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Abstract—This study addresses the challenge of reducing the 

dynamic order of islanded microgrid (ISMG) systems, which are 

increasingly deployed to enhance power system stability and 

facilitate the integration of distributed energy resources such as 

photovoltaic arrays and battery storage. The main objective is 

to alleviate the computational complexities associated with high-

order dynamic models in real-world microgrid control and 

optimization, thereby enabling more efficient and reliable 

controller design for practical applications. The contribution of 

this research is the development and implementation of a 

Balanced Linear-Quadratic Gaussian Model Reduction 

(BLQGMR) approach, which systematically integrates LQG 

control theory with state-space balancing techniques to generate 

reduced-order models that preserve essential controllability and 

observability properties. The BLQGMR method involves 

solving coupled Riccati equations to quantify the importance of 

system states, followed by a balanced truncation process that 

eliminates states with negligible influence on system input–

output behavior. Numerical experiments on a representative 

ninth-order ISMG model demonstrate that the BLQGMR 

algorithm can effectively reduce the system order to between 

one and eight, with rigorous performance evaluation based on 

H∞ and H₂ error norms. Results show that fourth- and fifth-

order reduced models achieve a favorable trade-off between 

model accuracy and computational efficiency, with H∞ errors of 

approximately 6.90×10-1 and 1.99×10-1, and H2 errors of 

1.53×10-1 and 5.28×10-2, respectively. These reduced models 

successfully reproduce the dynamic response of the original 

system across both time and frequency domains, as evidenced 

by Nyquist, Nichols, and step response analyses. The research 

demonstrates that BLQGMR provides a robust and practical 

solution for order reduction in ISMGs, supporting advanced 

control strategies while significantly reducing computational 

costs. Opening avenues to extend the approach to nonlinear and 

multivariable systems, as well as to address high-frequency 

limitations and cybersecurity challenges in intelligent microgrid 

control. 

Keywords—Islanded Microgrid; Model Order Reduction; 

Power System Stability; Distributed Energy Resources; Balanced 

Linear-Quadratic Gaussian. 

I. INTRODUCTION 

The evolution of modern power systems has witnessed a 

paradigm shift toward decentralized architectures, with 

islanded microgrids (ISMGs) emerging as a pivotal solution 

for enhancing energy resilience, sustainability, and autonomy 

in both urban and remote contexts [1], [2], [3]. ISMGs, 

characterized by their capability to operate independently 

from the main grid, integrate a diverse array of distributed 

energy resources (DERs), including photovoltaic modules, 

wind turbines, and battery energy storage systems [4], [5], 

[6]. This architecture not only enables uninterrupted power 

supply under grid disturbances but also supports the global 

agenda for clean energy transition and carbon footprint 

reduction [7], [8], [9]. The deployment of ISMGs has been 

extensively studied for its potential to improve energy access, 

particularly in isolated regions where conventional grid 

extension is economically or technically unfeasible [10], 

[11], [12]. Furthermore, ISMGs facilitate the seamless 

integration of renewable energy, thereby enhancing grid 

flexibility and contributing to the mitigation of climate 

change impacts [13], [14], [15]. 

Despite these advantages, the operation and control of 

ISMGs present formidable technical challenges. The 

increasing penetration of intermittent renewables introduces 

significant dynamic uncertainties, nonlinearity, and 

variability in both generation and load profiles [16], [17], 

[18]. Accurate modeling of ISMGs must therefore account 

for stochastic fluctuations, unmodeled dynamics, and 

complex interactions among heterogeneous DERs [19], [20], 

[21]. Traditional control strategies, while effective under 

certain conditions, often fail to guarantee stability and 

optimality in the presence of high-dimensional state spaces 

and rapidly changing operating environments [22], [23], [24]. 

Moreover, the computational burden associated with high-

order models can impede real-time control implementation, 

particularly as the number of controllable devices and system 

states increases [25], [26], [27]. These factors necessitate the 

development of advanced modeling, reduction, and control 

methodologies tailored to the unique characteristics of 

ISMGs [28], [29], [30]. 

Model order reduction (MOR) has become a cornerstone 

in addressing the computational and analytical complexity of 

modern power systems [31], [32], [33]. By simplifying high-

order models while retaining essential input–output 

behaviors, MOR techniques enable efficient controller 

design, facilitate real-time simulation, and support robust 

system analysis [34], [35], [36]. While classical MOR 

methods such as balanced truncation, Hankel norm 

approximation, and Krylov subspace approaches have proven 
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effective for conventional power networks [37], [38], [39], 

their application to ISMGs is often restricted by challenges in 

handling unstable or nonlinear systems, and in ensuring that 

the reduced models retain the stability properties of the 

original system [40], [41], [42]. Recent advances in data-

driven, machine learning-based, and hybrid MOR 

frameworks have shown promise in overcoming some of 

these limitations, yet they introduce new challenges related to 

data requirements, interpretability, and computational 

overhead [43], [44], [45]. Comparative studies highlight the 

need for MOR algorithms that achieve a careful balance 

between model simplicity, accuracy, and robustness, 

particularly under the nonstationary and uncertain conditions 

characteristic of ISMGs [46], [47], [48]. 

The Balanced Linear-Quadratic Gaussian Model 

Reduction (BLQGMR) algorithm represents a significant 

advancement in MOR for complex energy systems [49], [50], 

[51]. By enhancing balanced truncation based on LQG 

controller design, BLQGMR systematically identifies and 

retains the most influential system states, thereby ensuring 

that the reduced-order model preserves critical dynamic 

characteristics such as controllability, observability, and 

stability, retains the dominant (high-energy) singular values 

of the original system, and enables direct order reduction for 

unstable systems [52], [53], [54]. In the context of ISMGs, 

BLQGMR offers the potential to streamline controller 

design, reduce computational costs, and improve real-time 

responsiveness without sacrificing essential system 

performance [55], [56], [57]. However, the practical 

application of BLQGMR typically relies on the assumptions 

of linearity and time-invariance, assumptions that are often 

violated in real-world ISMGs due to nonlinearities, time-

varying parameters, and stochastic disturbances introduced 

by renewable energy sources and variable loads [58], [59], 

[60]. Nevertheless, BLQGMR can still be effectively utilized 

by linearizing the system and considering its behavior at 

critical sampling instants, thus allowing for the preservation 

of essential dynamics even under practical operating 

conditions [61], [62], [63]. 

A comprehensive assessment of BLQGMR further 

reveals important trade-offs. While the algorithm effectively 

reduces system dimensionality and computational burden, it 

may also induce sensitivity to model uncertainties and 

potential loss of critical system dynamics in truncated states 

[64], [65], [66]. The impact of model reduction on transient 

response, stability margins, and robustness under extreme 

operating scenarios requires rigorous empirical validation 

and systematic sensitivity analysis [67], [68], [69]. Moreover, 

the interplay between reduction-induced simplifications and 

the real-time adaptability of ISMG controllers remains an 

open research question [70], [71], [72]. Comparative 

benchmarks with alternative MOR techniques, both classical 

and modern, are essential for elucidating the relative 

advantages and limitations of BLQGMR in practical ISMG 

applications [73], [74], [75]. Notably, the integration of 

BLQGMR with emerging technologies, such as artificial 

intelligence, self-adaptive control, and real-time data-driven 

optimization, has demonstrated potential for further 

enhancing the flexibility and resilience of microgrid 

operations [76], [77], [78]. However, these hybrid approaches 

also raise new challenges regarding interpretability, 

computational scalability, and standardization [79], [80], 

[81], [82]. 

In this study, we restrict the application of BLQGMR to 

high-order ISMG models that have been linearized and 

represented as linear time-invariant (LTI) dynamical systems. 

The main contributions of this research are as follows: (1) 

providing a rigorous theoretical analysis of BLQGMR’s 

applicability to ISMGs, including explicit discussion of its 

underlying assumptions and practical limitations; (2) 

conducting comprehensive simulation-based validation and 

sensitivity analysis to assess the algorithm’s performance in 

reducing the original 9th-order ISMG model to lower-order 

representations; and (3) focusing on generating reduced-

order models, which are systematically compared to the 

original high-order system to offer practical guidance for 

users in selecting suitable lower-order representations as 

alternatives to more complex models. 

To verify the model reduction capability of the BLQGMR 

algorithm, the authors applied this technique to the ISMG 

model [83] with the objective of simplifying the model, 

reducing computational complexity, and preserving the 

system’s key dynamic characteristics, thereby enhancing 

reliability and stability during control. This research opens 

new avenues for intelligent control solutions, thereby 

promoting the development of islanded microgrids in the 

context of increasing integration of renewable energy. 

II. BALANCED LINEAR-QUADRATIC GAUSSIAN MODEL 

REDUCTION (BLQGMR) ALGORITHM 

Balanced LQG Model Reduction (BLQGMR) is an 

effective method for reducing the order of linear control 

systems, particularly in applications such as the stabilization 

of stratified flows based on linearized Navier–Stokes 

equations. This method integrates the Linear Quadratic 

Gaussian (LQG) control theory with balanced model 

reduction techniques and truncation, thereby generating a 

lower-order model that retains the system's vital input–output 

characteristics. The technique is described as follows [78]: 

Input: The algorithm requires the fundamental system 

matrices E, K, F, and G, which correspond respectively to the 

mass matrix, state matrix, control matrix, and observation 

matrix of the system. 

− Step 1: Solve the two Riccati equations (1) and (2). 

𝐾𝑇𝑃𝑐𝐸 + 𝐸𝑇𝑃𝑐𝐾 + 𝐺𝑇𝐺 − 𝐸𝑇𝑃𝑐𝐹𝐹𝑇𝑃𝑐𝐸 = 0 (1) 

𝐾𝑃𝑜𝐸𝑇 + 𝐸𝑃𝑜𝐾𝑇 + 𝐹𝐹𝑇 − 𝐸𝑃𝑜𝐺𝑇𝐺𝑃𝑜𝐸𝑇 = 0 (2) 

− Step 2: Determine the LQG characteristic values as 

given in (3). 

𝑀 = 𝑃𝑐𝐸𝑃𝑜 
𝑀𝑣𝑖 = 𝜆𝑖𝑣𝑖 ,  𝑖 = 1,2, … , 𝑛 

(3) 

where 𝜆𝑖 ≥ 0 are the LQG characteristic values indicating the 

relative importance of the states in terms of controllability 

and observability. 
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− Step 3: Apply a basis transformation to bring the 

system into a balanced LQG form, arranging the states in 

descending order of their characteristic values. 

• Perform a Cholesky factorization as in (4). 

𝑃𝑐 = 𝑈𝑈𝑇;  𝑃𝑜 = 𝐿𝐿𝑇 (4) 

where 𝑈, 𝐿 ∈ ℝ𝑛×𝑛 are lower triangular matrices. 

• Conduct a singular value decomposition (SVD) as in (5). 

𝐴 = 𝑈𝑇𝐸𝐿; 𝐴 = 𝑍𝛴𝑌𝑇  (5) 

with 𝑍, 𝑌 ∈ ℝ𝑛×𝑛  being orthogonal matrices satisfying 

𝑍𝑇𝑍 = 𝐼; 𝑌𝑇𝑌 = 𝐼; 𝛴 = diag(𝜎1, 𝜎2, … , 𝜎𝑛) with 𝜎1 ≥ 𝜎2 ≥
⋯ ≥ 𝜎𝑛 ≥ 0 representing the singular values, where 𝜎𝑖 =

√𝜆𝑖. 

• Compute the transformation matrices as in (6). 

𝑊 = 𝐿𝑌𝛴−1/2;  𝑉 = 𝑈𝑍𝛴−1/2 (6) 

where 𝛴−1/2 = diag(𝜎1
−1/2

, 𝜎2
−1/2

, … , 𝜎𝑛
−1/2

 

• Verify the balancing condition as in (7). 

    𝑊𝑇𝐸𝑉 = (𝐿𝑌𝛴−
1

2)𝑇𝐸(𝑈𝑍𝛴−
1

2) 

= 𝛴−1/2𝑌𝑇𝐿𝑇𝐸𝑈𝑍𝛴−1/2 
𝐿𝑇𝐸𝑈 = (𝑈𝑇𝐸𝐿)𝑇 = (𝑍𝛴𝑌𝑇)𝑇 = 𝑌𝛴𝑍𝑇  

(7) 

➔ 𝑊𝑇𝐸𝑉 = 𝛴−1/2𝑌𝑇(𝑌𝛴𝑍𝑇)𝑍𝛴−1/2 =
𝛴−1/2𝛴𝛴−1/2 = 𝐼 

• Compute the new matrices as (8), which 𝑃̃𝑐 = 𝑃̃𝑜 = 𝛴. 

𝐸̃ = 𝑊𝑇𝐸𝑉 = 𝐼,  𝐾 = 𝑊𝑇𝐾𝑉,  

𝐹̃ = 𝑊𝑇𝐹,  𝐺̃ = 𝐺𝑉 
(8) 

− Step 4: Eliminate the states whose characteristic 

values fall below a predefined threshold, thereby reducing the 

system’s dimension. 

• Establish the threshold and the reduction order: choose a 

threshold 𝜖 > 0. Arrange the singular values 𝜎𝑖  in 

descending order and select the reduced order r such that 

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 𝜖,  𝜎𝑟+1, … , 𝜎𝑛 ≤ 𝜖. 

+ Partition the matrix Σ as in (9). 

    𝛴 = [
𝛴𝑟 0
0 𝛴𝑛−𝑟

] ; 

𝛴𝑟 = diag(𝜎1, … , 𝜎𝑟); 𝛴𝑛−𝑟 = diag(𝜎𝑟+1, … , 𝜎𝑛)   
(9) 

• Partition the system matrices accordingly as in (10). 

   𝐾 = [
𝐾11 𝐾12

𝐾21 𝐾22

] ,  𝐹̃ = [
𝐹̃1

𝐹̃2

] ,  𝐺̃ = [𝐺̃1 𝐺̃2] (10) 

where 𝐾11 ∈ ℝ𝑟×𝑟 , 𝐾12 ∈ ℝ𝑟×(𝑛−𝑟), 𝐾21 ∈ ℝ(𝑛−𝑟)×𝑟 , 𝐾22 ∈

ℝ(𝑛−𝑟)×(𝑛−𝑟) ; 𝐹̃1 ∈ ℝ𝑟×𝑚, 𝐹̃2 ∈ ℝ(𝑛−𝑟)×𝑚 ; 𝐺̃1 ∈ ℝ𝑝×𝑟 , 𝐺̃2 ∈

ℝ𝑝×(𝑛−𝑟). 

• Discard the unimportant states and retain the components 

corresponding to 𝛴𝑟. 

− Step 5: Construct the reduced-order model as in 

(11). 

    𝐸𝑟 = 𝐼𝑟; 𝐾𝑟 = 𝐾11; 𝐹𝑟 = 𝐹̃1; 𝐺𝑟 = 𝐺̃1 (11) 

Output: A reduced-order system with matrices 

𝐸𝑟 , 𝐾𝑟 , 𝐹𝑟 , 𝐺𝑟  that maintain the stability characteristics of the 

original system, making it suitable for subsequent controller 

design in practical applications. 

While BLQGMR offers a mathematically rigorous 

framework for reducing the order of linear control systems, 

its practical implementation in large-scale, high-dimensional 

systems such as ISMGs presents several nontrivial 

challenges. We analyze these limitations in detail and outline 

strategies to address them, thereby strengthening the 

applicability and reliability of the method: 

− The core of BLQGMR involves solving two coupled 

algebraic Riccati equations, which, for a system of order n, 

typically require (𝒪(𝑛3) operations per iteration using 

standard algorithms. For ISMGs, where n can be large due to 

detailed modeling of distributed energy resources and 

network dynamics, this computational burden may become 

prohibitive, especially for real-time or iterative design 

scenarios. To mitigate this, several approaches can be 

considered: 

− Many practical ISMG models yield sparse or 

structured system matrices (e.g., block-diagonal, banded). 

Leveraging specialized numerical solvers that exploit such 

structures can significantly reduce both memory and 

computational requirements. 

− Recent advances in iterative Riccati solvers, such as 

Krylov subspace methods and low-rank Cholesky factor ADI 

algorithms, enable efficient approximation of solutions for 

large-scale systems while maintaining accuracy. 

− For very large systems, parallel algorithms and high-

performance computing resources can be employed to 

accelerate Riccati equation solutions, making the method 

more tractable for practical ISMG applications. 

BLQGMR, in its classical form, presumes that the 

underlying system is both linear and time-invariant (LTI). 

However, ISMGs inherently exhibit nonlinear behaviors and 

time-varying characteristics due to renewable energy 

fluctuations, load dynamics, and converter nonlinearities. To 

bridge this gap: 

− The method can be applied to locally linearized 

models around operating points of interest. However, the 

validity of such linear approximations must be assessed, 

particularly under large disturbances or rapid parameter 

shifts. 

− Constructing a set of linearized models at 

representative operating conditions and performing model 

reduction for each can improve coverage of the nonlinear 

operating envelope. 
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− Emerging research on model reduction for linear 

parameter-varying and nonlinear systems, such as empirical 

Gramians and Carleman linearization, may offer pathways to 

generalize BLQGMR beyond the LTI paradigm. 

− The process of truncating states based on LQG 

characteristic values 𝜎𝑖  assumes that states with smaller 

values are always negligible. However, in practice, states 

deemed unimportant under nominal conditions may become 

critical during transients or under parameter uncertainty. To 

address this: 

• Prior to truncation, conducting a sensitivity analysis of 

system performance with respect to each state can reveal 

hidden vulnerabilities and guide more informed state 

selection. 

• Instead of a fixed threshold 𝜖, employing adaptive or 

system-dependent criteria, such as energy contribution, 

frequency response impact, or robustness margins, can 

enhance the reliability of the reduction process. 

• After reduction, rigorous robustness analysis, including 

worst-case and probabilistic scenarios, should be 

performed to ensure that essential dynamics are 

preserved, especially under disturbances and 

uncertainties. 

− The simplified representation of each ISMG 

component as a first-order transfer function, while 

analytically convenient, may inadequately capture the 

complex, nonlinear, and stochastic behaviors of real-world 

devices such as photovoltaic inverters, wind turbines, and 

storage systems. This oversimplification can compromise the 

predictive fidelity of both the full-order and reduced-order 

models. To improve model realism: 

• Employ higher-order or nonlinear models for key 

components, validated against detailed simulations or 

experimental data. 

• The overall system model should explicitly account for 

coupling between AC/DC converters, heterogeneous 

loads, and network interconnections, as such interactions 

are pivotal for accurate dynamic behavior. 

• The accuracy of the linearized and reduced models should 

be systematically validated by comparing their responses 

to those of high-fidelity nonlinear models under a range 

of realistic operating scenarios. 

− The integration of BLQGMR with simplified ISMG 

models must be accompanied by a thorough evaluation of 

robustness, particularly in the face of abrupt load changes, 

renewable intermittency, and parameter variations. This 

includes: 

• Performing extensive simulations under stochastic and 

worst-case scenarios to assess the stability and 

performance of the reduced-order model. 

• Investigating the impact of model reduction on adaptive 

and robust controller designs, ensuring that the reduced 

model remains suitable for real-time control tasks. 

• Experimental studies or hardware-in-the-loop simulations 

should be conducted to confirm the practical reliability of 

the reduced-order models and associated controllers. 

III. ARCHITECTURE AND DYNAMIC MODELING OF THE 

ISLANDED MICROGRID 

An Islanded Microgrid (ISMG) is a localized power 

system that can operate independently from the main grid. Its 

overall architecture, as illustrated in Fig. 1, comprises several 

key components [83]: 

 

Fig. 1. Block Diagram of the ISMG System 

1. Distributed Generating Units (DGUs): 

− Diesel Engine Generator (DEG). 

− Non-conventional sources: 

+ Wind Turbine Generator (WTG). 

+ Solar Photovoltaic Panel (SPV). 

+ Biogas Turbine Generator (BGTG). 

+ Biodiesel Engine Generator (BDEG). 

+ Micro Turbine Generator (MTG). 

2. Energy Storage Devices (ESDs) 

− Battery Energy Storage System (BESS). 

− Flywheel Energy Storage System (FESS). 

− Electric Vehicle (EV). 

− Aqua Electrolyzer (AE). 

− Fuel Cell (FC). 

3. Interconnected Loads: These loads may be either DC or 

AC. 

4. Power Converters: DC/AC, AC/DC, and DC/DC 

converters are employed. 

5. Control System: This consists of two main control loops: 

− Primary Control Loop: Directly regulates the 

controllable DGUs using a PID controller; the functional 

blocks are modeled as first-order transfer functions. 

− Secondary Control Loop: Manages the overall 

system frequency and power, coordinating the power flow 
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among various components to respond to load and source 

fluctuations. 

The modeling process of the ISMG system begins with 

determining the individual transfer functions of its 

components to obtain an overall system transfer function. 

Typically, the transfer function of each component is 

expressed in the form 𝒯𝑖(𝜌) =
𝛼𝑖

1+𝜌𝛽𝑖
 where 𝛼𝑖 represents the 

amplification factor of the ith component and 𝛽𝑖 denotes the 

time constant characteristic of its dynamic process. 

Specifically, the components are modeled as follows [83]: 

− The transfer function of the DEG block is given in (11). 

𝒯DEG(𝑠) =
𝛼𝑑

1 + 𝑠𝛽𝑑

;  𝛼𝑑 = 𝐾𝑑𝑒𝑔 ,  𝛽𝑑 = 𝑇𝑑𝑒𝑔 (11) 

− The transfer function of the SPV block is in (12). 

𝒯SPV(𝑠) =
𝛼𝑠

1 + 𝑠𝛽𝑠

;   𝛼𝑠 = 𝐾𝑠𝑝𝑣 ,  𝛽𝑠 = 𝑇𝑠𝑝𝑣 (12) 

− The transfer function of the WTG block is in (13). 

𝒯WTG(𝑠) =
𝛼𝑤

1 + 𝑠𝛽𝑤

;   𝛼𝑤 = 𝐾𝑤𝑡 ,  𝛽𝑤 = 𝑇𝑤𝑡  (13) 

− The transfer function of the BGTG block is approximated 

in (14). 

𝒯BGTG(𝑠) ≈
𝛼𝑏

1 + 𝑠𝛽𝑏

;  𝛼𝑏 = 𝐾𝑏𝑔𝑡𝑔 ,  𝛽𝑏 = 𝑇𝑏𝑔𝑡𝑔 (14) 

− The transfer function of the BDEG block is approximated 

in (15). 

𝒯BDEG(𝑠) ≈
𝛼𝑏𝑑

1 + 𝑠𝛽𝑏𝑑

;  

 𝛼𝑏𝑑 = 𝐾𝑏𝑑𝑒𝑔 ,  𝛽𝑏𝑑 = 𝑇𝑏𝑑𝑒𝑔 

(15) 

− The transfer function of the MTG block is given in (16). 

𝒯MT(𝑠) =
𝛼𝑚

1 + 𝑠𝛽𝑚

;  𝛼𝑚 = 𝐾𝑚𝑡 ,  𝛽𝑚 = 𝑇𝑚𝑡 (16) 

− The transfer function of the AE-FC block is in (17). 

𝒯AE-FC(𝑠) =
𝛼𝑎𝑒

1 + 𝑠𝛽𝑎𝑒

;  

 𝛼𝑎𝑒 = 𝐾𝑎𝑒−𝑓𝑐 ,  𝛽𝑎𝑒 = 𝑇𝑎𝑒−𝑓𝑐 

(17) 

− The transfer function of the BESS block is given in (18). 

𝒯BESS(𝑠) =
𝛼𝑏𝑒

1 + 𝑠𝛽𝑏𝑒

; 

𝛼𝑏𝑒 = 𝐾𝑏𝑒𝑠𝑠 ,  𝛽𝑏𝑒 = 𝑇𝑏𝑒𝑠𝑠 

(18) 

− The transfer function of the FESS block is in (19). 

𝒯FESS(𝑠) =
𝛼𝑓

1 + 𝑠𝛽𝑓

;  𝛼𝑓 = 𝐾𝑓𝑒𝑠𝑠 ,  𝛽𝑓 = 𝑇𝑓𝑒𝑠𝑠 (19) 

− The transfer function of the EV block is given in (20). 

𝒯EV(𝑠) =
𝛼𝑒𝑣

1 + 𝑠𝛽𝑒𝑣

;   𝛼𝑒𝑣 = 𝐾𝑒𝑣 ,  𝛽𝑒𝑣 = 𝑇𝑒𝑣 (20) 

− The dynamics of the generator are modeled as in (21). 

𝒯GD(𝜌) =
1

𝛾 + 𝑠𝛿
 (21) 

where 𝛾, 𝛿 correspond to the damping coefficient and 

stiffness of the system, respectively. 

The interconnection of the individual transfer functions of 

these components yields the overall system transfer function, 

which is expressed in (22) as: 

(𝑠) =
𝛥𝜑(𝑠)

𝛥𝛱(𝑠)
=

∑ 𝑎𝑖
7
𝑖=0 𝑠𝑖

∑ 𝑏𝑗
9
𝑗=0 𝑠𝑗

 (22) 

where 𝛥𝜑(𝑠) represents the frequency error and 

𝛥𝛱(𝑠) represents the net power error. By substituting the 

appropriate values into (22), the full-order transfer function 

of the ISMG is obtained as a ninth-order model, as in (23). 

𝐻(𝑠) =

3.003 + 16.67𝑠 + 34.58𝑠2

+33.32𝑠3 + 15.03𝑠4 + 2.832𝑠5

+0.2324𝑠6 + 0.00694𝑠7

0.0587 + 4.882𝑠 + 16.19𝑠2

+27.32𝑠3 + 24.86𝑠4 + 12.13𝑠5

+3.147𝑠6 + 0.44𝑠7 + 0.0312𝑠8

+0.00087𝑠9

 
(23) 

IV. MODEL REDUCTION OF THE ISMG SYSTEM USING 

THE BLQGMR ALGORITHM 

The BLQGMR algorithm was implemented in MATLAB 

to reduce the order of the 9th-order ISMG system, as 

described by the mathematical model in equation (23), down 

to a first-order system. The resulting approximation errors are 

presented in Table I, with corresponding graphical 

representations shown in Fig. 2. 

TABLE I.  H∞ AND H2 NORM ERRORS OF THE REDUCED-ORDER MODELS 

FOR ISMG USING BLQGMR 

Reduced Order H∞ Error Norm H2 Error Norm 

1 1.366285 × 101 6.898688 × 10-1 

2 1.106420 × 100 3.292628 × 10-1 

3 2.883516 × 100 5.813126 × 10-1 

4 6.900646 × 10-1 1.532748 × 10-1 

5 1.986987 × 10-1 5.283805 × 10-2 

6 1.126398 × 10-2 2.270563 × 10-2 

7 1.133995 × 10-3 3.030480 × 10-4 

8 4.666255 × 10-5 9.903603 × 10-6 

 

From the data in Table I and Fig. 2, it is evident that the 

H∞ norm error quantifies the maximum deviation between the 

original and reduced models across the entire frequency 

spectrum, while the H2 norm error reflects the average energy 
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discrepancy, emphasizing the dynamic signal energy effects. 

As the reduced order increases from 1 to 8, both error metrics 

exhibit a significant decline, particularly for r ≥ 6, where the 

errors become negligibly small. This indicates that the 

BLQGMR algorithm effectively preserves the dynamic 

characteristics of the original system even at lower orders, 

which is crucial for controller design in ISMG systems. It 

enables reduced computational complexity and time while 

maintaining dynamic responses closely aligned with the full-

order model. 

 

Fig. 2. Error plots of H∞ and H2 norms between the original system and 

reduced-order models for varying r 

The selection of the reduced order is based on balancing 

several criteria: minimizing the reduced order as much as 

possible, keeping the model reduction error as low as 

possible, retaining as many of the original system’s 

significant singular values as possible, and ensuring that the 

time-domain and frequency-domain input-output responses 

closely match those of the original system. Based on these 

criteria, and after multiple simulation trials, we selected 

reduced orders of 2, 4, and 5 for further analysis. 

Selecting reduced orders of 2, 4, and 5, we obtain 

corresponding error analyses depicted through Nyquist plots, 

Nichols plots, phase error versus frequency, magnitude error 

versus frequency, and amplitude error over time, as illustrated 

in Fig. 3 through Fig. 7. 

Fig. 3 demonstrates the discrepancies between the 

original model and lower-order models in the Nyquist plot. 

The model with r = 2 exhibits potential instability risks, as 

indicated by multiple loops near the critical point (-1, 0). The 

r = 4 model ensures better stability margins, and the r = 5 

model outperforms the other two in terms of stability and 

accuracy. 

 

Fig. 3. Nyquist plot errors between the original model and reduced-order 

models 

Fig. 4 depicts the error between the original model and the 

reduced-order models on the Nichols chart, where the vertical 

axis represents the open-loop gain ranging from -120 dB to 

40 dB, and the horizontal axis denotes the open-loop phase 

spanning from 0 deg to 1980 deg. The model with order r = 5 

exhibits a smaller error at high frequencies compared to 

models with r = 2 and r = 4, maintaining an open-loop gain 

close to 0 dB at higher phase values. The r = 4 model achieves 

a better balance of error across low and high frequencies, 

while the r = 5 model demonstrates stability across the entire 

frequency range. 

 

Fig. 4. Error between the original model and reduced-order models on the 

Nichols plot 

Fig. 5 provides details on the magnitude error across a 

frequency range from 10−2 rad/s to 102 rad/s, with errors 

varying between 10−7 and 101. For the r = 5 model, the error 

rarely exceeds 10−1, indicating strong capability in 

reproducing the magnitude response. All three reduced 

models exhibit low errors at low frequencies; however, the 

error increases at higher frequencies, with the most 

pronounced increase observed for r = 2. 

 

Fig. 5. Magnitude error between the original model and reduced-order 

models in the time domain 

Fig. 6 presents the phase error between the original 

system and the reduced-order models over a frequency range 

from 10−2 rad/s to 102 rad/s, with phase errors fluctuating 

between 10−5 and 102 degrees. The phase error decreases as 

the model order increases, with the r = 5 model maintaining 

an error below 100 degrees across most of the frequency 

range, reflecting high accuracy. Phase errors rise at high 

frequencies across all orders, with the effect being 

particularly significant for r = 2, potentially impacting 

frequency-sensitive applications. 

Fig. 7 provides information on the step response error 

between the original model and the reduced-order models 
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over a time domain from 0 to 30 seconds, with absolute errors 

ranging from 10−7 to 103. The error decreases significantly 

from r = 2 to r = 5, with the r = 5 model achieving the smallest 

error, below 10−1, in the steady state. Both the r = 4 and r = 5 

models effectively reproduce the step response, particularly 

during the transient phase, outperforming the r = 2 model. 

The minor difference between r = 4 and r = 5 suggests that r 

= 4 offers a balanced trade-off between accuracy and 

complexity. 

 

Fig. 6. Phase error between the original system and reduced-order models in 

the frequency domain 

 

Fig. 7. Step response error between the original model and reduced-order 

models in the time domain 

Analysis of the impulse response between the 9th-order 

original system and its reduced-order systems in Fig. 8 

reveals that the 2nd-order reduced system closely 

approximates the original system for times less than 2 

seconds. However, as time increases, the response of the 2nd-

order system diverges from the original. In contrast, the 4th- 

and 5th-order systems closely track the original system’s 

response across the simulated time domain, with the 5th-

order system exhibiting the highest degree of alignment. 

Consequently, the 4th- or 5th-order systems are 

recommended as viable substitutes for the 9th-order original 

system in time-domain applications. 

From the magnitude response across frequencies in Fig. 

9, it is observed that the data lines corresponding to the 

reduced-order systems of orders 2, 4, and 5 closely align with 

that of the original system. Consequently, these reduced-

order systems can be considered as viable substitutes for the 

original system in applications related to magnitude 

responses within the frequency domain. 

 

Fig. 8. Step response plot between the original system and reduced-order 

systems 

 

Fig. 9. Bode plot between the 9th-order original system and reduced-order 

systems 

Regarding the phase response across frequencies, at 

frequencies below 101 rad/s, the reduced-order systems 

effectively approximate the original system. Therefore, these 

reduced-order systems may be employed in lieu of the 

original system for applications involving phase responses in 

the low-frequency range below 101 rad/s. 

Analysis of the results reveals that the BLQGMR 

algorithm demonstrates effectiveness in reducing the order of 

the ISMG model, with accuracy improving as the reduced 

order increases from 2 to 5. Although the reduced-order 

models, particularly those of order 4 and 5, demonstrate 

strong performance in both steady-state and frequency-

domain analyses, it is crucial to acknowledge the inherent 

limitations of lower-order reductions. Specifically, the 

second-order model exhibits potential stability risks, as 

indicated by Nyquist and Nichols analyses, which may 

compromise system robustness under practical operating 

conditions. Furthermore, while steady-state errors remain 

low, transient mismatches following abrupt disturbances—

such as sudden load changes or rapid fluctuations in 

renewable generation—can significantly impact ISMG 

stability. High-frequency discrepancies observed in Bode 

plots also warrant attention, especially for digital controllers 

operating over wide frequency bands. Therefore, the order 

selection for model reduction should reflect a careful balance 

between model simplicity, dynamic fidelity, and application-

specific requirements, with fourth- and fifth-order models 

offering an optimal trade-off for most ISMG control 

scenarios. 
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The Monte Carlo study injected perturbed step inputs 

(step plus white‐noise) into the full‐order and three reduced‐

order models (r = 2, 4, 5) and computed the per‐run root‐

mean‐square (RMS) error between each reduced response 

and the full‐order response over 100 trials. The results and 

their envelope plot in Table II and Fig. 10 (showing the 5th–

95th percentile band and the mean error trajectory) reveal 

several key insights: 

TABLE II.  MONTE CARLO RMS ERROR STATISTICS FOR REDUCED-ORDER 

MODELS 

Reduced Order Mean RMS Error Std. Dev. of RMS 

2 0.53119 0.002155 

4 0.23798 0.0010695 

5 0.023353 0.00017876 

 

 

Fig. 10. Monte Carlo Error Envelopes on Logarithmic Scale for Full‑Order 

versus Reduced‑Order Models 

− Quantitative accuracy analysis reveals that the 

second-order reduced model (r = 2) exhibits a relatively high 

average RMS error of approximately 0.53, indicating 

substantial deviation from the full-order system under 

random disturbances. Increasing the order to r = 4 reduces the 

mean RMS error to about 0.238, effectively halving the error 

and significantly improving fidelity. Notably, the fifth-order 

model (r = 5) achieves a much lower error of around 0.023, 

demonstrating that adding just one additional state beyond r 

= 4 yields a dramatic enhancement in accuracy. 

− The error dynamics, as illustrated by the envelope 

plots, show that for r = 2 (red line), the 5–95% envelope 

expands rapidly after 5 seconds, peaking near 0.8 at 15 

seconds, with the mean error closely following the envelope’s 

crest, reflecting significant and systematic deviation. For r = 

4 (blue line), the envelope grows more gradually, reaching a 

peak around 0.3 by the end of the simulation, in line with its 

moderate RMS error. In contrast, the r = 5 (green line) model 

maintains both the 5–95% envelope and mean error below 

0.05 throughout most of the 30-second window, 

demonstrating excellent tracking of the full-order system 

even in the presence of noise. 

− The small standard deviations (all on the order of 10-

3 or less) indicate that the RMS errors are very consistent 

across 100 Monte Carlo trials. In particular, r = 5 exhibits a 

remarkable tight distribution (std ≈1.8×10⁻⁴), confirming that 

its performance is both accurate and reliable under random 

input perturbations. 

− These results highlight a clear trade-off in model 

selection: while r = 2 achieves the greatest reduction in 

dimension, its high error makes it unsuitable for control 

applications. The r = 4 model offers a substantial reduction to 

four states with moderate error (~0.24 RMS), which may be 

acceptable for less demanding scenarios. However, r = 5 

provides the optimal balance, reducing the system order from 

9 to 5 while keeping the RMS error around 0.02 and 

maintaining an error envelope an order of magnitude lower 

than r = 4, making it highly appropriate for robust control 

design. 

The Monte Carlo results confirm that the BLQGMR 

reduction to order 5 delivers excellent dynamic fidelity and 

robustness to input perturbations, with minimal variance 

across trials. Thus, for applications demanding both 

computational efficiency and high accuracy, the fifth‐order 

model represents the optimal choice among the tested 

reductions. 

V. CONCLUSION 

This study systematically applied the Balanced Linear 

Quadratic Gaussian Model Reduction (BLQGMR) algorithm 

to the order reduction of islanded microgrid (ISMG) models, 

with a focus on preserving the essential controllability and 

observability properties intrinsic to the original system. 

Through rigorous evaluation using both H∞ and H2 norm-

based error metrics, we demonstrated that reduced-order 

models, especially those of orders r = 4 and r = 5, achieve a 

favorable compromise between complexity reduction and 

dynamic fidelity. The results indicate that as the retained 

order increases, the approximation errors decrease, 

confirming that BLQGMR can effectively capture the critical 

dynamics necessary for reliable control design while 

substantially simplifying the mathematical representation. 

Nevertheless, certain methodological limitations warrant 

further attention. The BLQGMR approach, as implemented 

here, operates under the assumptions of linearity and time-

invariance, which may not fully encompass the nonlinearities 

and time-varying characteristics common in practical 

microgrid operation, such as those introduced by renewable 

energy sources and fluctuating loads. While the reduced-

order models perform well in replicating nominal system 

dynamics, their robustness in the presence of substantial 

parameter variations, unmodeled dynamics, or external 

disturbances remains an open question and should be 

systematically investigated in future work. Although this 

study provides a detailed analysis of the BLQGMR algorithm 

at various reduced orders, it does not include direct 

quantitative comparisons with alternative model reduction 

techniques. As such, future research should incorporate 

benchmarking against other established methods, such as 

proper orthogonal decomposition, moment-matching, or 

data-driven approaches, to more comprehensively evaluate 

the relative strengths and limitations of BLQGMR within the 

context of microgrid applications. From a practical 

standpoint, the reduced-order models derived via BLQGMR 

offer significant potential to enhance the computational 

efficiency of controller synthesis and optimization for 

ISMGs. This efficiency is particularly relevant for real-time 

applications where computational resources and response 
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times are critical. However, further validation in hardware-

in-the-loop or experimental settings would be valuable to 

confirm the practical utility and reliability of these models 

under realistic operating conditions. 

Looking ahead, several research directions emerge as 

particularly promising. Extending the BLQGMR framework 

to accommodate nonlinear and time-varying systems, 

potentially by integrating recent advances in nonlinear model 

reduction or adaptive control, would enhance its applicability 

to modern, complex microgrid architectures. Additionally, 

the integration of advanced optimization techniques to refine 

reduction parameters, possibly leveraging data-driven or 

machine learning-based strategies, could further improve 

model accuracy and robustness. Finally, as intelligent control 

systems become increasingly prevalent in smart grid 

environments, it is crucial to systematically assess the 

cybersecurity implications of model reduction, particularly 

regarding the resilience of reduced-order controllers to 

malicious attacks or system faults. 

In summary, this work advances the field of microgrid 

control by providing a rigorous assessment of the BLQGMR 

algorithm’s capabilities for model order reduction. The 

findings contribute foundational insights that inform the 

development of efficient, robust, and secure control strategies 

for future smart grid applications. 
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