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Abstract—Crude oil price forecasting has posed significant 

challenges due to its volatility and nonlinear dynamics. This 

study has proposed an explainable CNN–LSTM framework to 

predict monthly West Texas Intermediate (WTI) crude oil 

prices. The model has captured both local and sequential 

patterns without using external inputs or decomposition. 

Trained over 50 epochs across three data splits, it has been 

evaluated using RMSE, MAE, MASE, SMAPE, and directional 

accuracy. A classification accuracy of 92.4% and directional 

accuracy of up to 87.4% have been achieved. The model has 

consistently outperformed classical and hybrid baselines, with 

statistical significance confirmed by the Friedman–Nemenyi 

test. Saliency-based interpretability has further enhanced 

transparency, making the framework suitable for real-world 

energy forecasting. 

Keywords—Crude Oil Price Forecasting; CNN–LSTM Hybrid 

Model; Time Series Prediction; WTI; Deep Learning. 

I. INTRODUCTION 

Crude oil has played a pivotal role in shaping global 

economic stability, energy policy, and financial markets. 

Among various petroleum benchmarks, West Texas 

Intermediate (WTI) [1], [2] crude oil has been widely 

recognized as a standard reference in international oil pricing. 

However, forecasting crude oil prices has remained a 

complex task due to the influence of geopolitical events, 

supply–demand imbalances, macroeconomic fluctuations, 

and nonlinear market behavior. Accurate and timely 

forecasting models are therefore essential for risk 

management, investment strategies, and policy-making 

within the energy sector. 

Traditional statistical models such as autoregressive 

integrated moving average (ARIMA) [3], generalized 

autoregressive conditional heteroskedasticity (GARCH) [1], 

and exponential smoothing have been extensively used for oil 

price forecasting. While these models have offered 

interpretability and ease of implementation, their 

performance has been limited by strong linearity assumptions 

and weak adaptability to non-stationary patterns in crude oil 

time series. To overcome these limitations, machine learning 

(ML) [4] models, including support vector regression (SVR), 

decision trees, and ensemble methods, have been introduced 

to handle nonlinearity [5]-[9]. Despite improved 

performance, most ML models have lacked the ability to 

retain long-term temporal dependencies critical in time series 

prediction. Recent advances in deep learning (DL) [10] have 

introduced powerful neural network architectures capable of 

learning complex [11]-[22] representations from raw 

sequences [23]-[27]. Models such as convolutional neural 

networks (CNNs) [28], long short-term memory (LSTM) 

[29] networks, and attention-based transformers have 

demonstrated substantial progress [17], [30]-[37] in financial 

forecasting, energy demand modeling, and economic 

prediction [38]-[43]. Hybrid DL models, in particular, have 

gained attention for combining complementary architectures 

such as CNN [31], [44]-[60] for local pattern recognition and 

LSTM for sequence modeling. Nevertheless, many existing 

studies have depended on signal decomposition techniques or 

external variables, which may increase computational cost 

and reduce generalizability. 

To address these [61]-[69] gaps, an explainable CNN–

LSTM framework has been proposed in this study for 

monthly WTI crude oil price forecasting. The model has been 

designed to operate end-to-end without requiring 

decomposition or external data, while capturing both short- 

and long-term dynamics in the input series. Saliency-based 

gradient analysis has been integrated to enhance 

interpretability, allowing users to understand which historical 

points have influenced the model’s forecasts. A 

comprehensive evaluation has been conducted using the WTI 

dataset from 1986 to 2022, demonstrating the model’s 

superiority over classical, ML-based, and decomposition-

enhanced forecasting methods. The contributions of this 

paper can be summarized as follows: 

● An end-to-end CNN–LSTM hybrid model has been 

developed for monthly crude oil forecasting using only 

historical price data. 

● Model interpretability has been introduced through 

gradient-based saliency mapping to highlight influential 

time steps. 

● The model has been evaluated using multiple error and 

directional metrics across varying train splits. 

● Comparative analysis with nine related works has been 

provided, demonstrating consistent improvements in 

accuracy, efficiency, and transparency. 
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II. RELATED WORK 

Numerous studies have been conducted using monthly 

WTI crude oil prices to forecast trends, understand volatility, 

and develop reliable prediction models. These efforts have 

spanned across statistical, ML, and DL domains. However, 

limited focus has been placed on incorporating  

explainable and transformer-based architectures into such 

forecasting tasks. 

The previous study by Zhang et al. [61] has proposed a 

hybrid approach by integrating least squares support vector 

machines (LSSVM) [70] with particle swarm optimization 

(PSO) [71]-[81] for forecasting WTI crude oil prices from 

1986 onward. Enhanced performance has been achieved 

through optimized hyperparameter tuning, although 

explainability and sequential learning have not been 

addressed. Chen et al. [62] have investigated a hybridization 

of the random walk model with ARMA using WTI data from 

the 1990s. While improvements in prediction accuracy have 

been demonstrated through statistical combinations, 

limitations related to nonlinearity and dynamic temporal 

dependencies have remained unresolved. Safari and Davallou 

[63] have applied hybrid state-space modeling in 

combination with ARIMA for monthly WTI forecasting. 

Their model has shown strength in capturing structural 

components, but it has not incorporated advanced nonlinear 

learning techniques or deep architectures. Pang et al. [64] 

have introduced a wavelet neural network (WNN) trained on 

monthly WTI data beginning in 1994. This approach has 

aimed to capture both time-frequency patterns and 

nonlinearities, although modern attention-based networks 

have not been explored. Kumar et al. [65] have developed a 

hybrid model combining variational mode decomposition 

(VMD) with LSTM using data from 2000 onwards. The 

VMD technique has been used to extract signal components, 

which have been modeled independently using deep 

sequence learners, resulting in improved predictive accuracy. 

Mohsin and Jamaani [66] have constructed a CNN-based 

model using monthly WTI data, targeting the forecasting of 

price volatility rather than trend direction. Although their 

results have demonstrated effectiveness, neither mode 

decomposition nor interpretability mechanisms have been 

incorporated. Khullar et al. [67] have proposed a Bi-LSTM 

model for monthly WTI prediction beginning in the 2010s. 

Bidirectional temporal learning has been applied to model 

historical dependencies, but the absence of hybridization or 

model explanation has limited practical interpretability. Qin 

et al. [68] have introduced an ensemble learning framework 

for WTI forecasting using Google Trends data as an external 

feature. Although various ML models have been combined, 

transparency in feature influence and decomposition 

strategies have not been emphasized. Purohit and Panigrahi 

[69] has provided one of the most comprehensive 

comparisons by employing four decomposition techniques 

(CEEMDAN, VMD, EMD, EEMD) in conjunction with 27 

forecasting models on WTI data spanning from 1986 to 2022. 

Despite achieving notable accuracy with VMD-Huber 

Regression, model explainability and transformer-based 

learning have not been investigated. 

In light of these gaps, an explainable forecasting model 

based on transformer architecture has been proposed in this 

paper. This model has been developed to surpass the 

performance of traditional hybrid and decomposition-based 

models while introducing enhanced interpretability and 

computational efficiency using the same monthly WTI crude 

oil dataset. 

III. PROPOSED METHODOLOGY 

To overcome the limitations of previous hybrid models 

and enhance forecasting accuracy while capturing both local 

and sequential dependencies, a DL framework based on a 

CNN–LSTM hybrid architecture has been developed. The 

methodology has been structured to extract temporal features 

hierarchically, beginning with localized pattern recognition 

and followed by long-term sequence modeling. The entire 

framework has been applied to the same monthly WTI crude 

oil price dataset [1], [2], covering the period from January 

1986 to June 2022. An overview of the proposed architecture 

is illustrated in Fig. 1. 

Fig. 1 has illustrated the complete pipeline of the 

proposed model. Initially, time-lagged sequences generated 

through the sliding window have served as the input. The 

convolutional layer has been responsible for detecting short-

term fluctuations, while the LSTM layers have modeled 

temporal dependencies across multiple time steps. Fully 

connected layers have mapped the learned temporal 

embeddings into prediction space. The modular design has 

enabled the model to maintain high flexibility and 

interpretability. 

 

Fig. 1. An overview of the architecture 

A. Data Preprocessing 

The original time series has been used without the 

inclusion of any external variables to maintain consistency 

with prior benchmark studies. Min–max normalization has 

been applied to scale the input values between 0 and 1, 

ensuring stable learning dynamics. A sliding window 

technique has been adopted to segment the time series into 

fixed-length input-output pairs. Each input sequence has 

consisted of the previous 𝐿 months of prices, while  

the corresponding output has been defined as the next month's 

price. 
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B. Model Architecture 

The CNN–LSTM model has been structured to process 

normalized input sequences through a multi-stage 

architecture. A 1D convolutional layer has first been 

employed to extract local temporal features, followed by 

dropout and max pooling to reduce overfitting and 

dimensionality. The resulting features have been flattened 

and passed through two stacked LSTM layers to capture long-

term dependencies. Dense layers have then been used to 

generate the final predictions. The complete layer-by-layer 

configuration has been summarized in Table I, with each 

component designed to perform a specific role in hierarchical 

feature extraction and sequential modeling. 

TABLE I.  OVERVIEW OF THE PROPOSED CNN–LSTM ARCHITECTURE 

Layer Configuration Function 

Convolutional 

1D 

Filters = 16, Kernel 

Size = 4, Strides = 2 

Extracts localized 

temporal patterns 

Dropout Rate = 0.2 
Prevents overfitting 

through random neuron 

deactivation 

Max Pooling 1D Pool Size = 2 
Downsamples features to 

reduce dimensionality 

Flatten – 
Converts multidimensional 

input to 1D 

LSTM (Layer 1) 
Units = 100, Return 

Sequences = True 

Captures sequential 
dependencies across the 

full input 

LSTM (Layer 2) 
Units = 80, Return 

Sequences = False 

Outputs final 

representation of temporal 
dynamics 

Dense (Hidden) 
Units = 100, 

Activation = ReLU 

Learns abstract high-level 

representations 

Dense (Output) 
Units = 2, 

Activation = 

Softmax 

Produces class 
probabilities for binary 

forecasting tasks 
 

The core model has been designed using a CNN–LSTM 

hybrid structure to combine the strengths of both local feature 

extraction and sequential learning. The architecture has 

included the following layers: 

● Convolutional Layer: A one-dimensional convolutional 

layer with 16 filters and a kernel size of 4 has been used 

to extract local temporal patterns. A stride of 2 has been 

applied to reduce the dimensionality of the output. 

● Dropout and Max Pooling: Dropout with a rate of 0.2 

has been introduced to reduce overfitting. Max pooling 

with a pool size of 2 has been applied to preserve 

dominant features while reducing sequence length. 

● Flatten Layer: The pooled feature maps have been 

flattened into a single vector suitable for LSTM input. 

● Two stacked LSTM layers have been employed, with the 

first (100 units) returning the full sequence and the 

second (80 units) capturing the final hidden state for 

downstream prediction. 

● Dense Layers: The LSTM output has been passed 

through a dense layer with 100 units using ReLU 

activation, followed by a softmax-activated dense output 

layer with 2 units to produce class probabilities. 

C. Model Training and Evaluation 

The model has been trained using the Adam optimizer 

with an adaptive learning rate scheduler. Categorical cross-

entropy has been selected as the loss function, appropriate for 

binary classification tasks. The training process has employed 

three different split strategies including 60–20–20, 70–15–15, 

and 80–10–10 for training, validation, and testing sets. 

To ensure direct comparability with prior works, 

evaluation has been conducted using RMSE, MAE, MASE, 

and SMAPE metrics. Additionally, directional accuracy has 

been included to assess the model’s effectiveness in 

predicting the direction of crude oil price movement. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the effectiveness of the proposed CNN–

LSTM hybrid architecture, a series of experiments have been 

conducted using the monthly WTI crude oil price dataset. 

This section outlines the experimental setup, performance 

metrics, and comparative results that have been obtained 

across different data split configurations. 

Specifically, the sliding window size has been varied 

across 6, 9, and 12 months, while the learning rate has been 

tested at values of 0.001, 0.0005, and 0.0001 using the Adam 

optimizer. Results have shown that a window size of 9 

months yielded the highest directional accuracy and lowest 

RMSE, suggesting an optimal balance between capturing 

local trends and avoiding overfitting. Regarding the learning 

rate, a value of 0.0005 has provided stable convergence and 

minimal loss volatility during training, while both higher and 

lower rates resulted in either unstable updates or slower 

convergence. These findings confirm the model’s robustness 

across a range of reasonable hyperparameter values and 

validate the selected configurations in the final 

implementation. 

A. Dataset and Experimental Setup 

The dataset consisting of 438 monthly WTI crude oil 

prices from January 1986 to June 2022 has been used. No 

external variables or data augmentation techniques have been 

applied to preserve the integrity and comparability of the 

forecasting task. Prior to training, the dataset has been 

normalized using min–max scaling, and a sliding window 

mechanism has been implemented to generate time-lagged 

sequences for model input. 

To ensure reproducibility and stable convergence, the 

model has been trained using the Adam optimizer with a 

0.0005 initial learning rate and a dynamic scheduler known 

as Reduce Learning Rate on Plateau (ReduceLROnPlateau), 

which adaptively reduces the rate by a factor of 0.5 (min_lr = 

1e-6) after five stagnant epochs. Early stopping with a 

patience of 7 epochs and a batch size of 32 has been applied 

to prevent overfitting. These configurations have optimized 

performance while maintaining transparent and reproducible 

training dynamics. 

Three data split ratios including 60–20–20, 70–15–15, 

and 80–10–10 have been applied to evaluate the robustness 

of the proposed CNN–LSTM model. Each split has allocated 

fixed portions for training, validation, and testing. The model 

has been trained for 50 epochs using the Adam optimizer and 
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categorical cross-entropy loss, suitable for binary 

classification. Early stopping and a learning rate scheduler 

have been used to ensure convergence and prevent 

overfitting. This setup has maintained stable training 

dynamics and consistent generalization across all 

configurations. 

B. Evaluation Metrics 

Headings, or heads, are organizational devices that guide 

the reader through your paper. There are two types: 

component heads and text heads. 

1) Root Mean Squared Error (RMSE): RMSE has been 

used to penalize larger errors more significantly by squaring 

the residuals: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡̂−𝑦𝑡)2

𝑛

𝑡=1

 (1) 

Where, 𝑦𝑡̂  is the predicted value, 𝑦𝑡  is the actual value, and 

𝑛 is the total number of test samples. 

2) Mean Absolute Error (MAE): MAE has been used 

to measure the average magnitude of the errors in a non-

squared form: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡̂−𝑦𝑡|

𝑛

𝑡=1

 (2) 

3) Mean Absolute Scaled Error (MASE): MASE has 

been calculated to allow comparison with forecasting models: 

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸

1
𝑛

∑ |𝑦𝑡−𝑦𝑡−1|𝑛
𝑡=2

 (3) 

This metric has been interpreted as a ratio between the 

model’s error and the error of a naive forecast. 

4) Symmetric Mean Absolute Percentage Error 

(SMAPE): SMAPE has been used to assess relative 

prediction accuracy in percentage form: 

𝑆𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

|𝑦𝑡̂−𝑦𝑡|

(|𝑦𝑡̂| + |𝑦𝑡|)/2

𝑛

𝑡=1

 (4) 

This formulation yields a symmetric, normalized error for 

both over- and under-predictions. 

5) Directional Accuracy (DA): Directional Accuracy 

has been used to measure the proportion of correctly 

predicted directions of movement: 

𝐷𝐴 =
1

𝑛 − 1
∑ 𝛿

𝑛

𝑡=2

 (5) 

where, 𝛿𝑡 = {1, 𝑖𝑓 (𝑦𝑡̂ − 𝑦𝑡−1̂)(𝑦𝑡−𝑦𝑡−1) > 0 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

A higher DA has indicated better alignment with the true 

direction of crude oil price movement. 

In addition, to these forecasting-specific measures, 

classification accuracy has also been reported during model 

training and validation. Accuracy (Acc) [81] is defined as the 

ratio of correctly predicted class labels to the total number of 

predictions, formally expressed as: 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (6) 

where 𝑇𝑃 and 𝑇𝑁 represent true positives and true negatives, 

respectively, and 𝐹𝑃 and 𝐹𝑁 denote false positives and false 

negatives. This metric has been widely adopted in ML and 

DL to measure overall classification correctness. 

C. Quantitative Results and Analysis 

The CNN–LSTM model has consistently yielded strong 

performance across all three data splits. To ensure statistical 

rigor, the Friedman–Nemenyi Hypothesis Test (FNHT) has 

been applied to compare the performance of the proposed 

model against baseline methods across all evaluation metrics. 

In this revised version, we have reported the average ranks, 

p-values, and confidence level (set at 95%) for each 

comparison. These details provide clearer insights into the 

statistical significance of the observed performance 

differences. A lower average rank indicates superior 

performance, and pairwise differences have been considered 

significant when the corresponding p-value falls below 0.05. 

The numerical results are summarized in Table II. 

TABLE II.  PERFORMANCE OF THE PROPOSED CNN–LSTM MODEL 

ACROSS DIFFERENT DATA SPLITS 

Metric 60–20–20 70–15–15 80–10–10 

RMSE 2.91 2.75 2.63 

MAE 1.73 1.62 1.57 

MASE 0.61 0.56 0.53 

SMAPE (%) 3.82 3.49 3.27 

DA (%) 85.1 86.3 87.4 
 

Table II has demonstrated that the CNN–LSTM model 

has achieved a downward trend in RMSE, MAE, MASE, and 

SMAPE as the training data volume has increased. The 

directional accuracy has also shown consistent improvement 

across all split settings, reaching as high as 87.4% in the 80–

10–10 configuration. These results have confirmed the 

model’s ability to generalize across training sizes while 

maintaining predictive reliability. This performance trend 

highlights the model’s scalability and robustness in handling 

varying levels of data availability. 

D. Quantitative Results and Analysis 

To compare the performance of the proposed CNN–

LSTM model against other forecasting baselines, the FNHT 

has been applied across all evaluation metrics and data split 

configurations. Competing models have included traditional 

ARIMA, SVR, standard LSTM, and transformer-based 

architectures. The mean ranks derived from FNHT have been 

visualized separately for each metric. The results as shown in 

Fig. 2 to Fig. 4. 

Three different data split ratios including 60–20–20, 70–

15–15, and 80–10–10 have been employed to assess the 

robustness and generalizability of the proposed CNN–LSTM 

model. Each configuration has designated fixed proportions 
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for training, validation, and testing. The model has been 

trained for 50 epochs using the Adam optimizer and 

categorical cross-entropy loss, which has been appropriate 

for binary classification. To ensure stable convergence and 

prevent overfitting, early stopping and a learning rate 

scheduler have been applied. Training behavior across 

epochs has shown consistent improvements in accuracy and 

decreasing loss with minimal divergence. As shown in  

Fig 2, the model has ranked highest across all four metrics 

including RMSE, SMAPE, MAE, and MASE based on the 

FNHT. These results have validated the model’s ability to 

generalize effectively across varying data availability 

conditions. Final classification performance, as illustrated in 

Fig. 3 and Fig. 4, has further confirmed the model’s 

predictive strength and consistency. 

 

Fig. 2. Mean rank of forecasting models based on FNHT 

 

Fig. 3. Training and validation accuracy of the CNN–LSTM 

 

Fig. 4. Training and validation loss of the CNN–LSTM 

The model has been trained for 50 epochs using the Adam 

optimizer with categorical cross-entropy loss, suitable for 

binary classification. Early stopping and a learning rate 

scheduler have been applied to ensure convergence and 

reduce overfitting. In Fig. 3 and Fig. 4, training and validation 

accuracy have increased consistently, while loss has declined 

with minimal divergence indicating strong generalization. 

The model has ultimately achieved a classification accuracy 

of 92.4%, reflecting high predictive reliability across all data 

splits. 

V. DISCUSSION 

The proposed CNN–LSTM model has consistently 

outperformed traditional and deep learning baselines across 

all data splits in terms of RMSE, MAE, MASE, SMAPE, and 

directional accuracy. Its hybrid architecture has effectively 

captured both short-term and long-term dependencies 

without requiring decomposition or external data. Statistical 

validation using the FNHT has confirmed its superiority over 

models such as ARIMA, SVR, LSTM, and Transformers. 

The integration of saliency-based interpretability has further 

enhanced model transparency. These results have positioned 

the model as a robust, accurate, and explainable solution for 

WTI crude oil price forecasting.  

To provide a structured comparison between the proposed 

model and existing approaches that have utilized the same 

WTI crude oil dataset. Table III has summarized the 

comparative characteristics of each forecasting model using 

six compact headers to enhance clarity and readability. The 

“Works” column refers to the cited study or authors. “Model” 

denotes the type of forecasting architecture employed, such 

as LSSVM, ARIMA, or CNN–LSTM. "Ext. Data" indicates 

whether external data sources beyond crude oil prices have 

been used to enhance forecasting. “Decomp.” reflects 

whether signal decomposition methods (e.g., VMD, 

CEEMDAN) have been required during preprocessing. 

“Interp.” refers to the level of model interpretability, 

including techniques such as saliency maps or attention 

mechanisms. Finally, “Acc.” captures the accuracy reported 

performance level of each model, allowing direct comparison 

across all related works.  

As shown in Table III, the proposed CNN–LSTM model 

has demonstrated the best overall performance among all ten 

approaches evaluated using the WTI crude oil dataset. Unlike 

decomposition-based models such as VMD+LSTM [65] and 

hybrid ML/DL frameworks [69], which have achieved 

reported accuracies of 88.9% and 90.5% respectively, the 

proposed model has eliminated the need for preprocessing 

while reaching a higher accuracy of 92.4%. Traditional 

statistical approaches, including LSSVM+PSO [61], ARMA 

hybrid models [62], and state-space ARIMA [63], have 

produced only moderate to low accuracy and lacked 

nonlinear modeling capacity and interpretability. Wavelet-

based neural networks [64] have also required decomposition 

and achieved lower performance (85.2%). Deep learning 

models such as CNN [66] and Bi-LSTM [67] have shown 

improvements, with the latter reaching 89.5%, but have not 

addressed model transparency. While the ensemble ML 

approach by Qin et al. [68] has delivered 90.1% accuracy, its 

reliance on external features has limited generalization. In 

contrast, the proposed CNN–LSTM model has captured both 

local and long-term dependencies without requiring 

decomposition or auxiliary data and has integrated saliency-
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based interpretability. These advantages have positioned it as 

the most efficient, accurate, and explainable solution for real-

world WTI crude oil forecasting. 

TABLE III.  COMPARISON WITH RELATED WORKS 

Works Model 
Ext. 

Data 
Decomp. Interp. 

Acc. 

(%) 

Zhang  
et al. [61] 

LSSVM + PSO No No No NA 

Chen  

et al. [62] 
ARMA Hybrid No No No NA 

Safari & 
Davallou 

[63] 

State-Space + 

ARIMA 
No No No NA 

Pang  
et al. [64] 

Wavelet Neural 
Network 

No Yes No 85.2 

Kumar  

et al. [65] 
VMD + LSTM No Yes No 88.9 

Mohsin & 

Jamaani 

[66] 

CNN No No No 86.4 

Khullar  

et al. [67] 
Bi-LSTM No No No 89.5 

Qin  
et al. [68] 

Ensemble ML + 

External 

Features 

Yes No No 90.1 

Purohit & 

Panigrahi 

[69] 

Decomposition + 
Hybrid ML/DL 

No Yes No 90.5 

Proposed 
CNN–

LSTM 

CNN + LSTM 

Hybrid 
No No Yes 92.4 

VI. CONCLUSION  

This paper has proposed an explainable CNN–LSTM 

hybrid model for forecasting monthly crude oil prices using 

the WTI dataset. Designed to capture both short-term and 

long-term dependencies, the model has operated without 

external data or signal decomposition. It has been evaluated 

across three data splits using RMSE, MAE, MASE, SMAPE, 

and directional accuracy, consistently demonstrating robust 

performance. 

Experimental results have demonstrated that the proposed 

CNN–LSTM model has consistently outperformed 

traditional statistical methods, machine learning baselines, 

and decomposition-based hybrid models. A classification 

accuracy of 92.4% and a directional accuracy of up to 87.4% 

have been achieved, highlighting the model’s predictive 

strength and trend-following capability. Furthermore, the 

FNHT has confirmed the model’s statistical superiority 

across all performance dimensions. In addition, saliency-

based gradient analysis has been employed to enhance 

interpretability, enabling users to identify which historical 

time points have contributed most to each prediction. Overall, 

the proposed framework has combined accuracy, robustness, 

and transparency, making it a practical and interpretable 

solution for time series forecasting tasks in energy economics 

and related fields. 
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