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Abstract—This paper aims to address robust optimal 

tracking control for a wheel mobile robot (WMR) with 

unknown dynamics. Firstly, the WMR system is considered a 

nonholonomic system with nonlinearity and input disturbance. 

Traditional optimal methods typically require solving the 

Hamilton- Jacobi- Bellman (HJB) equation or Algebraic 

Riccati equation (ARE), which are related to minimizing a cost 

function. However, these methods become increasingly difficult 

or even impossible to implement for high nonlinear systems 

such as the WMR in practical applications. To overcome this 

challenge, a Reinforcement Learning (RL) algorithm is 

designed to learn the solution of the HJB equation by using the 

input-output system data collected from the WMR during the 

data collection process. Consequently, the WMR can achieve 

optimal trajectory tracking without knowledge of the dynamic 

system. Finally, a simulation built in MATLAB software is 

given to show the effectiveness of the robust controller for 

WMR under the influence of uncertainties and input 

disturbance. 

Keywords—Wheel Mobile Robot; Reinforcement Learning 

(RL); Robust Control; Unknown Dynamics. 

I. INTRODUCTION   

In recent years, wheel mobile robots (WMR) have been 

widely used in many fields and have attracted much 

attention from both academic and industrial areas [1]-[3]. 

The control problem such as trajectory tracking control for 

WMR has become an interesting topic [4]-[7]. However, a 

wheel mobile robot (WMR) is a nonholonomic system and 

the control design for this system is difficult due to the 

nonlinearities, external disturbance, and uncertainties in the 

system. To ensure robustness and trajectory tracking 

performance, many control methods are used to design 

control laws for WMR, such as backstepping control [8][9], 

sliding mode control [10]-[13], fuzzy control [14], neural 

network-based control [15]-[17], and H∞ control [18]. The 

majority of these control methods are to solve the trajectory 

tracking for the WMR while guaranteeing the stability of the 

WMR system. Although these control methods can achieve 

adaptive or robust with nonlinearity, external disturbance, 

and uncertainty in the system dynamics, the optimal 

tracking problem has not been discussed and these methods 

usually require knowing partial or completed dynamic 

information of the system. 

In order to achieve optimal trajectory tracking, it usually 

requires solving the Hamilton-Jacobi-Bellman (HJB)  

equation [19][20] or the Algebraic Riccati Equation (ARE) 

[21], which are difficult to directly solve by only math 

analysis. The WMR is considered a nonholonomic system 

subjected to nonlinearity, external disturbance, and 

uncertainty, the traditional optimal methods are more 

difficult or impossible to implement in practical application. 

The problem is to design a robust controller that achieves 

optimal trajectory tracking without the knowledge of the 

system dynamics. Reinforcement learning (RL) is a kind of 

learning method, which has received much attention in 

learning the optimal control policy without knowing the 

system dynamics. In particular, the RL approach by Actor-

Critic structure [22]-[24], in where, a Critic neural network 

is employed to approximate the value of the performance 

function while an Actor neural network is employed to 

approximate the optimal solution. In studies [21], an online 

algorithm based on RL was developed for continuous 

systems to learn optimal control solutions online, but the 

completed knowledge of the system dynamics must be 

required. In the studies [22]-[24], RL algorithms are 

developed to learn the optimal control solution online with 

partially knowing dynamic information. While the studies in 

[22][23] achieve optimal regulation, the study in [24] can 

achieve optimal tracking that makes the output of the system 

track to the desired reference. In the studies [25][26], a data-

based RL algorithm was developed for the nonlinear system 

to address the optimal tracking control problem without 

knowing system dynamics by using the input-output system 

data, but the nonlinear dynamic model did not consider the 

influence of the external disturbance. In the study [27], a 

robust offline RL algorithm is developed to find the optimal 

policy for a nonlinear system subjected to external 

disturbance with unknown dynamics. 

Inspired by the study [27], this paper proposes a robust 

controller based on reinforcement learning (RL) to address 

the optimal tracking control for a nonholonomic wheel 

mobile robot (WMR) with unknown dynamics and input 

disturbance. With the proposed controller, the optimal 

control input can be learned without dynamic information 

by observing the input-output system data and the position 

tracking errors can converge to zero optimally. The research 

contributions of this paper are listed as follows. 

1. Different from the studies [1]-[18], [31]-80], which use 

the nonlinear control methods and the Lyapunov theory 

to analyse the stability of the system. This paper 

proposed a robust controller for WMR to optimally track 

a time-varying trajectory under the influence of input 

disturbance by investing in an optimal control scheme. 
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2. By using the RL approach, the optimal control policy 

can be learned without the dynamic information by 

observing the input-output system data of the WMR.  

The rest of the paper is organized as follows. The 

dynamic model of the wheel mobile robots is introduced in 

Section 2. A robust controller-based RL method is designed 

in Section 3. Finally, a simulation result is given in Section 

4, and a brief conclusion is contained in Section 5. 

Notations: Let In ∈ Rn×n indicate a unit matrix and 

0n×m ∈ Rn×m a zero matrix. 

II. DYNAMIC MODEL 

A wheel-mobile robot is a nonholonomic system 

consisting of a vehicle body connected with wheels: two 

rear driving wheels and one free front wheel as shown in 

Fig. 1. The front wheel prevents the robot from tipping over 

and two rear driving wheels with two DC motors as actuator 

can be controlled to generate forces for robot move on a 

plane. It is assumed that the coordinate of the mass center of 

the WMR is located in the middle of the rear driving 

wheels. 

 

Fig. 1. Two-wheel mobile Robot 

According to [28], the dynamic model of WMR is 

described as 

𝑞̇ = 𝑆(𝑞)𝜂 

𝑀(𝑞)𝑞̈ + 𝐹(𝑞̇) + 𝜏𝑑 = 𝐵(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆 
(1) 

where 𝑞 = [𝑥, 𝑦, 𝜃]𝑇 ∈ 𝑹3 is a vector of the positions and 

orientation of the robot, 𝜂 = [𝑣, 𝑤]𝑇 ∈ 𝑹2 is a vector of 

linear and angular velocities of the robot. The control torque 

vector 𝜏 = [𝜏𝑟 , 𝜏𝑙] ∈ 𝑹2 consist of the torques of the right 

and left rear wheels respectively. The torque disturbance 

vector 𝜏𝑑 ∈ 𝑹2 is unknown and bounded. 𝑀(𝑞) is a 

symmetric and positive definite inertia matrix, 𝐹(𝑞̇) is the 

surface friction vector, 𝐵(𝑞) is the input transformation 

matrix. Matrix 𝑆(𝑞), 𝑀(𝑞), 𝐹(𝑞̇), 𝐵(𝑞), and 𝐴(𝑞) are 

described as 

𝑆(𝑞) = [
cos(θ) 0

sin(𝜃) 0
0 1

] , 𝑀(𝑞) = [
𝑚 0 0
0 𝑚 0
0 0 𝐽

] 

𝐵(𝑞) =
1

𝑟
[
cos(𝜃) cos(𝜃)

sin(𝜃) sin(𝜃)
𝑏 −𝑏

],   

𝐴𝑇(𝑞) = [
− sin(𝜃)

cos(𝜃)
0

] 

 

where 𝑏 is the distance between the rear wheel and the mass 

center of robot, 𝑟 is the wheel's radius, 𝑚 is the mass of 

robot, 𝐽 is the inertia moment. According to [29], the 

nonholonoic constrant is 𝐴(𝑞)𝑞̇ = 0.  Following Eq. (1a), 

we have 

𝑞̈ = 𝑆(𝑞)𝜂̇ + 𝑆̇(𝑞)𝜂 (2) 

Subtituting into Eq. (1b) 

𝑀(𝑞)(𝑆(𝑞)𝜂̇ + 𝑆̇(𝑞)𝜂) + 𝐹(𝑞̇) + 𝜏𝑑

= 𝐵(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆 
(3) 

Mutipling both sides of Eq. (3) with 𝑆𝑇(𝑞) 

𝑆𝑇(𝑞)𝑀(𝑞)(𝑆(𝑞)𝜂̇ + 𝑆̇(𝑞)𝜂) + 𝑆𝑇(𝑞)𝐹(𝑞̇)

+             ST(q)τd

= 𝑆𝑇(𝑞)𝐵(𝑞) − 𝑆𝑇(𝑞)𝐴𝑇(𝑞)𝜆 

(4) 

From the definitions of 𝑆(𝑞), 𝑀(𝑞), and 𝐴(𝑞), we have 

𝑆𝑇(𝑞)𝐴𝑇(𝑞) = 0, 𝑆𝑇(𝑞)𝑀(𝑞)𝑆̇(𝑞) = 0 (5) 

One has 

 𝑞̇ = 𝑆(𝑞)𝜂 

𝑀𝜂̇ = 𝐵𝜏 + Δ(𝑡) 
(6) 

where 𝑀 = [
𝑚 0
0 𝐽

], 𝐵 =
1

𝑟
 [

1 1
𝑏 −𝑏

], and Δ(𝑡) =

 −𝑆𝑇(𝑞)(𝐹(𝑞̇) + 𝜏𝑑) as unknown and bounded disturbance. 

Control objective: This paper aims to develop a robust 

optimal control scheme for a wheel-mobile robot with input 

disturbances. Generally, this paper focuses on solving some 

problems as 

1. To optimally track a time-varying trajectory for the 

wheel mobile robot under the influence of input 

disturbance by investing in an optimal control scheme. 

2. By using the RL approach, the optimal control policy 

can be learned by observing the wheel-mobile robot's 

input-output system data. This means that the proposed 

controller achieves optimal tracking control with 

unknown dynamic information. 

III. CONTROL DESIGN 

In this section, a robust optimal controller based on the 

RL method and optimal control theory is proposed for the 

wheel-mobile robot with input disturbance. 

Firstly, this is an assumption that the reference trajectory 

𝑞𝑑 = [𝑥𝑑 , 𝑦𝑑 , 𝜃𝑑]𝑇 ∈ 𝑹3 is generated by the system. 

𝑞𝑑̇ = 𝑓𝑑(𝑞𝑑) (7) 

in where 𝑓𝑑(𝑞𝑑): 𝑹3 → 𝑹3 is an unknown and bounded 

function, which is known as the Lipchitz continuous 

function. To ensure the tracking objective, a trajectory 

tracking error 𝑒𝑞(𝑡) = 𝑞 − 𝑞𝑑 ∈ 𝑹3, we have 

𝑒̇𝑞 = 𝑆(𝑞)𝜂 − 𝑞̇𝑑 (8) 

Define 𝜂𝑑 ∈ 𝑹2 as virtual control input for the subsystem in 

Eq. (8), which ensures its asymptotic stability. 

𝜂𝑑 = 𝑆(𝑞)+(𝑞̇𝑑 − 𝛼𝑞𝑒𝑞) (9) 
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where 𝑆(𝑞)+ = [𝑆(𝑞)𝑇𝑆(𝑞)]−1𝑆(𝑞)𝑇 is the pseudo-inverse 

matrix and 𝛼𝑞 ∈ 𝑅3×3 is positive define matrix. To ensure 

the trajectory tracking in the inner loop, we define the 

tracking error 𝑒𝜂 = 𝜂 − 𝜂𝑞 ∈ 𝑹2. The dynamic model can 

be rewritten as 

𝜂̇ = [𝑀]
−1

𝐵𝜏 + [𝑀]
−1

Δ (10) 

Define 𝑋 = [𝑒𝜂
𝑇 , 𝑒𝑞

𝑇 , 𝑞𝑑
𝑇]

𝑇
∈ 𝑹8 as an argument state vector, 

the argument system is constructed as 

𝑋̇ = 𝐹(𝑋) + 𝐺𝑢 +  𝐷Δ 

𝑒 = 𝐶𝑋  
(11) 

where 𝑒 = [𝑒𝜂
𝑇 , 𝑒𝑞

𝑇]
𝑇

∈ 𝑹5 as tracking error, 𝑢 = 𝜏 as 

control input, and 𝐹(𝑋), 𝐺, 𝐸 are 

𝐹(𝑋) = [

0

𝑆(𝑒𝑞 + 𝑞𝑑)
+

(𝑞̇𝑑 − 𝛼𝑞𝑒𝑞)

𝑓𝑑(𝑞𝑑)

] , 𝐺 = [
[𝑀]

−1
 

0
0

] ,

𝐷 = [
[𝑀]

−1
 

0
0

] , 𝐶 = [𝐼5, 03×3] 

To achieve the robustness and optimal trajectory tracking 

for the wheel-mobile robot under the influence of unknown 

disturbance 𝑑(𝑡), the disturbance attenuation condition is 

first defined as 

∫ 𝑒−𝛽(𝜏−𝑡)(𝑒𝑇𝑄𝑒 + 𝑢𝑇𝑅𝑢)𝑑𝜏

∞

𝑡

≤ 𝛾 ∫ 𝑒−𝛽(𝜏−𝑡)(Δ𝑇Δ)𝑑𝜏
∞

𝑡

  (12) 

where 𝛽 > 0 is a discount factor, 𝛾 > 0 is a positive 

constant, 𝑄 ∈ 𝑹5×5 and 𝑅 ∈ 𝑹2×2 are positive defined 

matrices. Following Eq. (12), the influence of input 

disturbance Δ on the tracking performance can be attenuated 

by at least to 𝛾, the performance function as 

𝑉(𝑒, 𝑢, Δ) = ∫ 𝑒−𝛽(𝜏−𝑡)𝑟(𝑒, 𝑢, Δ)𝑑𝜏

∞

𝑡

 (13) 

where 𝑟(𝑒, 𝑢, Δ) =  (𝑒𝑇𝑄𝑒 + 𝑢𝑇𝑅𝑢 − 𝛾Δ𝑇Δ). The 

performance function 𝑉(𝑒, 𝑢, Δ) is considered a two-player 

zero-sum game with the minimizing player 𝑢 and the 

maximizing player Δ. This is to say that the performance 

function is constructed to maximize energy efficiency and 

minimize the impact of input disturbance.  

Remark 1: Similar to [30], the positive discount factor 𝛽 

has an important role in the performance function 

𝑉(𝑒, 𝑢, 𝛥), which indicates that the current rewards 

contribute more significantly to the performance function 

than future rewards and ensures the performance function is 

bounded. 

Remark 2: Generally, there is no analytical method to 

determine the smallest achievable disturbance attenuation 

level (𝛾). Consequently, γ is typically chosen as a 

sufficiently large predefined value in practice. The minimum 

value of γ that satisfies the required condition corresponds 

to the optimal robust control solution. 

Following the argument system in Eq. (11), the static 

Bellman equation can be achieved by the Dynamic 

Programming (DP) principle as 

𝑉∗(𝑒, 𝑢, Δ) = min
𝑢

max
Δ

𝑉(𝑒, 𝑢, Δ)  (14) 

The Hamiltonian function iss formulated by taking the time 

derivative of the static Bellman equation in Eq. (14) as 

𝑑

𝑑𝑡
𝑉∗(𝑒, 𝑢, Δ) =

𝜕𝑉∗

𝜕𝑋

𝑑𝑋

𝑑𝑡
 =

𝜕𝑉∗

𝜕𝑋
 (𝐹(𝑋) + 𝐺𝑢∗ +  𝐷Δ∗) (15) 

By computing the static Bellman equation at instantaneous 

time 𝑡 by DP principle as 

𝑉∗(𝑡) = ∫ 𝑒−𝛽(𝜏−𝑡)𝑟(𝑒, 𝑢∗, Δ∗)𝑑𝜏

𝑡+𝑇

𝑡

+  𝑒−𝛽𝑇𝑉∗(𝑡 + 𝑇) (16) 

Hence 

𝑉∗(𝑡) − 𝑉∗(𝑡 + 𝑇)

𝑇
=

1

𝑇
∫ 𝑒−𝛽(𝜏−𝑡)𝑟(𝑒, 𝑢∗, Δ∗)𝑑𝜏

𝑡+𝑇

𝑡

+ 
𝑒−𝛽𝑇 − 1

𝑇
𝑉∗(𝑡 + 𝑇) 

(17) 

Once 𝑇 → 0, the Bellman equation can be obtained as 

𝐻(𝑉∗, 𝑢∗, Δ∗) = 𝑟(𝑒, 𝑢∗, Δ∗) − 𝛽𝑉∗

+ ∇𝑉∗ (𝐹(𝑋) + 𝐺𝑢∗ +  𝐷Δ∗) = 0   
(18) 

where ∇V∗ =
𝜕𝑉∗

𝜕𝑋
. By setting 

𝜕𝐻(𝑉∗,𝑢,Δ)

𝜕𝑢
= 0 and 

𝜕𝐻(𝑉∗,𝑢,Δ)

𝜕Δ
=

0 , the optimal policies can be obtained as 

𝑢∗ = −
1

2
𝑅−1𝐺𝑇∇𝑉∗ 

Δ∗ =
1

2𝛾2
𝐷𝑇∇𝑉∗ 

(19) 

Substituting into the Eq. (18) the modified Hamiltonian 

function as 

𝑒𝑇𝑄𝑒 − 𝛽𝑉∗ −
1

4
[∇𝑉∗]𝑇𝐺𝑅−1𝐺𝑇∇V∗

+
1

4γ2
[∇𝑉∗]𝑇DDT∇V∗

+ [∇𝑉∗]𝑇𝐹(𝑋) = 0   

(20) 

Remark 3. Similar to [27], the argument system in Eq. 

(11) using the optimal control input in Eq. (19) satisfies the 

disturbance attenuation condition in Eq. (12) and is 

asymptotically stable if 𝛥 = 0 and 𝛽 ≤ 2(||𝑃𝑄||)
1/2

 where 

𝑂 = 𝐺𝑅−1𝐺𝑇 + 𝐷𝐷𝑇/𝛾2. 

Define 𝑉𝑖 ,  𝑢𝑖, and Δ𝑖  as the updated policy in the 𝑖𝑡ℎ 

iteration. To achieve model-free optimal tracking control for 

the wheel mobile robot, the argument system is rewritten as 

𝑋̇ = 𝐹(𝑋) + 𝐺𝑢𝑖 +  𝐷Δi + 𝐺(𝑢 − 𝑢𝑖) + 𝐷(Δ − Δ𝑖) (21) 

Different the performance function in Eq. (13) using Eq. 

(18) and Eq. (19) as 

𝑉𝑖̇ = 𝛽𝑉𝑖 − 𝑟(𝑒𝑖 , 𝑢𝑖 , Δ𝑖) −  2𝑢𝑖+1
𝑇 𝑅(𝑢 − 𝑢𝑖)

+ 2𝛾2Δ𝑖+1
T (Δ − Δ𝑖) 

(22) 
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Multiplying both sides with 𝑒−𝛽𝑡 and then integrating 

both sides (𝑡, 𝑡 + 𝑇) of Eq. (20) with T is time interval, the 

Bellman equation as 

𝑒−𝛽𝑇𝑉𝑖(𝑡 + 𝑇) − 𝑉𝑖(𝑡)  

= ∫ 𝑒−𝛽(𝜏−𝑡)𝑟(𝑒𝑖 , 𝑢𝑖 , Δ𝑖)𝑑𝜏
𝑡+𝑇

𝑡

   

− ∫ 2𝑒−𝛽(𝜏−𝑡)𝑢𝑖+1
𝑇 𝑅(𝑢

𝑡+𝑇

𝑡

− 𝑢𝑖)𝑑𝜏    

+ ∫ 2𝛾2𝑒−𝛽(𝜏−𝑡)Δ𝑖+1
T (Δ

𝑡+𝑇

𝑡

− Δ𝑖)𝑑𝜏 

(23) 

Remark 4. According to [25-26], the optimal policies 

found by solving the Bellman equation in Eq. (20) and the 

Bellman equation in Eq. (23) are equivalent. Different from 

the Bellman equation in Eq. (20), the Bellman equation in 

Eq. (23) does not require knowledge of the system dynamics, 

which is difficult to obtain accurately in the practical 

application. 

A. Model-free based RL Control Algorithm  

1. Initialization 

Applying control policy 𝑢0 = 𝑢𝑠 + 𝑢𝑒 with the 

stabilizing input 𝑢𝑠 and the exploring noise input satisfying 

the persistence of excitation (PE) condition 𝑢𝑒 to the wheel 

mobile robot to collect data of the state, the control input, 

and the disturbance. Initializing any control policy 𝑢0 and 

disturbance policy Δ0. 

2. Update policy 

For 𝑢𝑖 and Δ𝑖 , solving the Bellman equation in Eq. (21) 

to find the performance function 𝑉𝑖, the updated control 

policy 𝑢𝑖+1, and the updated disturbance policy Δ𝑖+1. 

If convergence ||𝑢𝑖+1 − 𝑢𝑖|| ≤ 𝜖𝑢 and ||Δ𝑖+1 − Δ𝑖|| ≤ 𝜖Δ , 

stop. 

Else 𝑖 = 𝑖 + 1 and go to 2. 

Remark 5: The Persistence of Excitation (PE) plays a 

critical role in ensuring the stability and convergence of 

reinforcement learning (RL) algorithms, particularly in 

model-free control systems. When the collected input-output 

data does not satisfy the PE condition, the excitation of the 

system dynamics becomes insufficient, leading to inaccurate 

estimation of value functions or control policies. This may 

result in convergence to suboptimal solutions, overfitting to 

noise, or even instability during the control process. 

Moreover, many theoretical results on stability and 

convergence in RL [19,21,22,24,26,27], fundamentally rely 

on the assumption of PE to guarantee the effectiveness of 

the learning process.  

The convergence of Algorithm is shown in [27]. To 

approximate the optimal policies, three neural networks are 

employed as 

𝑉̂𝑖 = 𝑊̂𝑣,𝑖
𝑇 𝜙𝑣(𝑋) 

𝑢̂𝑖 = 𝑊̂𝑢,𝑖
𝑇 𝜙𝑢(𝑋) 

(24) 

Δ̂𝑖 = 𝑊̂𝑑,𝑖
𝑇 𝜙𝑑(𝑋) 

Where 𝑉̂𝑖 , 𝑢̂𝑖, and Δ̂𝑖 are the approximated values of 𝑉𝑖 , 𝑢𝑖 

and Δ𝑖 , respectively. 𝑊𝑣 ∈ 𝑹𝑙𝑣×1 , 𝑊𝑢 ∈ 𝑹𝑙𝑢×2 , and 𝑊𝑑 ∈
𝑹𝑙𝑑×3 are weight matrixes at 𝑖𝑡ℎ iteration, 𝜙𝑣 ∈ 𝑹1×𝑙𝑣 , 𝜙𝑢 ∈
𝑹1×𝑙𝑢 , and 𝜙𝑑 ∈ 𝑹1×𝑙𝑑 are action functions with 𝑙𝑣, 𝑙𝑢 and 

𝑙𝑑 are the number of neurons. Substituting Eq. (22) to Eq. 

(21), the Bellman error 𝑒𝐵,𝑖 as 

𝑒𝐵,𝑖

= 𝑒−𝛽𝑇𝑊̂𝑣
𝑇𝜙𝑣(𝑋(𝑡 + 𝑇)) − 𝑊̂𝑣

𝑇𝜙𝑣(𝑋(𝑡))

− ∫ 𝑒−𝛽(𝜏−𝑡)𝑟(𝑒𝑖 , 𝑢𝑖, Δ𝑖)𝑑𝜏
𝑡+𝑇

𝑡

+ 2 ∑ 𝑟𝑘 ∫ 𝑒−𝛽(𝜏−𝑡)𝑊̂𝑢,𝑖+1
𝑇 𝜙𝑢(𝑋)𝜎𝑢,𝑘𝑑𝜏

𝑡+𝑇

𝑡

2

𝑘=1

 

− 2𝛾2 ∑ ∫ 𝑒−𝛽(𝜏−𝑡)𝑊̂𝑑,𝑖+1
𝑇 𝜙𝑑(𝑋)𝜎𝑑,𝑘𝑑𝜏

𝑡+𝑇

𝑡

2

𝑘=1

 

(25) 

Where 𝑅 = 𝑑𝑖𝑎𝑔([𝑟1, 𝑟2]), 𝜎𝑢 = [𝜎𝑢,1, 𝜎𝑢,2]
𝑇

= 𝑢 − 𝑢𝑖 and 

𝜎𝑑 = [𝜎𝑑,1, 𝜎𝑑,2]
𝑇

= Δ − Δ𝑖. By using least-squares methods 

to bring the Bellman error 𝑒𝐵,𝑖 to 0 under the PE condition. 

IV. SIMULATION RESULT 

This section presents a simulation result built on Matlab 

software to verify the effectiveness of the proposed 

controller. In this simulation, the parameters of the wheel 

mobile robot are chosen as: 𝑏 = 0.5 (𝑚), 𝑟 = 0.2 (𝑚), 𝑚 =
5 (𝑘𝑔), and 𝐽 = 4 (𝑘𝑔. 𝑚^2). The torque disturbance are 

set as 

𝜏𝑑 = [
0.1𝑣̇ + 0.1𝑣 + 0.2𝑤 + 0.2 cos2(𝑡) sin (2𝑡)

0.2𝑤̇ + 0.1𝑣 + 0.1𝑤 + 0.2 𝑠𝑖𝑛2(𝑡)cos (3𝑡)
] (26) 

The desired reference trajectory is chosen as 

𝑥𝑑 = sin(0.2𝑡) 

𝑦𝑑 = − cos(0.2𝑡) 

𝜃𝑑 = 0.2𝑡 

(27) 

The initial conditions are initialized 𝑞(0) =
[𝑥(0), 𝑦(0), 𝑧(0)]𝑇 = [0,0,0]𝑇 . The time interval 𝑇 = 0.05, 

the RL term is chosen as 𝛽 = 0.05, 𝛾 = 2, 𝑄1 = 𝐼2, and  

𝑄2 = [
100𝐼2 02×6

06×2 06×6
] . The action functions of three neural 

networks are chosen as multiple polynomials with even 

orders. The exploration noise input is chosen as a sum of 

sinusoidal functions in the following form 𝑢𝑒 =
0.1 ∑ sin (2𝜋𝑓𝑖𝑡)10

𝑖=1 , with 𝑓𝑖 ∈ (0,20) Hz. The convergence 

of the RL Algorithm is shown in Fig. 2.  The tracking errors 

of the wheel mobile robot are shown in Fig. 3 and Fig. 4. It 

is easy to observe that the tracking errors converge to zero 

after about 2 seconds. The position tracking performance is 

shown in Fig. 5. To verify the tracking performance of the 

wheel mobile robot, the 2D trajectory tracking is shown in 

Fig. 6. 

This simulation only aims to give a simulation to verify 

the optimal control policies that are learned by the RL 

Algorithm to achieve optimal trajectory tracking for wheel 

mobile robots. Therefore, it should be noted that this paper 
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does not compare the performance of the proposed 

controller with other control methods. The advantage of this 

paper is to propose an RL Algorithm to learn optimal 

control policies using input-output data collection from the 

wheel mobile robot system. By using RL methods, the 

control policies can be learned without knowledge of 

quadrotor dynamics. 

 

Fig. 2. Convergence of weights of the RL Algorithm 

 

Fig. 3. The positions and orientation tracking errors 

 

Fig. 4. The linear and angular velocity tracking errors 

 

Fig. 5. The positions and orientation responses 

 

Fig. 6. The 2D trajectory of the wheel mobile robot 

V. CONCLUSION 

This paper focuses on addressing the robust optimal 

trajectory-tracking problem for a nonholonomic WMR with 

unknown dynamics. It is well known that traditional optimal 

methods become increasingly difficult, or even impossible, 

to implement for highly nonlinear systems such as WMRs. 

Furthermore, the WMR system is considered under the 

influence of bounded disturbance inputs. To overcome this 

challenge, a model-free RL algorithm is designed to learn 

the optimal policy using only input-output system data. To 

verify the effectiveness of the proposed controller, a 

simulation built in MATLAB software is provided. The 

simulation results show that the mobile robot with the 

proposed controller achieves optimal trajectory tracking 

following a predefined reference trajectory. 
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