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Abstract—Accurate temperature control of continuous 

stirred tank reactors (CSTRs) remains a major challenge due to 

the nonlinear dynamics and inherent time delay of the system. 

Conventional proportional-integral-derivative (PID) controllers 

often struggle to maintain optimal performance under such 

complexities, highlighting the need for more advanced control 

strategies. In this study, a two-degree-of-freedom (2-DOF) PID 

controller is designed and optimized using the quadratic 

interpolation optimization (QIO) to enhance temperature 

regulation in CSTRs. The proposed approach aims to minimize 

steady-state error, settling time, and overshoot. To implement 

this method, the nonlinear model of the CSTR is linearized 

around a stable operating point, and the controller parameters 

are tuned by minimizing a composite cost function consisting of 

normalized overshoot and instantaneous error. Simulation 

results demonstrate that the QIO-based 2-DOF PID controller 

significantly outperforms other metaheuristic approaches such 

as differential evolution, particle swarm optimization, slime 

mould algorithm, and greater cane rat algorithm. Furthermore, 

comparisons with recent works reveal substantial 

improvements in rise time, settling time, and steady-state 

accuracy. 

Keywords—Two-Degree-of-Freedom (2-DOF) PID 

Controller; Quadratic Interpolation Optimization; 

Metaheuristics; Continuous Stirred Tank Reactor; Temperature 

Control. 

 INTRODUCTION 

Maintaining accurate temperature control in continuous 

stirred tank reactors (CSTRs) is a well-known challenge in 

process industries due to their inherent nonlinearities, time 

delays, and susceptibility to disturbances [1]. These dynamic 

complexities often render conventional control methods 

ineffective, leading to significant steady-state errors, long 

settling times, and suboptimal disturbance rejection [2]. To 

overcome these issues, this study proposes a two-degree-of-

freedom (2-DOF) proportional-integral-derivative (PID) 

control framework enhanced by the quadratic interpolation 

optimization (QIO) algorithm, which aims to achieve precise 

regulation through intelligent parameter tuning. 

The effectiveness of such an approach largely depends on 

the underlying control structure. Among various strategies, 

PID controllers particularly the 2-DOF PID have been widely 

applied due to their simplicity and practical utility [3]. Unlike 

traditional PID controllers, which apply the same tuning 

across all control objectives [4], the 2-DOF configuration 

separates the tracking and disturbance rejection paths, 

providing better adaptability to nonlinear processes like 

CSTRs [5]. However, the performance of these controllers is 

heavily influenced by their parameter settings, which are 

often difficult to optimize manually or through traditional 

tuning rules. To address this, several recent studies have 

explored hybrid or intelligent optimization methods 

integrated with advanced PID structures [6]–[8]. For 

example, Jabari, et al. [7] proposed a novel TDn(1+PIDn) 

controller combined with a DCSA algorithm to efficiently 

regulate pressure in nonlinear condensers. Similarly, a 

multistage FOPD(1+PI) controller optimized via the Pelican 

algorithm has shown significant improvements in DC motor 

control [6]. Another contribution involved PIDn(1+PD) 

tuning for DC-DC converters using the GEO algorithm, 

demonstrating enhanced tracking accuracy [8]. 

To address the challenge of PID tuning in nonlinear 

systems, various metaheuristic algorithms have been 

employed. Differential evolution (DE) [9] and particle swarm 

optimization (PSO) [10] are among the most widely used, 

valued for their simplicity and convergence behavior. More 

recent methods like the slime mould algorithm (SMA) [11] 

and greater cane rat algorithm (GCRA) [12] offer improved 

exploration in complex search spaces. The quadratic 

interpolation optimization (QIO) [13] algorithm further 

enhances search efficiency through interpolation-based 

updates, making it suitable for high-dimensional control 

problems. 

Several recent studies have explored the integration of 

quadratic interpolation-based optimization algorithms into 

complex engineering control and prediction tasks [14]–[16]. 

Dao, et al. [17] proposed a fault diagnosis framework for 

hydro-turbine systems using a deep learning model optimized 

by a chaotic QIO (CQIO) algorithm, which improved 

diagnostic accuracy through diverse initial population 

generation and fine-tuned CNN-LSTM hyperparameters. In 

another application, Bayoumi, et al.   [18] applied QIO to the 

parameter estimation of photovoltaic (PV) systems under 
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varying irradiance conditions, outperforming conventional 

algorithms like GWO, PSO, and SSA in accuracy and 

convergence speed. Ekinci, et al. [15] employed QIO in 

combination with a real PID plus second-order derivative 

(RPIDD2) controller for electric furnace temperature control 

and showed that QIO-RPIDD2 achieved faster settling time 

and reduced overshoot compared to FLA, RSA, and DE-

based counterparts.  Similarly, Izci, et al.  [16]   introduced a 

hybrid simulated annealing-QIO (hSA-QIO) algorithm for 

dynamic load frequency control (LFC) in power systems, 

demonstrating superior control precision and robustness 

against fluctuations in hybrid photovoltaic-thermal systems. 

To overcome the limitations of conventional QIO in high-

dimensional and nonlinear problems, Khan, et al. [19] 

proposed an improved QIO (IQIO) integrating Weibull flight 

motion, chaotic mutation, and prairie dog optimization 

(PDO). This enhanced variant significantly reduced costs and 

emissions in stochastic short-term hydrothermal scheduling, 

particularly under uncertainty from solar and wind energy 

sources.  These studies collectively highlight the effectiveness 

and adaptability of QIO and its enhanced variants in a variety 

of industrial and energy control applications.  

To address these gaps, this study integrates the QIO 

algorithm [14], a recent interpolation-based metaheuristic, 

with a 2-DOF PID controller [20]–[22] for the CSTR process. 

The proposed QIO-based approach is benchmarked against 

state-of-the-art methods, showing significant improvements 

in rise time, settling time, overshoot, and steady-state error. 

These results confirm the novelty and practical impact of our 

method and underscore its potential for broader use in 

advanced industrial control systems. 

This paper is organized as follows. Section 2 presents the 

mathematical modeling of the continuous stirred tank reactor 

(CSTR), including its nonlinear dynamics and the linearized 

transfer function used for control design. Section 3 introduces 

the quadratic interpolation optimization (QIO) algorithm, 

describing its generalized interpolation mechanism and 

suitability for control parameter tuning. Section 4 outlines the 

proposed QIO-based 2-DOF PID control strategy, including 

the controller structure, objective function formulation, and 

parameter optimization methodology. Section 5 reports and 

analyzes the comparative simulation results, evaluating the 

proposed method against existing metaheuristic algorithms 

and recent literature in terms of performance metrics such as 

rise time, overshoot, settling time, steady-state error, and 

integral absolute error (IAE). Finally, Section 6 concludes the 

study by summarizing the findings and suggesting directions 

for future research and real-time implementation. 

 MATHEMATICAL MODEL OF CONTINUOUS STIRRED 

TANK REACTOR 

The continuous flow chemical reaction process in process 

industries relies heavily on continuous stirred tank reactors 

(CSTRs) as crucial components [23][24]. The ability of these 

reactors to deliver uniform mixing and consistent product 

quality makes them a crucial element in multiple chemical 

manufacturing processes. The nonlinear behavior of CSTRs 

becomes especially problematic when handling exothermic 

reactions which makes maintaining precise temperature 

control highly challenging. To achieve effective control 

strategies, it is necessary to have a precise mathematical 

model that accurately represents the reactor behavior when 

operating conditions change. The behavior of a CSTR that 

experiences an exothermic reaction responds to nonlinear 

differential equations which originate from both material and 

energy balance principles. The governing equations represent 

ideal reactor conditions including perfect mixing and uniform 

physical characteristics throughout the system with constant 

volume. The governing equations are expressed as follows: 

• Material Balance 

𝑑𝐶𝐴

𝑑𝑡
=

𝑄

𝑉
(𝐶𝐴𝑖𝑛 − 𝐶𝐴) − 𝑟 (1) 

• Energy Balance 

𝑑𝑇

𝑑𝑡
=

𝑄

𝑉
(𝑇𝑖𝑛 − 𝑇) − (

∆𝐻

𝛿𝑐𝑝

) 𝑟 +
𝑈𝐴

𝑉𝛿𝑐𝑝

(𝑇𝑗 − 𝑇) (2) 

• Reaction Rate Expression 

𝑟 = 𝑘0 × exp (−
𝐸𝑎

𝑅𝑇
) × 𝐶𝐴 (3) 

Mixed product

Feed

Motor

Cooling 

jacket

Baffle

Agitator

 

Fig. 1. Cross-sectional diagram of a continuous stirred tank reactor 

These equations describe how the concentration of the 

reactant 𝐶𝐴  and the temperature inside the reactor T evolve 

over time. The variable 𝑟 indicates the chemical reaction rate 

which relies on both temperature and concentration 

levels. The reaction rate exhibits exponential temperature 

dependence according to the Arrhenius equation while being 

multiplied by concentration which causes significant 

nonlinear behavior in the system. 

An effective control system design usually involves 

linearizing a nonlinear model at a steady-state operating 
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point. The operating point selection happens under reactor 

conditions that guarantee safety and stability. The definition 

of the operating point for this scenario is as follows: 

𝐶𝐴 = 0.98 mol/m3, 𝑇 = 304.2 K, and 𝑇𝑗 = 280 K (4) 

The process transfer function which relates the reactor 

and jacket temperature is approximated as stable first-order 

plus time delay model (SFOPTD) using Sundaresan and 

Krishnaswamy method [25] for a step change of 10 K in 

jacket temperature, and the model is given as follows [26]: 

𝐺𝑐𝑠𝑡𝑟(𝑠) =
0.85

0.4355𝑠 + 1
𝑒−0.0135𝑠 (5) 

This transfer function serves as a simplified linear 

representation of the CSTR system and is used as the basis 

for controller design, particularly for tuning parameters in 

model-based or optimization-driven control strategies. Fig. 1 

shows the cross-sectional diagram of a continuous stirred 

tank reactor. The key physical and chemical parameters used 

in formulating the CSTR model are summarized in Table I. 

These values are based on experimental data and literature 

reference [26]. These parameters form the foundation of the 

dynamic model, enabling the development of accurate 

simulations and robust control algorithms. The detailed 

understanding of these variables is crucial for engineers and 

researchers working on advanced control techniques such as 

model predictive control (MPC), adaptive control, and 

intelligent optimization methods applied to CSTR systems. 

TABLE I.  KEY PARAMETERS USED IN FORMULATING THE CSTR MODEL 

Parameters Symbol Value Unit 

Exponential factor 𝑘𝑜 7.2 × 1010 1 𝑠⁄  

Flow rate 𝑄 100 𝑚3 𝑠⁄  

Volume of reactor 𝑉 100 𝑚3 

Jacket temperature 𝑇𝑗 280 𝐾 

Overall heat transfer coefficient 𝑈𝐴 5 × 104 𝑊𝑏 𝐾⁄  

Heat of reaction ∆𝐻 5 × 104 𝐽 𝑚𝑜𝑙⁄  

Density × heat capacity 𝛿𝑐𝑝 239 𝐽 𝑚3. 𝐾⁄  

Feed stream concentration 𝐶𝐴 𝑖𝑛 10 𝑚𝑜𝑙 𝑚3⁄  

Feed temperature 𝑇𝑖𝑛 350 𝐾 

Activation energy 𝐸𝑎 72.752 𝐾𝐽 𝑚𝑜𝑙⁄  

Universal gas constant 𝑅 8.31451 𝐽 𝑚𝑜𝑙. 𝐾⁄  

 QUADRATIC INTERPOLATION OPTIMIZATION 

Quadratic interpolation optimization (QIO) [27] is a 

derivative-free numerical optimization technique that is 

particularly well-suited for unimodal objective functions 

where the analytical form of the function is unknown, or its 

derivatives are unavailable. This method is frequently used in 

control tuning applications, especially where simulation-

based objective functions such as integral error metrics for 

instance IAE [28], ITAE [29] and ISE [30] are employed and 

evaluating the objective function is computationally 

expensive. 

 
Fig. 2. Flowchart of QIO 
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Start 

Initialize population 

Evaluate the fitness of population

Is stop condition met?

Randomly choose two individuals 

in the population

If rand > 0.5 ?

Return the 

best solution 

found so far

End

Exploration

Estimate a new point using 

current and two random 

individuals

Apply exploration 

strategy for the 

current individual

Exploitation

Estimate a new point using 

the best individual and two 

random individuals

Apply exploration 

strategy for the 

current individual

Update the current individual

yes

No

Noyes



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1343 

 

Serdar Ekinci, Enhanced Temperature Control of Continuous Stirred Tank Reactors Using QIO-based 2-DoF PID Controller 

QIO works by approximating the objective function using 

a quadratic polynomial fitted to three data points. The idea is 

to replace the actual cost function 𝑓(𝑥) with a second-order 

polynomial that interpolates three known points 
(𝑥1, 𝑓1), (𝑥2, 𝑓2), (𝑥3, 𝑓3) , where 𝑥𝑖 are scaler input 

parameters and 𝑓𝑖 = 𝑓(𝑋𝑖) are the corresponding cost values. 

The general form of the interpolating quadratic polynomial 

is: 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (6) 

To locate the minimum of this quadratic approximation, 

we use the standard result that the minimum of a parabola 

 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐  (𝑓𝑜𝑟 𝑎 > 0) occurs at 𝑥𝑚𝑖𝑛 =
−𝑏 2𝑎⁄ . To compute this directly from three points without 

explicitly solving for 𝑎 and 𝑏, a more compact and 

numerically stable formula can be derived based on divided 

differences (as in (7)). This expression yields a new estimate 

𝑥𝑚𝑖𝑛, which is then used to evaluate a new function value. 

The point with the highest cost is discarded, and the three-

point set is updated for the next iteration. This process is 

repeated until convergence is achieved, typically when the 

change in 𝑥𝑚𝑖𝑛 or 𝑓(𝑥𝑚𝑖𝑛) falls below a specified threshold. 

𝑥𝑚𝑖𝑛

=
(𝑥1

2 − 𝑥2
2)(𝑓3 − 𝑓2) + (𝑥2

2 − 𝑥3
2)(𝑓1 − 𝑓2) + (𝑥3

2 − 𝑥1
2)(𝑓2 − 𝑓1)

2[(𝑥1 − 𝑥2)(𝑓3 − 𝑓2) + (𝑥2 − 𝑥3)(𝑓1 − 𝑓2) + (𝑥3 − 𝑥1)(𝑓2 − 𝑓1)]
 

(7) 

𝑈(𝑠) = 𝐾𝑃[𝛼𝑅(𝑠) − 𝑌(𝑠)] +
𝐾𝐼

𝑠
[𝑅(𝑠) − 𝑌(𝑠)]

+ 𝐾𝐷

𝑁𝑠

𝑠 + 𝑁
[𝛽𝑅(𝑠) − 𝑌(𝑠)] 

(8) 

 PROPOSED CONTROL METHOD 

A. QIO for 2-DOF PID Tuning 

In this study, we adopt the quadratic interpolation 

optimization (QIO) algorithm to tune the parameters of the 

proposed two-degree-of-freedom (2-DOF) PID controller for 

the nonlinear CSTR process. QIO is a recently developed 

metaheuristic optimization technique inspired by generalized 

quadratic interpolation (GQI), introduced to enhance both 

exploration and exploitation in the search space. Unlike 

traditional interpolation methods, QIO is a population-based 

approach that constructs and leverages interpolating 

quadratic curves among candidate solutions to estimate 

optimal search directions [13]. The proposed 2-DOF PID 

controller is expressed as given in (8) where 𝑅(𝑠), 𝑌(𝑠), and 

𝑈(𝑠) denote the reference input, output response, and control 

action, respectively. The gains 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷  and parameters 𝛼, 𝛽 

and 𝑁 govern the behavior of the 2-DOF controller. Fig. 3 

illustrates the 2-DOF PID control structure. 

1

𝑠
 

𝛼 

𝛽 

𝐾𝑃 

𝑅(𝑠) 𝑈(𝑠) 

𝑌(𝑠) 

+ 
− 

+ 
− 

+ 
− 

+ 

+ 

+ 
𝐾𝐼 

1

𝑠
 

𝐾𝐷 𝑁 
+ 
− 

𝐸(𝑠) 

 
Fig. 3. Block diagram of 2-DOF PID controller 

1) Objective Function 

The controller parameters are optimized to minimize a 

multi-objective cost function that balances tracking accuracy 

and transient performance, defined as: 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡

𝑡𝑓

0

 (9) 

where, minimize 𝐶𝐹 cost function is defined as: 

𝐶𝐹 = 𝜌 × 𝐼𝐴𝐸 + (1 − 𝜌) × 𝑂𝑆 (10) 

where, 𝑂𝑆, 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) are normalized percent 

overshoot and the instantaneous error signal respectivly. In 

addition, 𝜌 = 0.85, and 𝑡𝑓 = 2 s. Fig. 4 depicts the QIO-

based controller tuning workflow for the CSTR process. 

B. Controller Parameter  

The controller parameters obtained from each 

optimization algorithm are presented in Table II. QIO-tuned 

parameters lie well within the defined feasible ranges and 

offer a balanced configuration, contributing to the superior 

closed-loop performance discussed in subsequent sections. 

2-DOF PID 

controller

Assign new 

controller parameters

Evaluate cost 

function value

Apply QIO

CSTR 

process

𝑅(𝑠) 

𝑌(𝑠) 

𝑈(𝑠) 

𝐾𝑃 𝐾𝐼 𝐾𝐷 𝛼 𝛽 𝑁 

Minimize

 
Fig. 4. Proposed QIO-based 2-DOF PID control approach for CSTR process 

TABLE II.  OBTAINED CONTROLLER PARAMETERS VIA QIO, GCRA, SMA, DE AND PSO 

Parameter Range QIO GCRA SMA DE PSO 

𝐾𝑃 [1, 100] 20.6040 23.4136 18.0695 16.1738 19.8695 

𝐾𝐼 [1, 100] 57.9826 67.2805 67.1113 44.0146 96.6640 

𝐾𝐷 [0.001, 2] 0.1137 0.1442 0.1006 0.1347 0.1266 

𝑁 [10, 500] 402.5572 322.4220 283.1537 333.0291 465.3266 

𝛼 [0.1, 2] 0.9989 0.9825 0.9800 1.0087 0.9573 

𝛽 [0.1, 2] 1.8332 1.0817 1.9807 1.9234 1.7108 
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 COMPARATIVE SIMULATION RESULTS   

This section presents a comprehensive comparison of the 

proposed QIO-based 2-DOF PID controller with several 

well-established optimization algorithms, namely GCRA, 

SMA, DE, and PSO. Additionally, a benchmark comparison 

is conducted against recent PID tuning results reported in the 

literature, including coot bird optimization algorithm 

(CBOA), water cycle algorithm (WCA), dragonfly algorithm 

(DA), and teaching–learning-based optimization (TLBO)-

based controllers. The goal is to validate the efficacy and 

superiority of QIO in tuning the 2-DOF PID parameters for 

temperature control in a CSTR process. All algorithms were 

executed under identical experimental conditions: a 

population size of 20, 100 total iterations, and 30 independent 

runs to ensure statistical consistency and mitigate stochastic 

variability. 

A. Statistical Performance Comparison 

Table III summarizes the statistical results of the cost 

function values (CF) obtained by QIO, GCRA, SMA, DE, 

and PSO across 30 runs. The proposed QIO algorithm 

outperforms all competitors with the lowest average CF value 

of 0.1867, accompanied by a low standard deviation of 

0.0099, indicating both high accuracy and robustness. 

TABLE III.  STATISTICAL RESULTS OF QIO, GCRA, SMA, DE AND PSO 

Measure QIO GCRA SMA DE PSO 

Average 0.1867 0.2320 0.2447 0.2521 0.2741 

Standard deviation 0.0099 0.0098 0.0106 0.0099 0.0119 

Minimum 0.1758 0.2169 0.2296 0.2375 0.2563 

Maximum 0.2179 0.2470 0.2712 0.2764 0.3001 

The nonparametric Wilcoxon rank-sum test, summarized 

in Table IV, further confirms that the performance 

differences are statistically significant, with p-values well 

below 0.05 for all pairwise comparisons. In each case, QIO is 

statistically superior. 

TABLE IV.  NONPARAMETRIC WILCOXON TEST FOR QIO WITH RESPECT 

TO GCRA, SMA, DE AND PSO 

Measure 
QIO versus 

GCRA 

QIO versus 

SMA 

QIO versus 

DE 

QIO versus 

PSO 

p-value 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06 

Superior QIO QIO QIO QIO 

 

B. Time Domain Performance Analysis 

Fig. 5 and Fig. 6 show the step response of the reactor 

temperature under different controllers. As shown in Fig. 5 

and Fig. 6, the QIO-based controller has the best performance 

among other optimization methods. 

The QIO-based controller achieves faster convergence 

and zero overshoot, as further detailed in Table V. Among all 

algorithms, QIO exhibits the lowest rise time (0.0120 s), 

shortest settling time (0.0669 s), and zero percent overshoot, 

all within the 2% tolerance band. 
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Fig. 5. Step response showing the reactor temperature for QIO, GCRA, 

SMA, DE and PSO based 2-DOF PID controllers 
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Fig. 6. An enlarged view of Fig. 5 

TABLE V.  RISE TIME, SETTLING TIME AND PERCENT OVERSHOOT FOR 

QIO, GCRA, SMA, DE AND PSO BASED 2-DOF PID CONTROLLERS 

Normalized metrics QIO GCRA SMA DE PSO 

𝑡𝑟 (s) 0.0120 0.0127 0.0151 0.0124 0.0124 

𝑡𝑠 (s) 0.0669 0.0694 0.0776 0.0984 0.0708 

𝑂𝑆 (%) 0 0.1097 0.1702 0.1661 0.4075 

 

C. Steady-State Error and IAE Evaluation 

Table VI provides steady-state error 𝑒𝑠𝑠 and IAE values 

for each method. QIO once again achieves the lowest IAE 

(0.2068) and a practically negligible steady-state error 

(1.16E−04 %). These metrics affirm QIO's superior tracking 

accuracy and disturbance rejection capability. 

TABLE VI.  STEADY STATE ERROR AND IAE VALUES FOR QIO, GCRA, 

SMA, DE AND PSO BASED 2-DOF PID CONTROLLERS 

Error 
metrics 

QIO GCRA SMA DE PSO 

𝑒𝑠𝑠 (%) 1.1634E−04 0.0143 0.0014 0.0128 2.0103E−04 

𝐼𝐴𝐸 0.2068 0.2358 0.2401 0.2501 0.2296 
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D. Comparison with Recent Literature 

To further validate the competitiveness of QIO, its 

performance is benchmarked against recent PID tuning 

results from CBOA, WCA, DA, and TLBO approaches 

(Table VII) [26]. Fig. 7 and Fig. 8 present the corresponding 

step responses. As shown in Table VIII, the QIO-based 

controller substantially outperforms all reported methods, 

delivering the fastest rise time, shortest settling time, and zero 

overshoot, surpassing even the best existing results. 

Moreover, Table IX shows that QIO achieves the lowest IAE 

(0.2068) and the smallest steady-state error, marking a 

significant advancement over existing techniques in both 

precision and transient quality. 
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Fig. 7. Comparative step response with respect to reported works 
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Fig. 8. Enlarged view of Fig. 7 

TABLE VII.  THE PID PARAMETERS REPORTED IN RECENT WORKS 

Parameter CBOA WCA DA TLBO 

𝐾𝑃 14.480 12.146 13.299 13.936 

𝐾𝐼 34.519 39.840 40.130 32.297 

𝐾𝐷 0.220 0.157 0.268 0.278 

TABLE VIII.  COMPARATIVE RISE TIME, SETTLING TIME AND PERCENT 

OVERSHOOT VALUES OF PROPOSED APPROACH WITH RESPECT TO 

REPORTED PID WORKS 

Normalized metrics QIO CBOA WCA DA TLBO 

𝑡𝑟 (s) 0.0120 0.0723 0.0775 0.0833 0.0857 

𝑡𝑠 (s) 0.0669 0.1474 0.3601 0.1483 0.1704 

𝑂𝑆 (%) 0 0.3237 2.4750 1.7114 0.2284 

TABLE IX.  COMPARATIVE STEADY STATE ERROR AND IAE VALUES OF 

PROPOSED APPROACH WITH RESPECT TO REPORTED PID APPROACHES 

Error 

metrics 
QIO CBOA 

 
WCA DA TLBO 

𝑒𝑠𝑠 (%) 1.1634E−04 0.0557  0.0519 0.0658 0.0505 

𝐼𝐴𝐸 0.2068 0.3745  0.4928 0.4422 0.3891 

 CONCLUSION  

This paper proposed an enhanced temperature control 

strategy for CSTRs by combining a 2-DOF PID controller 

with the QIO algorithm. The controller was tuned using a 

composite cost function, and simulation results confirmed its 

superior performance over GCRA, SMA, DE, and PSO in 

terms of response speed, accuracy, and robustness.  Despite 

promising results, the method was only validated in 

simulation. Real-time implementation and robustness under 

uncertainty remain open challenges.  The approach is 

applicable to industrial process control, offering better 

stability and energy efficiency. Future research can explore 

real-time deployment, hybrid adaptive-QIO methods, and 

extension to more complex nonlinear systems. 
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