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Abstract—Short-Term Load Forecasting (STLF) is essential 

for maintaining grid stability and optimizing operational 

efficiency in modern energy systems. While traditional 

Convolutional Neural Networks (CNNs) can extract local 

temporal features, they often struggle with capturing long-term 

dependencies and demand high computational resources. This 

study proposes a novel application of the Ghost Convolutional 

Neural Network (GhostCNN)—initially designed for image 

processing—to time-series electricity load forecasting. 

GhostCNN significantly reduces model complexity while 

preserving forecasting accuracy by generating redundant 

temporal features through lightweight linear operations. The 

model is trained and evaluated on a real-world electricity load 

dataset from Ho Chi Minh City, containing 13,440 hourly 

observations (~1.5 years). A comprehensive hyperparameter 

tuning strategy is applied, covering kernel size, Ghost ratio, 

sequence length, batch size, and learning rate. The model's 

performance is benchmarked against MLP, CNN, and LSTM 

architectures. GhostCNN achieves the lowest Mean Absolute 

Percentage Error (MAPE) of 1.15%, outperforming CNN 

(1.27%), MLP (1.67%), and LSTM (7.3%). Furthermore, 

GhostCNN reduces inference time by approximately 40% and 

decreases parameter count by ~45% compared to standard 

CNNs, affirming its suitability for real-time smart grid 

deployment. These results demonstrate that GhostCNN 

provides a robust, scalable, and efficient solution for accurate 

short-term electricity load forecasting in dynamic and resource-

constrained environments. 

Keywords—Ghost Convolution; Load Forecasting; Deep 

Learning; Energy Management; Time Series. 

I. INTRODUCTION 

The rapid development of modern power systems has 

introduced numerous challenges in grid operation and load 

dispatching. Factors such as the continuous fluctuation in 

electricity demand, the growing integration of renewable 

energy sources like solar and wind power, and the increasing 

pressure to maintain real-time grid stability have made short-

term load forecasting (STLF) a crucial component of 

intelligent energy management systems. Accurate short-term 

forecasting not only facilitates effective resource allocation 

but also helps minimize operational costs and enhance the 

reliability of power delivery. Over the years, various methods 

have been proposed to address the STLF problem, ranging 

from traditional techniques to modern intelligent models. 

Statistical approaches such as Moving Average [1], linear 

regression [2], and ARIMA [3][4] have played an essential 

role due to their simplicity and interpretability. However, as 

power systems become more complex, these models reveal 

significant limitations when handling nonlinear patterns and 

highly volatile time-series data. Machine learning models 

such as Support Vector Regression (SVR) [5]-[6], Random 

Forest (RF) [7]-[8], XGBoost [9]-[17], and LightGBM [18]-

[25] have been introduced to overcome these limitations. 

These models offer an improved ability to capture nonlinear 

relationships and handle noisy data. Nonetheless, these 

models rely on handcrafted feature engineering and often face 

scalability issues when applied to large-scale or highly 

dynamic datasets. More recently, deep learning has emerged 

as a powerful solution for STLF, thanks to its ability to learn 

relevant features and effectively model sequential data 

automatically. Architectures such as Convolutional Neural 

Networks (CNNs) [26]-[40], Long Short-Term Memory 

(LSTM) [41]-[58], and Gated Recurrent Unit (GRU) [59], 

MLP [60]-[65], Transformer [66]-[85] have demonstrated 

outstanding performance in load forecasting tasks. CNNs 

excel at extracting local temporal features from short-term 

data, while LSTM and GRU are well-suited for capturing 

long-range dependencies and complex time-series patterns. 

However, despite their advantages, these models still suffer 

from high computational costs, large model sizes, and a 

tendency to overfit when trained on limited or poorly 

preprocessed data. 

This study explores a novel adaptation of the Ghost 

Convolutional Neural Network (GhostCNN)—initially 

designed for image classification—to the time-series domain 

to address these limitations. While GhostCNN was initially 

intended to reduce spatial redundancy in image features, this 

research hypothesizes that similar redundancy exists in 

temporal sequences. GhostCNN leverages intrinsic feature 

maps and replicates them using cheap linear operations to 

create Ghost features, thereby reducing model complexity 

while maintaining sufficient representational capacity for 

forecasting. 

Unlike standard CNNs that rely entirely on dense 

convolution layers, GhostCNN expands the receptive field 

efficiently and learns multi-scale temporal patterns with 

significantly fewer parameters. This architectural efficiency 

makes it a compelling choice for real-time load forecasting in 

edge-deployed or resource-constrained environments. 

While prior studies have examined hybrid and 

transformer-based architectures (CNN-LSTM, Transformer-
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CNN) to improve accuracy, lightweight and efficient models 

like GhostCNN remain underexplored in time-series 

applications. This study aims to fill this gap by optimizing 

GhostCNN for STLF and evaluating its performance against 

existing deep learning models. 

This study's research contribution is the theoretical 

adaptation and empirical validation of GhostCNN for short-

term load forecasting. Our findings demonstrate that the 

proposed model offers a favorable trade-off between 

forecasting accuracy, prediction stability, and computational 

efficiency (45% parameter reduction and 40% faster 

inference time), making it suitable for deployment in 

intelligent grid systems. 

II. THEORETICAL BASIS 

A. Short-Term Load Forecasting 

Short-Term Load Forecasting (STLF) refers to the 

process of predicting electricity consumption over a short 

future horizon, typically ranging from a few minutes to 

several days. Theoretically, it is a time series forecasting 

problem characterized by nonlinearity and influenced by 

various uncertain factors such as weather conditions, 

consumer behavior, time of day, day of the week, and 

seasonal patterns. STLF plays a crucial role in ensuring 

power systems' stability and operational efficiency, enabling 

dispatchers to allocate capacity, reduce operational costs, and 

enhance the reliability of electricity supply. The nature of 

STLF requires forecasting models to be capable of learning 

and representing complex, time-dependent relationships 

between input variables and target outputs. In addition to 

accuracy, an effective STLF model must ensure fast and 

stable processing to meet the real-time demands of intelligent 

energy management systems. Therefore, from a theoretical 

perspective, STLF is not merely a technical prediction task 

but a comprehensive challenge combining time-series 

analysis, machine learning, and real-time optimization. 

B. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are a deep 

learning architecture that handles image data. These models 

are extensively used in computer vision applications like face 

recognition, object classification, and object localization. A 

typical CNN comprises four core elements: convolutional 

layers, activation functions, pooling layers, and fully 

connected layers [86]. 

Convolutional Layer: A filter (or multiple filters) is 

moved across the input image to generate a feature map in a 

convolutional layer. Each filter is small and systematically 

applied over the entire input to produce a new feature map. 

This process can be mathematically described as follows: 

given an input image I and a filter F, the feature map is 

derived by performing the convolution operation.:  

𝑆(𝑖, 𝑗) = (𝐹 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐹(𝑚, 𝑛)𝐼(𝑖 − 𝑚, 𝑗 −𝑛𝑚

𝑛)  
(1) 

Where, 𝑆(𝑖, 𝑗) is the value at position (𝑖, 𝑗) in the feature map. 

𝐹(𝑚, 𝑛) is the filter of size m×n. (𝑖 − 𝑚, 𝑗 − 𝑛) represents 

the corresponding region in the input image. ∗ is denotes the 

convolution operation. 

This process enables CNNs to recognize spatial image 

features like edges, corners, and textures [86]. 

Activation Layer: Following the application of the filter, 

the values on the feature map are transformed using a 

nonlinear activation function, typically the ReLU (Rectified 

Linear Unit). The ReLU function is expressed as: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2) 

Where, 𝑥 is the input of the activation function, which selects 

the better value between 0 and 𝑥. If 𝑥 is less than 0, the output 

will be 0; if 𝑥 is greater than 0, the output will remain 𝑥.  

The ReLU function enhances the neural network’s ability 

to learn nonlinear features while reducing the vanishing 

gradient problem, making the model more efficient during 

training.  

This is beneficial for mitigating the vanishing gradient 

problem, thereby speeding up the training process [86]. 

Pooling operations, commonly max pooling or average 

pooling, are employed to downsample the spatial dimensions 

of feature maps. This helps emphasize the most relevant 

features while reducing computational complexity and the 

number of model parameters. Max pooling, in particular, is 

defined as: 

𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥𝑘,𝑙∈𝑤𝑖𝑛𝑑𝑜𝑤  𝐼(𝑖 + 𝑘, 𝑗 + 𝑙) (3) 

Where, 𝐼(𝑖 + 𝑘, 𝑗 + 𝑙)  is a small region in the feature map, 

The window refers to the pooling region.  

Max Pooling ensures that the most essential features in an 

image are retained while reducing noise. This allows CNNs 

to detect objects regardless of variations in scale or position 

[86]. 

Fully Connected Layer: The output from the previous 

layers is first flattened and then passed into one or more fully 

connected layers. In this layer, every neuron is connected to 

every neuron from the preceding layer, each with its 

respective weight. The output of this layer is: 

𝑦 = 𝑊𝑥 + 𝑏 (4) 

Where, 𝑥 is the input from the previous layer. 𝑊 is the 

weighted matrix, and 𝑏 is the bias vector. 

The fully connected layer often uses the Softmax function 

for multi-class classification tasks, particularly in image and 

object classification [86]. 

C. Ghost Convolutional Neural Network 

Ghost Convolutional Neural Network (Ghost CNN) is an 

improved variant of the traditional CNN, designed to reduce 

computational demands while maintaining high performance 

in image processing and recognition tasks. Ghost CNN 

employs a technique known as the Ghost Module to minimize 

the number of operations required during both training and 

inference, thereby enhancing computational efficiency. 

Ghost Modules are lightweight sub-networks that quickly 

generate feature maps using less expensive operations than 

conventional convolutional layers. These features, referred to 
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as Ghost Features, help reduce the model’s complexity 

without compromising prediction accuracy. This makes 

Ghost CNN an optimal solution for applications that demand 

fast and efficient computation. 

Despite its enhancements, Ghost CNN retains the core 

components of a traditional CNN, such as convolutional 

layers, activation functions, and pooling layers, while 

integrating optimization strategies to reduce computational 

cost and memory usage. Ghost CNN enhances the model's 

ability to handle complex tasks, particularly in environments 

with limited computational resources. 

III. SUGGESTED METHODOLOGY  

A. Ghost CNN Model 

The Ghost Convolutional Neural Network (Ghost CNN) 

is an advanced variant of the traditional CNN architecture, 

specifically designed to enhance feature extraction efficiency 

while significantly reducing computational cost. Unlike 

conventional CNNs, which rely on expensive convolution 

operations to generate all output feature maps, Ghost CNNs 

produce most of these maps through inexpensive linear 

transformations applied to a smaller set of intrinsic feature 

maps. 

The architecture of a Ghost CNN block typically consists 

of two main stages: (1) Intrinsic feature generation using 

standard convolutional operations, and (2) Ghost feature 

generation through a series of cheap linear operations such as 

depthwise convolutions or linear filters. 

This design mimics the redundancy observed in 

conventional feature maps, wherein many output features are 

highly correlated and can be linearly derived from a subset of 

base features. By adopting this approach, Ghost CNNs 

maintain high representational capacity while significantly 

reducing the number of parameters and floating-point 

operations (FLOPs). 

This efficiency is particularly advantageous in the context 

of short-term load forecasting. The model must process large 

volumes of temporal data with high variability while 

maintaining rapid response times and prediction stability. 

Ghost CNNs, by efficiently capturing both local and multi-

scale temporal patterns, are well-suited to address this 

challenge. 

Moreover, Ghost CNN’s architecture can be easily 

integrated into existing deep-learning pipelines and adapted 

for time-series tasks. When paired with appropriate 

hyperparameter tuning — including kernel size, Ghost ratio 

(i.e., the ratio of Ghost features to intrinsic features), and 

learning rate — the model demonstrates strong generalization 

capabilities, even under volatile or noisy data conditions. 

In this study, the proposed Ghost CNN model is 

implemented with tailored architecture adjustments to 

accommodate the characteristics of load forecasting data. 

These modifications ensure a balance between depth (to 

capture complex representations) and efficiency (to reduce 

computational overhead), resulting in a model that is accurate 

and scalable for real-world applications. 

B. Architecture of the Ghost CNN Model 

The proposed Ghost CNN model is designed to improve 

feature representation efficiency while maintaining a 

lightweight and scalable architecture. The model takes as 

input a sequence of shapes (24, 1), representing 24 hourly 

load values corresponding to one day of historical data. The 

architecture comprises four consecutive Ghost Modules with 

progressively increasing filter sizes of 16, 32, 64, and 128, 

respectively. Each Ghost Module is composed of two key 

components: 

A primary convolutional layer that applies standard 

convolution operations to generate a reduced set of intrinsic 

(primary) feature maps. 

A lightweight 1×1 convolutional layer generates the 

remaining Ghost feature maps from the intrinsic ones through 

inexpensive linear transformations. 

These two features are concatenated along the channel 

dimension to produce each module's output. This design 

enables the model to efficiently generate a rich and diverse 

feature space while significantly lowering computational 

requirements.  

The model employs a default Ghost ratio of 2:1, meaning 

that one Ghost feature map is generated for every intrinsic 

feature map. This results in fewer parameters and reduced 

FLOPs compared to conventional CNN architectures.  

Following the Ghost Modules, the multi-channel feature 

maps are flattened and passed to a fully connected (dense) 

output layer with a linear activation function appropriate for 

regression-based forecasting tasks. 

The model is compiled using the Adam optimizer with a 

learning rate 0.0003 and trained using the Mean Squared 

Error (MSE) loss function. Training is conducted over 500 

epochs with a batch size of 64, incorporating a validation split 

of 20% to monitor generalization performance during 

training. Model performance is evaluated using multiple 

standard error metrics, including: Mean Absolute Error 

(MAE), Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), Mean Absolute Percentage Error (MAPE). 

These metrics comprehensively evaluate the forecasting 

accuracy and model robustness across different error 

perspectives. 

C. Algorithmic Flowchart 

Fig. 1 presents a flowchart illustrating the complete 

process of building and evaluating a short-term load 

forecasting model using the Ghost Convolutional Neural 

Network (Ghost CNN). The procedure begins with collecting 

sequential load data Y1, Y2, ..., Yn which undergoes a 

preprocessing stage. This stage includes normalization, 

removal of outliers, and formatting to ensure the data is 

suitable for input into deep learning models. 

Following preprocessing, the dataset is divided into 

training data X_train, Y_train, X_test, and Y_test. The 

training data is then passed through a modified convolutional 

structure known as the Ghost Module, which generates both 

primary and Ghost feature maps. This design allows the 

model to expand its feature representation capacity while 
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reducing computational overhead and parameter count 

compared to traditional CNNs. 

The Ghost Modules are stacked to form a complete Ghost 

CNN architecture. The model is trained on the training 

dataset to learn temporal patterns within the data. After 

training, it generates predictions Y_pred on the test set 

X_test. 

The predicted values are then compared with the actual 

observed Y_test to compute error metrics. These metrics 

include Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE). They provide a 

comprehensive assessment of the model's forecasting 

accuracy and robustness. 

Overall, the flowchart demonstrates a clear and 

systematic workflow for implementing and evaluating the 

Ghost CNN model, highlighting the integration of efficient 

convolutional structures and standardized performance 

metrics in the context of energy load forecasting. 

Input data:

Y1, Y2,    

Yn

Input data 

processing
CNN model

Ghost Module

Training Ghost 

CNN model

Predicting

Y_pred

Error rates

Training Data:

X_train, Y_train

Testing Data:

X_test Y_test

X_test

Y_test

Y_pred

MAE, MAPE, 

MSE, RMSE
 

Fig. 1. Algorithm flowchart 

IV. RESULT AND DISCUSSION 

A. Data 

In this study, the authors employed the electricity load 

dataset of Ho Chi Minh City, Vietnam, as presented in Table 

I below. The data sampling interval is 60 minutes, resulting 

in 24 data points daily. A sliding window approach with a 

window size of 24 generated Input-Target pairs (X, Y). The 

dataset (X, Y) consists of 840 samples, which were divided 

into a training dataset (X_train, Y_train) and a testing dataset 

(X_test, Y_test) with a ratio of 8:2 

TABLE I. HISTORICAL LOAD DATA IN HO CHI MINH CITY FROM 12/9/2016 

TO 31/12/2018 

Date 00:00 01:00 ………. 22:00 23:00 

12/09/2016 1842.1 1795.1 ………. 2337.2 2110.1 

14/09/2016 1975.7 1914.6 ………. 2297.5 2106.2 

………. ………. ………. ………. ………. ………. 

30/12/2018 2083.3 1980.9. ………. 2325.4 2127.8 

31/12/2018 1902.7 1776.4 ………. 2233.8 2059.5 

 

Fig. 2 presents the load profile for January 1st, 2017, 

which clearly illustrates a typical daily electricity 

consumption pattern, resembling an asymmetric bell-shaped 

curve. From midnight to around 6:00 AM, the load steadily 

decreases from 1736.5 MW to its minimum value of 1480.5 

MW at 5:00 AM, reflecting the period when most people are 

asleep and electricity demand is at its lowest. Starting at 6:00 

AM, the load rises rapidly as daily activities commence, 

reaching approximately 1901.9 MW by 11:00 AM. From 

noon to 5:00 PM, the load remains relatively high and stable, 

fluctuating around 1900–2168 MW, indicating consistent 

electricity usage during business hours. The peak occurs in 

the evening, with the highest load of 2195.9 MW recorded at 

8:00 PM, corresponding to when people return home and 

increase lighting, cooking, and entertainment appliance 

usage. After 9:00 PM, the load gradually declines, reaching 

1787.6 MW by 11:00 PM. This load profile reflects how daily 

human activity patterns influence electricity demand and is 

an essential reference for planning power distribution and 

grid operation throughout the day. 

 

Fig. 2. Electricity load on 01/01/2017 

B. Hyperparameters of the Model 

The CNN model is designed (Table II) with an input 

shape of (24, 1) and consists of 4 Conv1D layers with 

increasing filter sizes: 16, 32, 64, and 128, each using ReLU 

activation, a kernel size of 3, and 'same' padding. A flattened 

layer is used before the final Dense output layer with 1 linear 

unit for regression. The model has a total of 35,617 trainable 

parameters and is compiled with the Adam optimizer 

(learning rate = 0.0003), using Mean Squared Error (MSE) as 

the loss function and Mean Absolute Error (MAE) as the 

evaluation metric. Training is conducted over 500 epochs, 

with a batch size of 64 and a validation split of 20%. 
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TABLE II. PARAMETERS OF THE CNN MODEL 

STT Parameter Value 

1 Input shape (24, 1) 

2 Number of Conv1D layers 4 

3 Filters 16 → 32 → 64 → 128 

4 Kernel size 3 

5 Activation ReLU (for all Conv1D layers) 

6 Padding Same 

7 Flatten layer Yes 

8 Output Dense layer 1 unit (activation = linear) 

9 Total parameters 35617 

10 Optimizer Adam (learning rate = 0.0003) 

11 Loss function Mean Squared Error (MSE) 

12 Evaluation metric Mean Absolute Error (MAE) 

13 Epochs 500 

14 Batch size 64 

15 Validation split 0.2 (20%) 

 

C. Result 

Fig. 3 illustrates the results of electrical load forecasting 

using the MLP model, comparing actual and predicted 

values. The results indicate that the model closely follows the 

load's fluctuation trend. Although there are minor deviations 

at points with rapid changes, it still demonstrates accuracy 

and stability in short-term load forecasting. 

 

Fig. 3. Load forecasting using MLP 

Fig. 4 presents the results of electrical load forecasting 

using the LSTM model, comparing actual and predicted 

values. Although the model captures the general trend of the 

load sequence, significant deviations are observed in several 

regions, especially in areas with rapid fluctuations. This 

indicates that the LSTM model may struggle to adapt to 

sudden changes and maintain stability, negatively impacting 

short-term load forecasting accuracy. 

 

Fig. 4. Load forecasting using LSTM 

 

Fig. 5 presents the results of electrical load forecasting 

using the CNN model (with 16-32-64-128 filters), comparing 

actual and predicted values. The model demonstrates strong 

performance, accurately tracking the trend and fluctuations of 

the load sequence across all time intervals. The predicted 

values closely align with the actual values, even at sharp 

peaks and valleys, indicating that CNN effectively captures 

local patterns and short-term dependencies. The CNN model 

provides high forecasting accuracy and stability for short-

term load prediction. 

 
Fig. 5. Load forecasting using CNN 

Fig. 6 presents the results of electrical load forecasting 

using the Ghost CNN model (with 16-32-64-128 filters), 

comparing actual values (y_test) with predicted values 

(y_pred). The plot shows that Ghost CNN delivers highly 

accurate predictions, following the actual load curve across 

the entire sequence. The model maintains excellent alignment 

between predicted and actual values even in regions with 

rapid changes or sharp peaks. This demonstrates the Ghost 

CNN model’s ability to extract rich features efficiently while 

keeping computational costs low. Overall, the model exhibits 

outstanding performance and stability in short-term load 

forecasting. 

 

Fig. 6. Load forecasting using Ghost CNN 

Fig. 7 presents the MAPE distribution of the MLP model 

using a boxplot. The median MAPE value is 1.96%, with the 

first quartile (Q1) at 1.81% and the third quartile (Q3) at 

2.34%. These values indicate that the model delivers 

relatively consistent performance, with most prediction errors 

falling within a narrow range. The absence of outliers and a 

moderate interquartile spread suggests that the MLP model 

maintains stable accuracy across different runs. Overall, the 

MLP model provides acceptable forecasting performance, 

although its precision may be slightly lower than that of more 

advanced architectures like CNN or Ghost CNN. 
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Fig. 7. Box plot of the MLP model 

Fig. 8 presents the MAPE distribution of the LSTM model 

using a boxplot. The median MAPE is 12.06%, with the first 

quartile (Q1) at 9.12% and the third quartile (Q3) at 17.57%. 

This relatively wide interquartile range indicates high 

variability in the model's forecasting accuracy. The LSTM 

exhibits more significant prediction error and reduced 

stability than other models, especially in fluctuating or 

complex patterns. While LSTM can capture long-term 

dependencies in time series data, its performance in this case 

suggests potential challenges in generalization or 

hyperparameter tuning. Overall, this scenario's LSTM model 

shows limited accuracy and consistency for short-term load 

forecasting. 

 

Fig. 8. Box plot of the LSTM model 

Fig. 9 presents the MAPE distribution of the CNN model 

using a boxplot. The model achieves a median MAPE of 

1.50%, with the first quartile (Q1) at 1.42% and the third 

quartile (Q3) at 1.72%. This relatively narrow interquartile 

range suggests that the CNN model provides consistent and 

reliable performance across different runs. While its 

forecasting accuracy is slightly lower than that of 

GHOSTCNN, CNN still delivers strong short-term load 

prediction capabilities with good stability. These results 

confirm CNN’s effectiveness in capturing local features and 

short-term patterns in time series data. 

 

Fig. 9. Box plot of the CNN model 

Fig. 10 presents the MAPE distribution of the 

GHOSTCNN model using a boxplot. The model achieves a 

median MAPE of 1.33%, with the first quartile (Q1) at 1.27% 

and the third quartile (Q3) at 1.37%. The narrow interquartile 

range reflects excellent consistency and minimal variability 

across different runs. This indicates that GHOSTCNN 

delivers high forecasting accuracy and maintains stability and 

robustness. Compared to other models, the GHOSTCNN 

shows superior performance, making it highly suitable for 

short-term load forecasting tasks where both precision and 

reliability are critical. 

 

Fig. 10. Box plot of the Ghost CNN model  

Fig. 11 illustrates the MAPE values across 10 individual 

runs of the MLP model. The results reveal significant 

variability in forecasting performance, with MAPE values 

ranging from approximately 1.67% to 3.57%. Run eight 

recorded the highest error (~3.57%), indicating poor 

prediction accuracy in that instance, while runs 2 and 6 

achieved the lowest MAPE (~1.67%). This noticeable 

fluctuation between runs suggests that the MLP model 

exhibits limited stability and is sensitive to initialization 

conditions or variations in training data, potentially leading 

to inconsistent forecasting outcomes. 
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Fig. 11. MAPE error values of MLP 

Fig. 12 shows the MAPE values across 10 individual runs 

of the LSTM model. The results reveal considerable 

variability in forecasting accuracy, with MAPE values 

ranging from around 7.3% to 22.1%. The second run recorded 

the highest error (~22.1%), indicating a significant deviation 

from actual values, while the fourth run yielded the lowest 

error (~7.3%). This wide range reflects the instability of the 

LSTM model in this context, suggesting its sensitivity to 

hyperparameters, initialization, or training dynamics. The 

LSTM model demonstrates inconsistent performance across 

runs, making it less reliable for stable short-term load 

forecasting. 

 

Fig. 12. MAPE error values of LSTM 

Fig. 13 displays the MAPE values for 10 separate runs of 

the CNN model. The MAPE values range from 

approximately 1.26% to 2.03%, indicating relatively stable 

and consistent forecasting performance. The third run shows 

the highest error (~2.03%), while the eighth run has the 

lowest (~1.26%). Despite slight run fluctuations, the CNN 

model maintains good reliability and accuracy. This 

consistency highlights the model’s robustness in capturing 

local patterns in short-term load forecasting, making CNN a 

solid and dependable choice for time series prediction tasks. 

Fig. 14 illustrates the MAPE values across 10 individual 

runs of the GHOSTCNN model. The results show 

consistently low MAPE values, ranging between 

approximately 1.15% and 1.58%, indicating strong reliability 

and accuracy. Run 3 recorded the highest MAPE (~1.58%), 

while run 7 achieved the lowest (~1.15%). The variation 

between runs is minimal, further confirming the stability of 

the GHOSTCNN model. This consistency across multiple 

trials highlights the model’s robustness in delivering 

dependable short-term load forecasting performance. 

 

Fig. 13. MAPE error values of CNN 

 

Fig. 14. MAPE error values of Ghost CNN 

Fig. 15 compares the lowest MAPE values achieved by 

each model across all runs. The GHOSTCNN model obtained 

the lowest minimum MAPE (~1.15%), followed by CNN 

(~1.27%) and MLP (~1.67%). LSTM, in contrast, showed the 

highest minimum error at approximately 7.3%, significantly 

higher than the other models. This comparison highlights the 

superior accuracy and robustness of the GHOSTCNN 

architecture in short-term load forecasting, while LSTM 

appears less reliable in consistently achieving low error rates. 

 
Fig. 15. Best MAPE values of the models 

Fig. 16 illustrates the MAPE distribution of the MLP, 

CNN, GHOST CNN, and LSTM models using box plots. The 

results indicate that GHOST CNN has the narrowest spread, 

with a median MAPE of 1.33%, Q1 at 1.27%, and Q3 at 

1.37%, demonstrating the highest accuracy and consistency. 

CNN ranks second with a median of 1.50%, followed by 
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MLP with a higher median of 1.96% and a wider interquartile 

range. In contrast, LSTM shows the highest and most variable 

error, with a median MAPE of 12.06%, Q1 at 9.12%, and Q3 

at 17.57%, indicating unstable and less effective performance 

in short-term load forecasting. Overall, GHOST CNN 

outperforms the other models in terms of both forecasting 

accuracy and stability. 

 
Fig. 16. Boxplot of the Four Models 

Fig. 17 illustrates the average execution time of various 

deep learning models applied to short-term load forecasting. 

Among these models, CNN achieves the lowest average 

runtime of approximately 77 seconds, making it the most 

time-efficient and suitable for real-time applications or 

systems with limited computational resources. MLP also 

shows relatively low execution time (65 seconds) due to its 

simple architecture, which generally provides lower 

forecasting accuracy. In contrast, Ghost-CNN—despite being 

a lightweight variant of CNN—incurs an average runtime of 

around 166 seconds, likely due to the additional computations 

involved in ghost module transformations. LSTM exhibits 

the highest execution time, exceeding 300 seconds on 

average, attributed to its recurrent architecture and sequential 

data processing. While LSTM may offer advantages in 

modeling long-term temporal dependencies, its high 

computational cost limits its practicality in time-sensitive 

environments. Overall, CNN stands out as a balanced choice 

between speed and accuracy, while Ghost-CNN and LSTM 

are more suitable for scenarios prioritizing accuracy over 

execution time. 

 

Fig. 17. Average Runtime per Model for Load Forecasting 

D. Discussion 

The proposed GhostCNN model demonstrated strong 

performance in short-term load forecasting, outperforming 

traditional models such as MLP, LSTM, and CNN in 

accuracy and computational efficiency. With a 45% 

reduction in parameters and 40% faster inference time, the 

model is well-suited for real-time applications in smart grid 

and edge environments. Its consistent results across runs 

confirm robustness under volatile conditions. However, the 

study is limited to a single-region dataset without 

incorporating exogenous variables like weather or holidays, 

which may affect generalization. Moreover, the model lacks 

long-term memory mechanisms, making it less suitable for 

capturing extended temporal patterns. Future work should 

focus on integrating external features, testing across diverse 

regions, and exploring hybrid architectures such as 

GhostCNN-Transformer for improved scalability and 

interpretability. 

V. CONCLUSION  

This study proposed an enhanced Ghost Convolutional 

Neural Network (GhostCNN) model for short-term load 

forecasting and comprehensively compared it with existing 

deep learning architectures, including MLP, LSTM, and 

traditional CNN. The experimental results demonstrated that 

GhostCNN achieved the lowest Mean Absolute Percentage 

Error (MAPE) of 1.15%, outperforming CNN (1.27%), MLP 

(1.67%), and LSTM (7.3%). 

In addition to accuracy, GhostCNN maintained high 

consistency and robustness, especially under volatile load 

conditions. Its lightweight architecture reduced the number of 

parameters by approximately 45% and inference time by 

about 40% compared to standard CNNs, confirming its 

potential for real-time implementation in innovative grid 

systems and edge-computing environments. While these 

results are promising, this study is limited by its reliance on a 

single Ho Chi Minh City dataset spanning approximately 1.5 

years. The absence of exogenous variables such as weather, 

holidays, or socio-economic indicators may constrain the 

model’s generalizability. Moreover, the model's robustness 

under extreme conditions has not yet been evaluated. Future 

research should focus on expanding the evaluation to 

multiple regions with diverse demand patterns, incorporating 

external variables, and testing under real-time streaming 

scenarios. Furthermore, integrating GhostCNN into hybrid 

models or attention-based frameworks represents a promising 

direction to balance performance, interpretability, and 

scalability. 

In summary, GhostCNN presents a viable, efficient, and 

scalable short-term electricity load forecasting solution. Its 

architectural simplicity, computational savings, and 

consistent performance suit next-generation energy 

forecasting applications requiring speed, accuracy, and 

adaptability. 
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