𝑅𝐵𝐹𝑁𝑁

   ∂𝑊̂
 

= 𝛾1𝑠ℎ𝑓 

(15) 

𝑉̇̂ = −𝛾2

 ∂𝑠𝑠̇

 ∂𝑉̂
= −𝛾2

 ∂𝑠𝑠̇

  ∂𝑢𝑅𝐵𝐹𝑁𝑁

  ∂𝑢𝑅𝐵𝐹𝑁𝑁

  ∂𝑉̂
 

= 𝛾2𝑠ℎ𝑔𝑢 

(16) 

𝑐̇̂ = −𝛾3

 ∂𝑠𝑠̇

 ∂𝑐
= −𝛾3

 ∂𝑠𝑠̇

 ∂Ξ(𝑥̱)

 ∂Ξ(𝑥̱)

 ∂ℎ𝑓

 ∂ℎ𝑓

  ∂c
 

= 𝛾3𝑠ℎ𝑖𝛸
𝑥𝑖 − 𝑐

𝑏2
 

(17) 

𝑏̇̂ = −𝛾4

 ∂𝑠𝑠̇

 ∂𝑏
= −𝛾4

 ∂𝑠𝑠̇

 ∂Ξ(𝑥̱)

 ∂Ξ(𝑥̱)

 ∂ℎ𝑓

 ∂ℎ𝑓

  ∂𝑏
 

= 𝛾4𝑠ℎ𝑖𝛸
(𝑥𝑖 − 𝑐)2

𝑏3
 

(18) 

where Ξ(𝑥̱) = 𝑓(𝑥̱), 𝑔̂(𝑥̱) corresponds to 𝛸 = 𝑊, 𝑉 

respectively and 𝛾1 > 0, 𝛾2 > 0, 𝛾3 > 0, 𝛾4 > 0. 

Proof: The Lyapunov function is chosen as follows: 

𝐿 =
1

2
𝑠2 +

1

2𝛾1

𝑊̃𝑇𝑊̃ +
1

2𝛾2

𝑉̃𝑇𝑉̃ +
1

2𝛾3

𝑐̃𝑇𝑐̃

+
1

2𝛾4

𝑏̃𝑇𝑏̃ 

(19) 

where 𝑐̃ = 𝑐∗ − 𝑐̂; 𝑏̃ = 𝑏∗ − 𝑏̂. Derivative Eq. (19): 

𝐿̇ = 𝑠𝑠̇ +
1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ +
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

𝐿̇ = 𝑠[𝑒(𝑛) + 𝜅𝑖𝑒
(𝑛−1)] +

1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ 

(20) 
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+
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

𝐿̇ = 𝑠[𝑥̈𝑑 − 𝑥̈ + 𝜅𝑖𝑒
(𝑛−1)] +

1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ 

+
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

𝐿̇ = 𝑠[𝑥̈𝑑 − 𝑓𝑛(𝑥̱) − 𝑔𝑛(𝑥̱)𝑢 − 𝑑 + 𝜅𝑖𝑒
(𝑛−1)

+ 𝑔̂(𝑥̱)𝑢 

−𝑔̂(𝑥̱)𝑢] +
1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ +
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

𝐿̇ = 𝑠[𝑥̈𝑑 − 𝑓𝑛(𝑥̱) − 𝑑 + 𝜅𝑖𝑒
(𝑛−1) + 𝑔̂(𝑥̱)𝑢

− 𝑔𝑛(𝑥̱)𝑢 

−𝑥̈𝑑 + 𝑓(𝑥̱) + 𝑑 − 𝜅𝑖𝑒
(𝑛−1) − 𝜎𝑠𝑔𝑛(𝑠)] 

+
1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ +
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

𝐿̇ = 𝑠[𝑓(𝑥̱) − 𝑓𝑛(𝑥̱) − 𝜎𝑠𝑔𝑛(𝑠)

+ [𝑔̂(𝑥̱) − 𝑔𝑛(𝑥̱)]𝑢] 

+
1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ +
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

Lets: 𝑓(𝑥̱) = 𝑓(𝑥̱) − 𝑓𝑛(𝑥̱), 𝑔̃(𝑥̱) = 𝑔̂(𝑥̱) − 𝑔𝑛(𝑥̱) 

𝑓(𝑥̱) = 𝑊̂𝑇ℎ𝑓 − 𝑊∗𝑇ℎ𝑓 − 𝜀𝑓 = 𝑊̃𝑇ℎ𝑓 − 𝜀𝑓 (21) 

𝑔̃(𝑥̱) = 𝑉̂𝑇ℎ𝑔 − 𝑉∗𝑇ℎ𝑔 − 𝜀𝑔 = 𝑉̃𝑇ℎ𝑔 − 𝜀𝑔 (22) 

where 𝑊̃ = 𝑊∗ − 𝑊̂ and 𝑉̃ = 𝑉∗ − 𝑉̂. 

Eq. (20) is rewritten using Eq. (21) and Eq. (22) as follows: 

𝐿̇ = 𝑠[𝑊̃𝑇ℎ𝑓 − 𝜀𝑓 − 𝜎𝑠𝑔𝑛(𝑠) + (𝑉̃𝑇ℎ𝑔 − 𝜀𝑔)𝑢] 

+
1

𝛾1

𝑊̃𝑇𝑊̇̃ +
1

𝛾2

𝑉̃𝑇 𝑉̇̃ +
1

𝛾3

𝑐̃𝑇 𝑐̇̃ +
1

𝛾4

𝑏̃𝑇 𝑏̇̃ 

= 𝑊̃𝑇 (𝑠ℎ𝑓 +
1

𝛾1

𝑊̇̂) + 𝑉̃𝑇 (𝑠ℎ𝑔𝑢 +
1

𝛾2

𝑉̇̂) 

+𝑠[−𝜀𝑓 − 𝜎𝑠𝑔𝑛(𝑠) − 𝜀𝑔𝑢]

 +
1

𝛾3
𝑐̃𝑇[𝑐̇̃ + 𝑐̂ − 𝑐̂] +

1

𝛾4
𝑏̃𝑇 [𝑏̇̃ + 𝑏̂ − 𝑏̂]

 = 𝑊̃𝑇 (𝑠ℎ𝑓 +
1

𝛾1
𝑊̇̂) + 𝑉̃𝑇 (𝑠ℎ𝑔𝑢 +

1

𝛾2
𝑉̇̂) 

𝐿̇ = +𝑠[−𝜀𝑓 − 𝜎𝑠𝑔𝑛(𝑠) − 𝜀𝑔𝑢]

 +
1

𝛾3
𝑐̃𝑇[𝑐̇̃ + 𝑐̇̂] +

1

𝛾4
𝑏̃𝑇 [𝑏̇̃ + 𝑏̇̂] 

(23) 

Let 𝑐̇̂ = −𝑐̇̃ and 𝑏̇̂ = −𝑏̇̃, Eq. (23) is rewritten: 

𝐿̇ = 𝑊̃𝑇 (𝑠ℎ𝑓 +
1

𝛾1

𝑊̇̂) + 𝑉̃𝑇 (𝑠ℎ𝑔𝑢 +
1

𝛾2

𝑉̇̂) 

+𝑠[−𝜀𝑓 − 𝜎𝑠𝑔𝑛(𝑠) − 𝜀𝑔𝑢] 

+
1

𝛾3

𝑐̃𝑇[𝑐̇̃ − 𝑐̇̃] +
1

𝛾4

𝑏̃𝑇 [𝑏̇̃ − 𝑏̇̃] 

(24) 

Substitute the adaptive parameters from Eq. (15) – Eq. 

(18) into Eq. (24): 

𝐿̇ = 𝑊̃𝑇 (𝑠ℎ𝑓 −
1

𝛾1

𝛾1𝑠ℎ𝑓)

+ 𝑉̃𝑇 (𝑠ℎ𝑔𝑢 −
1

𝛾2

𝛾2𝑠ℎ𝑔𝑢) 

(25) 

+𝑠[−𝜀𝑓 − 𝜎𝑠𝑔𝑛(𝑠) − 𝜀𝑔𝑢] 

+
1

𝛾3

𝑐̃𝑇 [−𝛾3𝑠ℎ𝑖𝛸
𝑥𝑖 − 𝑐

𝑏2
+ 𝛾3𝑠ℎ𝑖𝛸

𝑥𝑖 − 𝑐

𝑏2
] 

+
1

𝛾4

𝑏̃𝑇 [−𝛾4𝑠ℎ𝑖𝛸
(𝑥𝑖 − 𝑐)2

𝑏3
+ 𝛾4𝑠ℎ𝑖𝛸

(𝑥𝑖 − 𝑐)2

𝑏3
] 

= 𝑠[−𝜀𝑓 − 𝜎𝑠𝑔𝑛(𝑠) − 𝜀𝑔𝑢] 

≤ −(𝜀𝑓 + 𝜀𝑔𝑢) − 𝜂|𝑠| 

If the approximation errors 𝜀𝑓 and 𝜀𝑔 are bounded with 

𝜎 ≥ |𝜀𝑓 + 𝜀𝑔𝜏| then 𝐿̇ ≤ 0. 

IV. ANALYZE CONTROL STRUCTURES 

In actual practical applications, due to the limited 

capability of the RBFNN, there will exist an approximation 

error between the ideal controller (𝒖𝐼𝐷𝐸𝐴𝐿) and the estimated 

controller from RBFNN (𝒖𝑅𝐵𝐹𝑁𝑁), which is defined: 

𝜀 = 𝑢 − 𝑢𝑅𝐵𝐹𝑁𝑁  (26) 

Here, 𝜀 represents the approximation error. By 

substituting Eq. (26) into Eq. (14): 

𝑠̇ = 𝑔𝑛(𝑥̱)(𝜀 − 𝑢𝑅𝐶) − 𝜎𝑠𝑔𝑛(𝑠) (27) 

The approximation error is often difficult to measure in 

practical applications. The study employed a robust controller 

𝑢𝑅𝐶  to enhance adaptability and respond to uncertainties: 

𝑢𝑅𝐶 = 𝜀̂ + (2𝑅2)−1[[𝐼 + (𝑊 − 𝑉)2]𝑅2 + 𝐼]𝑠 (28) 

where 𝜀̂(𝑡) denotes the estimated value of approximation 

error and 𝑅 = 𝑑𝑖𝑎𝑔[𝜁1, 𝜁2] is the learning rate of the robust 

controller for the system to converge. Substituting (28) into 

(27) yields: 

𝑠̇ = 𝑔𝑛(𝑥̱)(𝜀 − 𝜀̂ − (2𝑅2)−1[(𝐼 + (𝑊 − 𝑉)2)𝑅2 + 𝐼]𝑠) 

= 𝑔𝑛(𝑥̱)(𝜀̃ − (2𝑅2)−1[(𝐼 + (𝑊 − 𝑉)2)𝑅2 + 𝐼]𝑠) 
(29) 

where 𝜀̃ = 𝜀 − 𝜀̂. The Lyapunov function chosen to ensure 

the stability of the RBFNN system is defined as follows: 

𝑉2(𝑠, 𝜀̃) =
1

2
𝑠2 +

1

2𝜇𝜀

𝜀̃2 (30) 

where 𝜇𝜀 is a positive learning rate. Let's perform the time 

derivative analysis of Eq. (30). Then, use Eq. (29) to 

complete: 

𝑉̇2(𝑠, 𝜀̃) = 𝑠𝑠̇ +
1

𝜇𝜀

𝜀̃𝑇𝜀̃ ̇

= 𝑠𝑔𝑛(𝑥̱)(𝜀̃ − (2𝑅2)−1[(𝐼 + (𝑊 − 𝑉)2)𝑅2

+  𝐼]𝑠) +
1

𝜇𝜀

𝜀̃𝑇𝜀̃̇ − 𝜂|𝑠| 

= 𝑠𝑔𝑛(𝑥̱)𝜀̃ +
1

𝜇𝜀

𝜀̃𝑇𝜀̃̇ − 𝜂|𝑠|

− 𝑠2𝑔𝑛(𝑥̱)(2𝑅2)−1[(𝐼

+ (𝑊 − 𝑉)2)𝑅2 +  𝐼] 

= −𝑠2𝑔𝑛(𝑥̱)(2𝑅2)−1[(𝐼 + (𝑊 − 𝑉)2)𝑅2 +  𝐼] 

𝜀̃ [𝑠𝑔𝑛(𝑥̱) +
1

𝜇𝜀

𝜀̃̇] − 𝜂|𝑠| 

(31) 
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For achieving 𝑉̇2(𝑠, 𝜀̃) ≤ 0, the error estimation law is 

designed as: 

𝜀̂̇ = −𝜀̃̇ = 𝜇𝜀𝑠𝑔𝑛(𝑥̱) (32) 

Then Eq. (31) can be rewritten as: 

𝑉̇2(𝑠, 𝜀̃) = −(2𝑅2)−1[(𝐼 + (𝑊 − 𝑉)2)𝑅2 +  𝐼]𝑠2 − 𝜂|𝑠| 

≤ 0 
(33) 

Since 𝑉̇2(𝑠, 𝜀̃) is negative semidefinite, that is 𝑉̇2(𝑠, 𝜀̃) ≤

𝑉̇2(𝑠(0), 𝜀̃(0)), it implies that 𝑠 and 𝜀̃ are bounded. Let 

function Υ ≡ −(2𝑅2)−1[(𝐼 + (𝑊 − 𝑉)2)𝑅2 +  𝐼]𝑠2 − 𝜂|𝑠|, 
and integrate Υ for time, then it is obtained that: 

∫ Υ(𝜏)𝑑𝜏
𝑡

0

≤ 𝑉2(0) − 𝑉2(𝑡) (34) 

Given that 𝑉2(𝑡) is non-increasing and bounded, and 

𝑉2(0) is bounded, the result is expressed as follows: 

lim
𝑡→∞

∫ Υ(𝜏)𝑑𝜏
𝑡

0

< ∞ (35) 

Moreover, since Υ̇(𝑡) is bounded, by Barbalat's Lemma, 

lim
𝑡→∞

∫ Υ(𝑡)
𝑡

0
= 0 [60]. That is, 𝑠 → 0 as 𝑡 → ∞. The proposed 

RBFNN system's stability can be ensured as a result. 

Fig. 1 depicts the proposed network architecture for 

nonlinear control and processing of the system. The input 

layers of the RBFNN, including state variables 𝑥1, 𝑥2, and 𝑥3, 

are passed through hidden layers to calculate the output layers 

𝑓(𝑥̱) and 𝑔̂(𝑥̱)Experiment Results 

The proposed method was validated using a five-bar 

parallel robot (Fig. 2), chosen for its mechanical complexity 

to rigorously test the theoretical framework. Operational 

uncertainties emerge from normal interactions, preventing 

exact determination, while the control process is further 

complicated by varying viscosity, friction coefficients, etc. 

The system’s dynamics, modeled via the Lagrange method, 

are expressed in Eq. (36). 

𝑀(𝑞′)𝑞̈ + 𝐶(𝑞′, 𝑞̇′)𝑞̇ + 𝐵𝑚𝑞̇ + 𝑔(𝑞′) = 𝑢 (36) 

where 𝑞′ = (𝑞1, 𝑞2)𝑇 represents the robot's general 

coordinates. 𝑞′, 𝑞̇, 𝑞̈ ∈ 𝑅2×1 are the position, velocity, and 

joint acceleration vectors; 𝑀(𝑞′) ∈ 𝑅2×2 is the moment of 

inertia matrix; 𝐶(𝑞′, 𝑞̇′)  ∈ 𝑅2×2 is the Coriolis and 

Centrifugal matrix; 𝐵𝑚 = (𝑏𝑚1, 𝑏𝑚2) represents the viscosity 

of the engine; 𝑔(𝑞′) ∈ 𝑅2×1 is the gravity vector; 𝑢 is the 

control variable. 

The moment of inertia matrix is redefined: 

𝑀(𝑞′) = [
𝑚11 𝑚12

𝑚21 𝑚22
] (37) 

𝑚11 = 2𝐽1 + 𝐽3 + 𝑚3(𝑙1
2 + 𝜏3

2 + 2𝑐𝑜𝑠(𝛿3 + 𝑞3)𝑙1𝜏3) + 𝑚1𝜏1
2 

𝑚12 = 𝑚21 = 0 

𝑚22 = 2𝐽2 + 𝐽4 + 𝑚4(𝜏2
2 + 𝜏4

2 + 𝑙2𝑐𝑜𝑠(𝛿4 + 𝑞4)𝜏4) + 𝑚2𝜏2
2 

Centripetal force matrix-Coriolis: 

𝐶(𝑞′, 𝑞̇′) = [
𝑐11 𝑐12

𝑐21 𝑐22
] (38) 

𝑐11 = −𝑙1𝑚3𝑞̇3𝜏3sin (𝛿3 + 𝑞3) 

𝑐12 = 𝑐21 = 0 

𝑐22 = −𝑙2𝑚4𝑞̇4𝜏4sin (𝛿4 + 𝑞4) 

Gravity matrix: 

𝑔(𝑞′) = [
𝑔1

𝑔2
] (39) 

𝑔1 = 9.81𝑐𝑜𝑠 (𝛿1 + 𝑞1)(𝑙1𝑚3 + 𝑚1𝜏1)

+ 9.81𝑚3𝜏3𝑐𝑜𝑠 (𝛿3 + 𝑞1 + 𝑞3) 

𝑔2 = 9.81𝑐𝑜𝑠 (𝛿2 + 𝑞2)(𝑙2𝑚4 + 𝑚2𝜏2)

+ 9.81𝑚4𝜏4𝑐𝑜𝑠 (𝛿4 + 𝑞2 + 𝑞4) 

The proposed controller is validated by accurately 

describing the system dynamics, where the equations are 

detailed in Eqs (37)-(39), and the parameters are listed in 

Table I. 

TABLE I.  MODEL PARAMETERS WHEN SIMULATION 

Symbol Parameters 

𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5 0.127m 

𝑚1, 𝑚2, 𝑚3, 𝑚4 0.065kg 

𝐵𝑚 [1,1] 

𝛿1, 𝛿2, 𝛿3, 𝛿4 1 

𝑑 1 

 

In order to improve the accuracy of the five-bar parallel 

robot system, this study proposes a control structure to ensure 

the operating flexible adaptability to different conditions and 

environments. The experiment and data collection were 

conducted by integrating the NI PCIe-6351 board with the 

computer and using Simulink software on the MATLAB 

platform to control the robot arm. Fig. 3 illustrates the 

structure of the robot system. 

This section presents the experimental results of the five-

bar parallel robot system under disturbance-free conditions. 

The experiment aims to evaluate the feasibility of the 

proposed robot controller in accurately tracking the desired 

trajectory. In Section C, the results are compared with other 

control methods to demonstrate the advantages of the 

proposed method in handling the robot system 

A. Stability Evaluation of the Proposed Controller 

The authors validate the theory in this section by running 

the five-bar parallel robot system for 45 consecutive cycles. 

After each cycle, errors are calculated to evaluate the 

convergence of the proposed theory. Fig. 4 depicts the control 

error over cycles for two angles θ_A and θ_B. The above 

graph uses the red dashed line to depict the control error of 

θ_A with irregular oscillation and a decreasing trend. 

Meanwhile, the chart below uses the blue dashed line to 

represent the control error of θ_B, which tends to decrease 

rapidly with each cycle. The decreasing control error of the 

system shows that the controller is gradually stabilizing and 

the accuracy of the system is improving over time. 

Fig. 5 shows the variation of the error over time during 

the tracking error. For 𝜃𝐴, the tracking error starts with a high 

value, then gradually decreases but still fluctuates and shows 

an improving trend over time. Meanwhile, the tracking error 

of 𝜃𝐵 fluctuates sharply and has a decreasing trend. The 

system accuracy is improving over time, and the tracking 

error is decreasing, indicating that the controller is stabilizing.
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Fig. 1. Diagram depicting the RBFNN control system  
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Fig. 2. Structure diagram of five-bar parallel robot 
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Fig. 3. Experimental system 
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Fig. 4. Control error over cycles 

 

 
Fig. 5. Tracking error over cycles 

Fig. 6 shows the mean square error (MSE) variation over 

the cycles for two angles, 𝜃𝐴 and 𝜃𝐵. For angle 𝜃𝐴, the MSE 

fluctuates strongly and decreases unsteadily throughout the 

cycles. In contrast, angle 𝜃𝐵 starts with a high MSE but 

decreases quickly and stabilizes after a few cycles, indicating 

that angle 𝜃𝐵 converges faster. 

The results demonstrate that the controller is gradually 

stabilizing, with the system accuracy improving as the 

parameters decrease over time. However, this error reduction 

phenomenon must be carefully analyzed to determine the 

cause. First, it could be a sign of convergence to the steady 

state, reflecting the effectiveness of the control algorithm. 

Second, with adaptive controllers, the error reduction is an 

inevitable consequence of the parameter auto-tuning 

mechanism. 

 

 
Fig. 6. Mean squared error (MSE) over cycles 

B. Results in One Cycle 

Fig. 7 illustrates the control angles (𝜃𝐴 and 𝜃𝐵) over a 

period of 0 to 15 seconds, with the red line representing the 

system response when using RBFNN. The two zoomed-in 

images at each angle emphasize the system's outstanding 

accuracy. The zoomed-in details show that the RBFNN 

controller accurately tracks the desired trajectory, even in 

complex and continuous curves. 

 

 
Fig. 7. Control angle 𝜃𝐴 and 𝜃𝐵 

Fig. 8 illustrates the tracking capability of the 𝜃𝐴 and 𝜃𝐵 

angles of the control system, with the black lines representing 

the reference values (Setpoint) and the red lines representing 

the system response using RBFNN. The zoom-in sections in 

the figure reveal that the control system exhibits a tracking 

response with minor deviations between the actual and 

reference values. These zoom-ins highlight the system’s 

ability to track and handle details in consecutive curves. 
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Fig. 8. Tracking angle 𝜃𝐴 and 𝜃𝐵 

Fig.  9 and 10 show four graphs depicting the control error 

(Fig.  9) and tracking error (Fig. 10) of two parameters 𝜃𝐴 and 

𝜃𝐵 in a control system using RBFNN. Fig.  9 shows the 

control error 𝜃𝐴, which fluctuates around zero with a large 

amplitude at the beginning but tends to decrease and stabilize 

at a certain value range. Fig. 10 shows that the tracking error 

𝜃𝐴 also fluctuates but with a smaller amplitude, stabilizing the 

tracking error over time. Similarly, the two lower graphs of 

Fig.  9 and Fig. 10 show the control error and tracking error 

of parameter 𝜃𝐵. The control error 𝜃𝐵 fluctuates more 

strongly but is still concentrated around zero, while the 

tracking error 𝜃𝐵 tends to decrease in amplitude more clearly 

over time. These results demonstrate the effectiveness of 

RBFNN in reducing errors and increasing control accuracy. 

 

 
Fig. 9. Control error 𝜃𝐴 and 𝜃𝐵 

 

 
Fig. 10. Tracking error 𝜃𝐴 and 𝜃𝐵 

Fig. 11 shows the tracking ability of the RBFNN control 

system. The solid line shows the desired trajectory (Setpoint), 

while the red dashed line shows the actual trajectory 

(RBFNN). The proposed controller shows good tracking of 

the desired trajectory, but minor errors remain, especially at 

sharp corners or curves. 

 

Fig. 11. Actual trajectory 

C. Comparison Results with Algorithms 

Fig. 12 shows the comparison results of different control 

methods, including PID, RBFNN, and RBFNN combined 

with RC, in tracking the setpoint for two control angles (θ_A 

and θ_B) over time. The graph is divided into two parts: 

control angles (a) and tracking angles (b). Both control 

methods closely track the setpoint for the control angles (θ_A 

and θ_B). However, when zooming in on specific regions, it 

can be seen that the RBFNN combined RC method (red 

dashed line) has superior precision, especially in minimizing 

errors and tracking the setpoint more accurately at critical 

times. The control angles show minimal deviation between 

the methods, but the RBFNN combined RC still shows 

smoother control, especially at the bends. Regarding tracking 

angle, the RBFNN-RC method also shows superior precision 

in tracking the desired trajectory, especially in fast transitions. 

Fig. 13 shows the comparison between three control 

methods, PID, RBFNN, and RBFNN combined with RC, 
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through two main indicators: control error (a) and tracking 

error (b) of the corners (𝜃𝐴 and 𝜃𝐵). In the control error part 

(a), the combination of RBFNN and RC continues to show its 

superiority when the control error is maintained at a very low 

level, especially when there are curves. This result confirms 

that the RBFNN method combined with RC improves 

tracking precision and enhances control efficiency, which is 

especially suitable for systems that require fast and accurate 

response. Similarly, all three methods perform well in the 

tracking error part (b) when the error fluctuates around a 

value close to 0. Still, the RBFNN method combined with RC 

(red line) shows much better precision. The zoomed-in 

sections on the graph clearly illustrate this method's stability, 

which helps reduce small tracking errors that pure PID and 

RBFNN cannot do. 

(a) Control angles (b) Tracking angles
 

Fig. 12. Actual positions of angles 𝜃𝐴 and 𝜃𝐵 at the control angles (a) and tracking angles (b) respectively 

(a) Control angles (b) Tracking angles
 

Fig. 13. Error of angles 𝜃𝐴 and 𝜃𝐵 at the control angles and tracking angles respectivel 
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Fig. 14 shows a comparison between different control 

methods, including PID, RBFNN, and RBFNN combined 

with RC, in tracking the preset trajectory (black line). The 

results show that the PID controller (green dotted line) has 

significant deviations from the desired trajectory, especially at 

sharp curves, indicating less precision tracking. The RBFNN 

controller (blue dashed line) significantly improves the 

tracking performance compared to PID but still has some 

deviations in certain regions. Meanwhile, RBFNN combined 

with RC (red dashed line) performs superior trajectory 

tracking with the highest precision. The magnified regions 

clearly show the differences between the controllers and 

demonstrate that RBFNN combined with RC helps reduce the 

system's tracking error. On the other hand, the Lyapunov 

function shown in the 3D projection in Fig. 14 (b) shows that 

the stability of the system is guaranteed by Lyapunov. The 

component values in the Lyapunov function converge to zero, 

indicating that the system is always stable and approaches 

zero as time approaches infinity. 

The data analyzed in Table II shows that the RBFNN-RC 

control method outperforms both PID and RBFNN in most of 

the indicators, including Control Error, Tracking Error, IAE, 

ISE, ITAE, and ITSE. This method provides better accuracy, 

reduces errors, and improves the system's response. 

Meanwhile, PID shows limitations, reducing reliability in 

systems requiring high accuracy. RBFNN has better results 

than PID but still cannot compare with RBFNN-RC regarding 

efficiency and stability. 

V. CONCLUSION AND DISCUSSION 

This study marks a step forward in developing and 

applying intelligent control methods for uncertain nonlinear 

MIMO systems. The experimental object chosen is a five-bar 

parallel robot system characterized by high mechanical 

complexity, making constructing an accurate mathematical 

model a significant challenge. Moreover, the interconnected 

joints interact during operation, making the already difficult 

position tracking control even more difficult. The study has 

achieved remarkable results by applying the proposed control 

method, based on adaptive and learning capabilities, to 

improve the stability and accuracy during operation, as 

presented in Section V. To achieve these improvements, all 

the parameters of the RBFNN neural network are designed 

based on the gradient descent method, and the Lyapunov 

theory guarantees their stability. The experimental results 

show that the controller gradually stabilizes and the system 

accuracy improves as the adaptive parameters are reduced 

over time. However, this error reduction needs to be analyzed 

carefully to ensure the robustness and effectiveness of the 

controller. First, the error reduction is a positive sign that the 

system is converging to a steady state. However, this is only 

meaningful when the control parameters have been fully 

optimized. Second, the controller uses an adaptive algorithm, 

so the error reduction results from the parameter self-tuning 

process. However, the uneven reduction rate suggests that 

further adjustments may be needed to the controller 

parameters or the neural network learning weights, to improve 

the control performance regarding both response speed and 

accuracy. Finally, the error continues decreasing, but the 

system has not yet reached optimal stability. In that case, it 

may reflect limitations in the modeling or challenges in the 

robustness of the controller when deployed in a actual 

environment. The study employed a robust controller to 

enhance adaptability and respond to uncertainties such as 

disturbances, friction, etc. 

In future studies, the authors aim to analyze further the 

stability and the ability to handle the uncertain component 

directly affecting the system. Periodic uncertainties are 

expected to be introduced during operation. This is possible 

because the experiments in the present study were performed 

on a model in which the random uncertainty component 

already exists in the system. The long-term goal is to develop 

an adaptive and stable control method widely applied to any 

nonlinear and uncertain MIMO system.

TABLE II.  PARAMETERS OF ACTUAL ROBOT SYSTEM OPERATION OF CONTROL METHODS (× 10−3) 

 Methods Control Error Tracking Error IAE ISE ITAE ITSE 

𝜃𝐴 

PID 0.494 4.55 24.9 0.101 127 4.34 

RBFNN 0.332 1.17 13.5 0.0565 66.8 2.98 

RBFNN-RC 0.166 0.829 12.4 0.0315 56 1.18 

𝜃𝐵 

PID -0.163 0.738 15.5 0.0966 73.7 -5.79 

RBFNN -0.0261 0.583 12.4 0.0878 57.4 -3.45 

RBFNN-RC -0.0131 0.382 10.5 0.0825 42.7 -2.33 

 

(a) The actual trajectory of the algorithms (b) 3D drawing of Lyapunov function in actual  

Fig. 14. Tracking trajectories (a) and Lyapunov functions of the proposed method (b)
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