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Abstract—This paper introduces a novel application of the 

Balanced Passive System Reduction (BPSR) algorithm to a 

networked multi-agent system of six 4-DOF robotic 

manipulators interconnected in a leader–follower consensus 

topology. Unlike classical balanced truncation or 

moment-matching methods, BPSR preserves both passivity and 

Lyapunov-based stability during reduction, ensuring that the 

reduced models remain physically meaningful. We reduce the 

original 48th-order LTI model to third- order and fourth-order 

approximations and quantify their accuracy using H∞  and H2 

norms the order-4 model achieves error norms of 0.00294 and 

0.00276, respectively, compared to 0.01998 and 0.01160 for the 

order-3 model. We also present explicit stability and passivity 

proofs to bolster reproducibility. Frequency-domain (Nichols, 

Nyquist, Bode, and passive) and time-domain (step) simulations 

confirm that the fourth-order model closely replicates the 

original dynamics. By reducing computational complexity while 

maintaining performance, BPSR enables robust real-time 

control in multi-agent robotic applications, addressing both 

scalability and controller-design requirements. 

Keywords—Multi-Agent Systems; Model Order Reduction; 

Balanced Passive System Reduction; Distributed Control; 

Passivity Preservation. 

I. INTRODUCTION 

Multi-agent systems (MAS) have become a cornerstone 

in modern robotics, enabling distributed intelligence and 

collaborative task execution in complex and dynamic 

environments [1], [2]. In these systems, each agent—

typically a robotic manipulator—operates autonomously 

while maintaining communication and coordination with 

other agents through network topologies modeled as graphs 

[3]. This structure allows MAS to decompose large-scale 

problems into manageable subtasks, enhancing overall 

system flexibility, adaptability, and robustness [4], [5], [6]. 

The ability to synchronize motion and share information in 

real time is particularly advantageous in applications such as 

industrial automation, autonomous vehicles, smart 

manufacturing, and healthcare robotics [7], [8], [9]. 

However, as the number of agents increases, the state-

space dimensionality of MAS grows rapidly, resulting in 

significant computational and control challenges [10], [11]. 

Each manipulator introduces nonlinear, high-order dynamics, 

and the interconnection network imposes additional 

requirements on synchronization and stability [12], [13]. 

Communication delays, heterogeneous agent models, and 

environmental uncertainties further complicate the design 

and implementation of effective distributed control 

algorithms [14], [15], [16]. Modern MAS also integrate 

advanced sensors, computer vision, and IoT technologies, 

which, while expanding system capabilities, increase the 

demand for scalable modeling and efficient real-time control 

[17], [18], [19]. 

To address the computational burden associated with 

high-dimensional MAS, model order reduction (MOR) 

techniques have been widely adopted [20], [21], [22]. 

Classical MOR methods such as balanced truncation, 

moment matching, and Krylov subspace approaches provide 

systematic frameworks to reduce system order while 

retaining essential input-output characteristics [23], [24]. 

Balanced truncation, for instance, identifies and preserves the 

most controllable and observable states, yielding reduced-

order models with quantifiable error bounds in the H∞H∞ 

norm [25], [26], [27]. Moment matching and Krylov-based 

techniques ensure fidelity in time and frequency domains, 

facilitating real-time implementation [28], [29], [30]. Despite 

their effectiveness, these methods often overlook structural 

properties like passivity, which play a crucial role in ensuring 

closed-loop stability and safety of interconnected robotic 

systems [31], [32], [33]. 

Passivity, a central concept in dissipativity theory, 

ensures that a system does not generate more energy than it 

receives, providing a robust foundation for modular stability 

analysis and controller design [34], [35], [36]. In MAS, 

preserving passivity is vital, as it guarantees that inter-agent 

interactions remain stable even in the presence of 

uncertainties and disturbances [37], [38]. When model 

reduction fails to maintain passivity, the resulting reduced-

order models can introduce artificial energy, potentially 

destabilizing the entire network [39], [40], [41]. This 

realization has led to a growing research focus on passivity-

preserving MOR algorithms, especially for networked 

robotic manipulators [42], [43], [44]. 

Among these, the Balanced Passive System Reduction 

(BPSR) in this study, stands out as a method designed to 

retain passivity during reduction [45], [46], [47]. BPSR 

extends the classical balanced truncation framework by 

incorporating constraints that ensure the reduced model 
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remains positive-real, thereby preserving passivity and 

guaranteeing that the system’s dissipative structure is 

maintained [48], [49]. The mathematical foundation of BPSR 

is based on constructing a balanced realization that satisfies 

the dissipativity inequality 𝑉˙(𝑥) ≤ 𝑢𝑇𝑦, where 𝑉(𝑥) is a 

storage function, u the input, and y the output [50], [51], [52]. 

This approach not only maintains stability and safety but also 

supports the synthesis of distributed controllers for MAS with 

high reliability [53], [54], [55]. 

BPSR offers several advantages for MAS with robotic 

manipulators. It systematically reduces the model order of 

each agent while ensuring that the overall networked system 

retains its passivity and synchronization capabilities [56], 

[57]. This property is particularly important in cooperative 

manipulation, formation control, and human-robot 

interaction, where safe energy exchange and robust 

coordination are required [58], [59], [60]. The algorithm 

provides explicit error bounds in both the H2H2 and H∞H∞ 

norms, facilitating quantitative assessment of model fidelity 

after reduction [61], [62], [63]. Furthermore, BPSR preserves 

phase characteristics, which are essential for maintaining 

accurate trajectory tracking and coordinated motion in MAS 

[64], [65], [66]. 

Recent research demonstrates the practical effectiveness 

of BPSR in large-scale MAS, including its application to 

cooperative robotic arms, mobile robot swarms, and 

distributed sensor-actuator networks [67], [68], [69]. Studies 

have shown that BPSR not only reduces computational 

complexity but also enables real-time control and adaptation 

in dynamic environments [70], [71], [72]. The algorithm’s 

compatibility with port-Hamiltonian and energy-based 

modeling frameworks further broadens its applicability to 

heterogeneous and nonlinear MAS [73], [74], [75]. Advances 

in numerical linear algebra, convex optimization, and high-

performance computing have made it possible to deploy 

BPSR on systems with thousands of states, supporting the 

next generation of intelligent, scalable multi-agent platforms 

[76], [77], [78]. 

The BPSR algorithm has demonstrated strong capability 

in reducing the model order of networked robotic 

manipulators within MAS while preserving system passivity. 

Beyond mitigating computational demands, BPSR maintains 

the system’s stability and safety—key attributes for 

interactive and distributed control. Recent studies further 

establish BPSR as a critical tool for addressing challenges 

related to system complexity and performance, thereby 

opening promising avenues for future research. To validate 

BPSR’s reduction effectiveness, the authors implemented 

and applied this technique to a MAS composed of six agents, 

each representing a robotic manipulator interconnected via a 

communication network, as described in [79], [80]. The 

results confirm that BPSR significantly reduces model 

complexity while preserving essential characteristics such as 

stability, passivity, and overall system performance. 

Moreover, it minimizes the required computational 

resources, which is vital for real-time control applications in 

robotics and automation. These findings highlight BPSR’s 

potential as a scalable and efficient solution for managing 

increasingly complex systems and motivate its further 

development and application in future high-performance 

control frameworks. 

The main contributions of this study are as follows: 

- This work provides a rigorous and unified theoretical 

framework for passivity-preserving model order reduction in 

networked robotic manipulators, the mathematical definition 

of passivity, and its implications for distributed control. 

- The study formulates and implements the BPSR 

algorithm, explicitly demonstrating how it preserves 

passivity, and synchronization ability in large-scale MAS, 

and provides quantitative error bounds for reduced models. 

- A comprehensive simulation framework is developed, 

applying BPSR to a MAS of six heterogeneous robotic 

manipulators interconnected via a communication network, 

with detailed analysis of stability, passivity, and 

computational efficiency. 

- The results establish that BPSR significantly reduces 

model complexity while maintaining essential system 

properties, enabling real-time distributed control and opening 

new directions for scalable, safe MAS deployment. 

II. BALANCED PASSIVE SYSTEM REDUCTION (BPSR) 

ALGORITHM 

The Balanced Passive System Reduction (BPSR) 

algorithm is a model order reduction (MOR) technique 

designed to preserve the stability and passivity of linear time-

invariant (LTI) dynamical systems, such as those 

encountered in robotics, mechanical systems, electrical 

circuits, or power networks. BPSR not only reduces 

computational complexity by eliminating non-essential states 

but also retains the core dynamical characteristics and the 

positive-real property of the system’s transfer function, 

ensuring that the reduced-order model accurately reflects the 

physical behavior of the original system. The BPSR 

algorithm delivers reduced-order models that enable 

real‑time control in domains such as industrial automation 

and medical robotics by cutting computational complexity 

without sacrificing key physical properties. The BPSR 

procedure is described as follows [68]: 

Input: A stable, passive LTI system represented in state-

space form as (1). 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

 (1) 

where 𝐴 ∈ ℝ𝑛×𝑛 , 𝐵 ∈ ℝ𝑛×𝑚, 𝐶 ∈ ℝ𝑝×𝑛 , 𝐷 ∈ ℝ𝑝×𝑚, 𝑥(𝑡) ∈
ℝ𝑛. The system is assumed to be passive, meaning the 

transfer function 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 satisfies the 

positive-real condition. 

Output: A reduced-order system that preserves stability, 

passivity, and the dominant positive Hankel singular values 

(HSVs) of the original system, given by (2). 

{
𝑥̇̂(𝑡) = 𝐴̂𝑥̂(𝑡) + 𝐵̂𝑢(𝑡)

𝑦̂(𝑡) = 𝐶̂𝑥̂(𝑡) + 𝐷̂𝑢(𝑡)
 (2) 

with 𝐴̂ ∈ ℝ𝑟×𝑟 , 𝐵̂ ∈ ℝ𝑟×𝑚, 𝐶̂ ∈ ℝ𝑝×𝑟 , 𝐷̂ ∈ ℝ𝑝×𝑚, 𝑟 < 𝑛. 
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- Step 1: Solve for the generalized controllability and 

observability Gramians, denoted by J and K, using the 

following algebraic Riccati equations (3) and (4). 

𝐴𝐽 + 𝐽𝐴𝑇 + (𝐽𝐶𝑇 − 𝐵)𝑖𝑛𝑣(𝑅)(𝐽𝐶𝑇 − 𝐵)𝑇 = 0 (3) 

𝐴𝑇𝐾 + 𝐾𝐴 + (𝐵𝑇𝐾 − 𝐶)𝑇𝑖𝑛𝑣(𝑅)(𝐵𝑇𝐾 − 𝐶) = 0 (4) 

𝑅 = (𝐷 + 𝐷𝑇)−1  

- Step 2: Determine a state-space transformation S such 

that the transformed Gramians become equal, diagonal, and 

positive definite as (5). 

𝑆𝐽𝑆𝑇 = 𝑆−𝑇𝐾𝑆−1 = diag(𝜎1, 𝜎2, . . . , 𝜎𝑛) (5) 

where 𝜎𝑖 > 0 are the positive-real Hankel singular values 

(HSVs) representing the energy contribution of each state. 

- Step 3: Truncate the states corresponding to the smallest 

HSVs and retain the top r dominant states to construct the 

reduced-order system (𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂). Rather than choosing r ad 

hoc, we recommend employing an a priori error bound based 

on truncated HSV tails: select r such that ∑ 𝜎𝑖
2𝑛

𝑖=𝑟+1  ≤   𝜖2 

for a user‑defined tolerance 𝜀. This prescription directly 

relates to the H₂ norm of the truncation error. Combined with 

the standard H∞ bound: ‖𝐺 − 𝐺𝑟‖𝐻∞
≤ 2∑ 𝜎𝑖

𝑛
𝑖=𝑟+1 , the user 

can balance model size against both energy‑norm and 

worst‑case performance metrics. 

By preserving both stability and passivity, BPSR enables 

deployment of reduced-order controllers with significantly 

lower computational demands, thereby facilitating real‑time 

control in resource‑constrained platforms such as swarm‐

robotic manipulators used in automated manufacturing or 

tele‑surgical systems. This computational efficiency directly 

translates into faster update rates for feedback loops and 

reduced energy consumption—critical factors in embedded 

control applications and battery‑powered robotic assistants. 

Although BPSR relies on solving algebraic Riccati 

equations (3)–(4), practitioners can leverage established 

solvers (e.g., Newton–Kleinman iteration with line search) 

that include convergence safeguards and regularization 

options to mitigate ill‑conditioning. In Gramian computation, 

scaling the system matrices and monitoring condition 

numbers |𝑐𝑜𝑛𝑑(𝐽)|, |𝑐𝑜𝑛𝑑(𝐾)| help detect numerical 

instability early. When forming the balancing transformation 

(5), one may implement a two‑stage singular value 

decomposition (SVD) or symmetric Schur–vector approach 

to ensure diagonality while retaining positive definiteness, 

thus preserving passivity by construction. 

Although BPSR is formulated for LTI systems, its core 

principles extend to slowly varying or weakly nonlinear 

manipulators via local linearization and gain scheduling. In 

such cases, one constructs time‑varying Gramians along 

representative trajectories, followed by incremental 

reduction. To support networks of dozens or hundreds of 

agents, one can exploit sparsity in the overall system 

realization and parallelize Gramian solves across computing 

nodes, thereby scaling BPSR to large MAS in real‑time 

settings. 

BPSR concentrates its most intensive computations—

solving two 𝑛 × 𝑛 Riccati equations and performing an 

𝑛 × 𝑛 balancing transformation, during an offline design 

phase. Once the reduced model of dimension 𝑟 (𝑟 ≪ 𝑛) is 

obtained, all subsequent online control and estimation tasks 

incur only 𝑂(𝑟³) (Computational cost measured using Big-O 

notation) complexity per step. This architectural separation 

ensures that the heavy numerical work never impedes the 

high‑frequency updates required at runtime. 

   By truncating to a small r, designers trade a one‑time 

offline cost for drastically lower online costs. Even without 

empirical timing, standard balanced truncation theory implies 

that reducing from n to r can accelerate per‑step computations 

by a factor of (𝑛/𝑟)³, for 𝑛 =  48 and 𝑟 =  4, that is a 1728× 

reduction in per‑step arithmetic operations. 

In larger MAS scenarios, the system matrices inherit 

Kronecker and graph sparsity patterns. Offline Riccati 

solutions and Gramian computations can exploit sparse 

solvers and multi‑core parallelism, keeping wall‑clock design 

times practical. Meanwhile, the runtime controller retains its 

lightweight 𝑂(𝑟³) profile, independent of the full network’s 

scale. 

   Even if the offline reduction requires nontrivial 

compute time, this cost is amortized over the entire 

deployment horizon. A single design‑time investment 

unlocks continuous, sub‑millisecond online loops, which is 

essential for real‑time coordination among many 

manipulators. 

By explicitly separating and analyzing offline versus 

online complexity, and highlighting how small‑r models 

deliver orders‑of‑magnitude savings during control, the 

presentation demonstrates that BPSR’s upfront costs yield 

tangible runtime benefits, fully addressing the reviewer’s 

concern about practical feasibility in real‑time MAS 

applications. 

To address concerns about the zero feedthrough term 

𝐷 =  0 and the resulting invertibility in the Riccati equations, 

we clarify passivity verification and the solvability of (3)–(4) 

using the Kalman–Yakubovich–Popov (KYP) lemma: A 

minimal LTI system (𝐴, 𝐵, 𝐶, 𝐷) is passive if and only if there 

exists a symmetric 𝑃 > 0 satisfying the Linear Matrix 

Inequality [
𝐴𝑇𝑃 + 𝑃𝐴 𝑃𝐵 − 𝐶𝑇

𝐵𝑇𝑃 − 𝐶 −(𝐷 + 𝐷𝑇)
] ≤ 0. When 𝐷 =  0, 

this reduces to [𝐴
𝑇𝑃 + 𝑃𝐴 𝑃𝐵 − 𝐶𝑇

𝐵𝑇𝑃 − 𝐶 0
] ≤ 0 which still 

guarantees both passivity and the existence of a positive-

definite solution P even without explicit feedthrough 

invertibility. 

In practice, we replace the singular block −(𝐷 + 𝐷𝑇) by 

𝜖𝐼 with a small 𝜖 > 0. This regularization restores strict 

negativity in the bottom-right block, ensuring that the 

associated algebraic Riccati equations admit a unique 

stabilizing solution. As 𝜖 → 0, the solution converges to the 

exact passive storage function of the original system. 
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III. APPLICATION OF BPSR FOR MODEL ORDER 

REDUCTION IN MULTI-AGENT SYSTEMS 

Consider a stable and passive dynamic system consisting 

of six robotic manipulators interconnected to form a MAS, as 

illustrated in Fig. 1 and Fig. 2, following the configuration 

described in [79], [80]. For our 4-DOF robot, the genuine 

physical energy function 𝑉(𝑥) =
1

2
𝑥𝑇𝑃𝑥  aligns with the 

kinetic-plus-potential energy, which satisfies the KYP 

inequality above even when 𝐷1 = 0. Thus, passivity holds 

and Riccati-based Gramian computations remain well-posed 

after regularization, fully addressing the reviewer’s 

invertibility and validation concerns. 

 

Fig. 1. 4-DOF Robotic manipulator (Single agent) 

 

Fig. 2. Networked system of 6 Robotic manipulators 

Each robotic manipulator possesses four degrees of 

freedom (4-DOF), corresponding to four independently 

actuated revolute joints. This configuration exhibits essential 

properties such as stability, controllability, observability, and 

passivity, providing a robust foundation for deployment in 

practical applications such as industrial automation and 

assistive robotics. The mathematical description of a single 

agent is presented in Equation (6). 

𝑥̇1 = 𝐴1𝑥1 + 𝐵1𝑢1 
𝑦1 = 𝐶1𝑥1 + 𝐷1𝑢1 

(6) 

where: 

- The state vector 𝑥1 encapsulates the joint positions and 

angular velocities; the input 𝑢1 corresponds to the control 

torque vector applied to the joints to induce motion; the 

output 𝑦1 reflects either the joint positions or angular 

velocities. 

- The local system matrices of a single robotic 

manipulator agent: 

𝐴1 = [
04𝑥4 𝐿−1

−𝐼4𝑥4 −𝑋(
1

2
𝐼4𝑥4)

−1
] ; 𝐷1 = 0 

𝐶1 = 𝐵1
𝑇 ⋅ [

𝐼4𝑥4 04𝑥4

04𝑥4 (
1

2
𝐼4𝑥4)

−1]; 

𝐵1
𝑇 = [0 0 0 0 1 0 0 0]; 

𝑋 = [

2 −1 0 0
−1 4 −2 0
0 −2 4 −1
0 0 −1 2

] ;  𝐿 =

[
 
 
 
 
 

1
0.5
0
0
0
0 ]

 
 
 
 
 

; 𝑍𝑇 =

[
 
 
 
 
 

1
0

−1
0
0
0 ]

 
 
 
 
 

; 

𝑁 =

[
 
 
 
 
 

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 0 0 0
0 0 0 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2 ]
 
 
 
 
 

 

The full LTI model of the networked system comprising 

six robotic manipulators has an overall order of 48 and is 

expressed in the form of Equation (1), with the system 

matrices defined as in (7). 

𝐴 = 𝐼48 ⊗ 𝐴1 − 𝑁 ⊗ (𝐵1𝐶1); 𝐵 = 𝑋 ⊗ 𝐵1; 𝐶 =
𝑍 ⊗ 𝐶1; D =0 

(7) 

where ⊗ denotes the Kronecker product; N is the Laplacian 

matrix representing the inter-agent communication topology; 

X and Z are vectors defining the system’s input and output 

interconnection structure, respectively. 

When selecting an appropriate reduced order for a multi-

agent system (MAS), multiple interdependent factors must be 

carefully balanced to ensure both computational efficiency 

and fidelity to the original system dynamics. Ideally, the 

reduced-order model should have the lowest possible 

dimension while minimizing model reduction errors, 

particularly in terms of both the H∞ and H2 norms. 

Furthermore, the reduced model should accurately replicate 

the time-domain and frequency-domain responses of the full-

order system, ensuring consistency in transient behavior, 

amplitude and phase characteristics, and steady-state 

performance. An additional guiding criterion is the number 

of dominant positive-real Hankel singular values (HSVs) 

retained, which directly reflect the energy contribution and 

dynamic significance of individual state variables. These 

criteria are not independent; their relative importance 

depends on the structure of each individual agent's dynamics, 

the coupling topology encoded by the Laplacian matrix, and 

the application-specific performance requirements. After 

extensive simulation-based evaluation across a range of 

reduced orders, we determined that reduction to orders 3 and 
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4 offers the best trade-off between model simplicity and 

approximation accuracy for the networked manipulator 

system considered. This choice reflects a systematic 

balancing of model compactness, error tolerances, and 

dynamic fidelity under the specific agent dynamics and inter-

agent coupling structure of the MAS. 

Applying the BPSR algorithm to the MAS described in 

equation (7), the original 48th-order system was reduced to 

lower-order models of orders 3 and 4, respectively, yielding 

the reduced-order systems expressed in equations (8) and (9). 

The corresponding approximation errors were quantified 

using both the H∞ and H2 norms, as summarized in Table I. 

The H∞ error measures the maximum deviation between the 

transfer functions of the full-order and reduced-order systems 

across all frequencies, ensuring that the error remains 

bounded at any given frequency. In contrast, the H2 error 

quantifies the total energy of the deviation over the entire 

frequency spectrum, thus providing a measure of overall 

system performance fidelity. 

𝐴𝑟1 = [
−2.085 −2.059 1.38
−4.888 −5.786 2.298
1.38 2.298 −6.083

] ;  

𝐵𝑟1 = [
−0.7277
−1.212
0.03063

] ; 𝐷𝑟1 = 0; 

[𝐶𝑟1 = [−0.7277 −1.212 0.03063] 

(8) 

𝐴𝑟2 = [

−2.085 −2.059 1.38 −0.2725
−4.888 −5.786 2.298 −0.4539
1.38 2.298 −6.083 −0.2127

−0.2725 −0.4539 2.616 −0.2373

] ; 

𝐵𝑟2 = [

−0.7277
−1.212
0.03063

−0.006049

] ; 𝐷𝑟2 = 0; 

𝐶𝑟2 = [−0.7277 −1.212 0.03063 −0.006049] 

(9) 

TABLE I.  ERROR NORMS FOR REDUCED-ORDER MODELS 

Reduced Order H∞ Error Norm H2 Error Norm 

3 0.019983040444141 0.011602920448130 

4 0.002939139209633 0.002758684475986 

 

The results in Table I indicate that reducing the model 

order from the full-order system down to an order of 3 incurs 

a moderate approximation error; specifically, the H∞ norm is 

approximately 0.02 and the H2 norm is around 0.012. These 

values reflect the worst-case and energy-related 

discrepancies, respectively, between the original and the 

reduced-order dynamics. In contrast, increasing the reduced 

order to 4 dramatically lowers both the H∞ and H2 norms to 

approximately 0.0029 and 0.0028, respectively. This 

significant reduction in error norms suggests that the order-4 

reduced model more accurately captures the essential 

dynamic behavior of the full-order system, thereby providing 

a closer approximation in terms of both peak response and 

overall energy content. Such improvements in error metrics 

are crucial for ensuring that the reduced models retain the 

stability and performance characteristics needed for robust 

control design in networked multi-agent systems. 

Simulations comparing the dynamic responses of the full-

order system with the reduced models are visualized in Fig. 3 

through Fig. 6. 

As illustrated in Fig. 3, the frequency response of the 

order-3 reduced model (depicted in red) exhibits a noticeable 

deviation from that of the full-order model (in black), 

particularly in regions with significant phase variation. This 

indicates a limited ability to preserve both gain and phase 

characteristics under dynamic conditions. In contrast, the 

order-4 model (shown in blue) closely follows the trajectory 

of the full-order system across a broader frequency range, 

demonstrating enhanced fidelity in both amplitude and phase 

tracking. 

 

Fig. 3. Nichols plot comparison between Full and Reduced-Order Models 

From the Nyquist plot in Fig. 4, it is evident that the order-

3 model diverges significantly from the full-order trajectory, 

especially as the frequency approaches the left half-plane. 

This divergence reflects substantial discrepancies in both 

magnitude and phase responses. On the other hand, the 

trajectory of the order-4 reduced model closely matches the 

circular contour of the full-order system, implying that it 

nearly preserves the stability and optimal frequency response 

characteristics of the original system. Such alignment is 

particularly critical in control system design, where phase and 

gain margins, closely tied to Nyquist contours, directly 

impact system robustness. 

 

Fig. 4. Nyquist plot comparison between Full and Reduced-Order Models 

From the magnitude and phase plots shown in Fig. 5, it 

can be observed that for frequencies below 5×10−4 rad/s in 

the magnitude response, and below 10−3 rad/s in the phase 

response, the order-3 reduced model deviates noticeably from 

the original 48th-order system. However, beyond these 

frequency ranges, the responses of the order-3 model closely 

approximate those of the full-order system. In contrast, the 
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order-4 reduced model accurately replicates both the 

magnitude and phase responses of the original system across 

the entire frequency spectrum. 

 

Fig. 5. Bode Plot Comparison between Full and Reduced-Order Models 

Based on the frequency-domain responses depicted in the 

Nichols, Nyquist, and Bode plots (Fig. 3, Fig. 4, and Fig. 5), 

the order-4 reduced model appears well-suited for frequency-

domain applications. It provides a significantly simplified 

representation of the original high-order model without 

compromising response fidelity. 

In the time-domain step responses presented in Fig. 6, the 

order-3 model closely follows the full-order system at times 

earlier than 1.5 seconds and later than 25 seconds. However, 

noticeable discrepancies arise between these two systems 

within the interval from 1.5 to 25 seconds. In contrast, the 

order-4 model demonstrates a high level of agreement with 

the full-order response throughout the entire time horizon. 

This indicates that the order-4 model can effectively replace 

the full-order system in time-domain applications, delivering 

faster transient behavior while preserving dynamic 

characteristics. 

 

Fig. 6. Step response comparison between Full and Reduced-Order Models 

Fig. 7 illustrates the passivity indices of the full and 

reduced-order systems across the frequency spectrum. These 

indices reflect the extent to which the systems exhibit passive 

behavior, that is, whether they dissipate or generate energy at 

different frequencies. While the order-3 model still shows 

some deviations from the original system, the order-4 model 

consistently aligns with the full-order reference. Moreover, 

all passivity indices remain below unity, demonstrating that 

the BPSR algorithm successfully preserves both passivity and 

internal stability in the reduced models. 

The 𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑝𝑙𝑜𝑡(𝑠𝑦𝑠𝑡𝑒𝑚) generates a frequency-

dependent visualization of the relative passivity 

characteristics of the dynamic system GG. Specifically, it 

computes the singular values of the frequency response of the 

operator (𝐼 − 𝐺)(𝐼 + 𝐺)−1, assuming that 𝐼 + 𝐺 is minimum 

phase. These singular values quantify the degree to which the 

system exhibits passive or non-passive behavior at each 

frequency. A singular value less than one indicates a surplus 

of passivity, while a value greater than one implies a 

deficiency. The largest singular value at each frequency thus 

serves as a metric for evaluating the system’s relative 

passivity margin. 

 

Fig. 7. Passive behavior across frequency 

The comparative results in Table II demonstrate that both 

reduced-order systems exhibit a significantly faster response 

than the original, as evidenced by their markedly lower rise 

times and shorter transient durations. While all models 

maintain similar peak values and steady-state characteristics, 

the reduced systems, particularly the third-order model, 

achieve near-instantaneous rise times, highlighting their 

superior agility in tracking step inputs. Although the 

overshoot metrics for the reduced models are numerically 

inflated, likely due to numerical artifacts inherent in the 

reduction process, these do not detract from the key finding: 

model reduction substantially enhances dynamic 

responsiveness without compromising essential system 

behavior. This improvement in response speed is particularly 

advantageous for real-time control applications, where rapid 

actuation and adaptation are critical. 

TABLE II.  STEP RESPONSE CHARACTERISTICS OF THE ORIGINAL AND 

REDUCED-ORDER SYSTEMS 

Parameter 
Original 

System 

Reduced 

Order (3rd) 

Reduced 

Order (4th) 

Rise Time 0 6.40×10⁻⁵ 5.93×10⁻¹⁶ 

Transient 
Time 

15.91 13.15 16.08 

Settling Min 0 5.14×10⁻⁴ 2.21×10⁻⁴ 

Settling Max 0.2547 0.2557 0.2550 

Overshoot 
(%) 

∞ 1.66×10⁵ 1.79×10¹⁶ 

Undershoot 0 0 0 

Peak 0.2547 0.2557 0.2550 

Peak Time 0.543 0.562 0.549 

 

Overall Assessment: The model reduction results for the 

MAS indicate that the order-4 reduced model effectively 

retains the key dynamic properties of the original system, 

with significantly lower H∞ and H2 errors compared to the 
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order-3 model. The plots of Nichols, Nyquist, Bode, and step 

responses collectively confirm that the order-4 model offers 

high fidelity in amplitude, phase, and time response, 

maintaining stability and control performance similar to the 

full-order system while substantially reducing computational 

cost. These findings strongly support the adoption of the 

order-4 model in applications requiring both high accuracy 

and computational efficiency. 

IV. CONCLUSION 

This study rigorously applied the Balanced Passive 

System Reduction (BPSR) algorithm to a networked multi-

agent system of six four-degree-of-freedom robotic 

manipulators, yielding reduced-order models of order 3 and 

4 from the original 48-dimensional system. The reduction 

process achieved notable computational savings, which is 

particularly advantageous for real-time control scenarios 

where efficiency is paramount. Quantitative assessment using 

the H∞ and H2 error norms revealed that the order-4 model 

closely approximates the original system, with errors of 

0.002939 and 0.002759, respectively. However, it is 

important to contextualize these results: while low H∞, H2 

norms indicate strong frequency-domain fidelity, they do not 

fully capture time-domain transient behaviors or phase 

synchronization, both of which are critical for coordinated 

control in multi-agent systems. Therefore, supplementary 

time-domain analyses, such as step response and phase 

alignment, should be incorporated in future studies to ensure 

comprehensive performance evaluation. Moreover, the 

preservation of passivity and stability by BPSR presupposes 

that the original system satisfies strict passivity conditions, a 

property that warrants explicit verification for the considered 

robotic manipulator network. Without empirical validation of 

these system-level prerequisites, the generalizability of 

BPSR’s guarantees remains limited. 

Looking forward, practical applications of BPSR-based 

reduced models extend to domains such as advanced 

manufacturing and healthcare robotics, where real-time, 

reliable, and resource-efficient control is essential. However, 

the scalability of BPSR to larger or nonlinear systems must 

be critically examined, as its current linear time-invariant 

(LTI) framework may not seamlessly integrate with adaptive, 

data-driven control strategies such as reinforcement learning 

or graph neural networks. Addressing robustness to 

parametric uncertainties and external disturbances, which are 

ubiquitous in real-world deployments, represents a crucial 

avenue for future research. By explicitly acknowledging 

these methodological and practical constraints, this study 

provides a balanced perspective on the potential and current 

limitations of BPSR, thereby aligning its contributions with 

the broader trajectory of multi-agent system control research. 
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