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Abstract—This study offers a systematic approach to 

improving the reconstruction of three-dimensional anatomical 

models from CT imaging data. The main difficulty tackled is the 

maintenance of internal bone features during denoising, 

essential for producing clinically relevant models. A nonlinear 

filtering strategy was implemented, utilizing a 3×3 median filter 

alongside manual refinement to eliminate salt-and-pepper noise 

while preserving anatomical information. The study presents a 

reproducible image-processing pipeline that improves 

structural clarity and enables material-efficient 3D printing 

while preserving internal bone integrity. A publicly available 

dataset including 813 anonymized chest CT scans (512×512 

pixels, 16-bit grayscale) from Zenodo was employed. 

Preprocessing included grayscale normalization, brightness 

adjustment, and the application of median filters with kernel 

sizes from 3×3 to 9×9, followed by artifact removal using 

FlashPrint software before STL conversion. The 3×3 median 

filter achieved an excellent balance between noise reduction and 

anatomical clarity, outperforming mean filtering and larger 

kernels in maintaining edge detail. Although statistical 

evaluation was not conducted, visual analysis validated an 18.07 

percent decrease in print time and a 17.88 percent reduction in 

filament consumption. The technology exhibited actual efficacy 

in generating high-quality anatomical models. Future endeavors 

will incorporate automated segmentation and sophisticated 

denoising methodologies to enhance applicability in surgical 

simulation, clinical education, and personalized healthcare 

planning. 

Keywords—Median Filtering; Medical Image Processing; 

STL File Generation; DICOM. 

I. INTRODUCTION 

Advancements in three-dimensional (3D) printing have 

revolutionized healthcare by facilitating the creation of 

patient-specific organ models for surgery planning, medical 

teaching, and patient communication [1], [2]. Computed 

tomography (CT) is crucial for obtaining high-resolution 

anatomical information [3]-[7]. CT images often exhibit salt-

and-pepper noise, a form of random impulse noise marked by 

intermittent high-contrast pixels. If not treated, such noise can 

hide intricate anatomical boundaries, including vascular 

structures and organ interfaces, thereby diminishing the 

accuracy of 3D reconstruction for therapeutic and educational 

applications [8]-[10]. 

Conventional denoising methods may unintentionally 

obscure edges or eliminate minor tissue variations essential 

for diagnostic accuracy. Recent work on advanced 

preprocessing methods and convolutional neural networks has 

explored approaches to improve image clarity while 

maintaining structural integrity [11]-[16]. 

Numerous studies have demonstrated that effective image 

filtering is crucial for dependable picture-based applications 

in agriculture [17], medical diagnostics [18]-[20], facial 

recognition [21], robot-assisted perception and object 

segmentation in robotics [22]-[26], and healthcare [27]-[31]. 

Deep learning methodologies, including convolutional neural 

networks (CNNs) and ResNet-based architectures, are being 

widely utilized and have shown effectiveness in chest disease 

diagnosis, skin lesion classification, and semantic 

segmentation within both medical and industrial domains 

[32]-[44]. Nonetheless, preprocessing remains crucial, as 

noise reduction enhances feature clarity and improves the 

reliability of downstream tasks, including diagnosis and 3D 

reconstruction [45]-[50]. In surgical planning and patient-

specific anatomical modeling, minimizing noise is essential to 

avoid misinterpretation of critical structures and to improve 

the 3D printing process [51], [52]. 

This study proposes the implementation of a median filter, 

a recognized non-linear filtering method that mitigates salt-

and-pepper noise while preserving critical anatomical 

characteristics. Median filtering offers a straightforward and 

effective method that preserves sufficient anatomical fidelity 

in contrast to more intricate techniques such as bilateral 

filtering or anisotropic diffusion, which frequently necessitate 

parameter adjustment and increased computational resources. 

This work is unique in minimizing internal structural loss 

usually associated with high-threshold segmentation and in 

efficiently removing noise artifacts that may compromise the 

3D model. Particularly in osseous tissue, this approach helps 

to maintain internal density, thereby allowing precise physical 

modeling. The organ or region of interest is delineated using 

thresholding and an erasing function in anatomical modeling 

software during post-processing. 

This study meticulously assesses and compares several 

median filter kernel sizes (3×3, 5×5, 7×7, and 9×9) to 
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determine the best balance between noise reduction and 

feature preservation [53]-[61]. Median filtering is prioritized 

in this work due to its simplicity and consistent performance 

in retaining edge clarity with minimal parameter adjustment, 

despite the availability of more advanced denoising methods. 

The resulting 3D model is refined and printable, with potential 

utility in supporting medical professionals in diagnosis, 

surgical planning, and patient communication [62]-[66]. 

The growing accessibility of sophisticated image-

processing methods and open-source imaging datasets has 

enabled wider applicability across other fields. This research 

concentrates on medical imaging and anatomical modeling, 

although certain publications in [67]-[77] emphasize 

applications in agriculture and robotics. The extensive 

applications demonstrate the adaptability of filtering 

procedures, although the current study emphasizes the clinical 

significance of generating rapid, accurate, and cost-effective 

anatomical models from CT data. 

The main contribution of this study is a reproducible and 

efficient CT image filtering and modeling framework that 

reduces salt-and-pepper noise, preserves internal bone 

structure, and enables the generation of anatomically detailed 

3D-printed models that may potentially support future 

applications in clinical planning, education, and simulation. 

The structure of this research is as follows. Section II offers 

the research technique, including segmentation of CT images, 

thresholding, and filtering techniques. Section III reviews the 

experimental results and assesses the efficiency of the 

proposed approach in terms of noise attenuation and 3D 

reconstruction quality. The study concludes in Section IV, 

which also provides future research directions. 

II. RESEARCH METHOD 

This work introduces a comprehensive image-processing 

pipeline that is designed to improve the quality of CT scans 

for the purpose of three-dimensional organ modeling and 

medical 3D printing. The process depicted in Fig. 1 involves 

a number of phases, such as dataset acquisition, 

preprocessing, filtering, segmentation, model refinement, and 

the fabrication of physical 3D models. A comparative 

assessment across four median filter kernel sizes (3×3, 5×5, 

7×7, and 9×9) was conducted, focusing on visual evaluation 

of edge preservation and noise suppression. Median filtering 

using a 3×3 kernel size is highlighted for reducing salt-and-

pepper noise while keeping important anatomical details 

needed for 3D reconstruction. 

The procedure starts with dataset acquisition from a 

publicly available Zenodo repository [78]. The dataset 

consists of 813 anonymized DICOM slices, each with a size 

of 512×512 pixels and a 16-bit grayscale depth, obtained by 

helical CT scanning. These images were selected to represent 

clinically relevant spatial resolution and contrast fidelity. It is 

important to note that pixel-based evaluation was adopted, as 

the DICOM files lacked physical metadata such as 

PixelSpacing and SliceThickness. 

In the preprocessing step using MATLAB R2024b, 

Hounsfield Unit (HU) values were made consistent, and the 

brightness was adjusted to ensure uniform contrast across all 

slices. The main aim was to guarantee compatibility with 

medical imaging software and filtration tools. 

 

Fig. 1. Flowchart of the proposed 3D medical modeling pipeline using 

median filtering, covering all stages from DICOM acquisition to STL-based 

3D printing preparation 

During the median filtering phase, four kernel sizes, 3×3, 

5×5, 7×7, and 9×9, were utilized with MATLAB's medfilt2 

function. No quantitative metrics such as PSNR or SSIM were 

applied in this stage; however, the filtered outputs were 

qualitatively compared for noise suppression, anatomical 
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border clarity, and visual print quality. The 3×3 kernel 

exhibited the most advantageous compromise. The filtered 

images preserved anatomical border clarity and removed 

high-frequency noise, thereby offering a reliable foundation 

for further segmentation and modeling tasks. 

After filtering, thresholding and segmentation were used 

to highlight anatomical features such as bones and soft tissues 

based on specific HU ranges determined through 

experimentation (for example, >200 HU for bone). Binary 

masks were created to define pertinent anatomical areas, 

serving as the foundation for volume depiction. 

A. Segmentation and Thresholding 

The DCM_01.rar archive [78], which is accessible at 

[https://zenodo.org/records/15244881/files/DCM_01.rar?do

wnload=1], was accessed to obtain a publicly available CT 

chest dataset for preliminary preprocessing. MATLAB 

R2024b was employed to accomplish this task. This collection 

consists of 813 anonymized DICOM segments in a standard 

16-bit grayscale format, each with a spatial resolution of 

512×512 pixels. The data were acquired using a helical CT 

scan technique and have been completely de-identified in 

accordance with international privacy standards. 

The DICOM series was imported into MATLAB for 

preprocessing. The Hounsfield Unit (HU) values of 

anatomical areas of interest, primarily osseous structures, 

were used to delineate them using intensity-based 

thresholding. Non-relevant regions, such as soft tissues and 

air, were excluded, and voxels exceeding 200 HU were 

identified as bone tissue. In the absence of metadata fields 

such as PixelSpacing and SliceThickness, all measurements 

and filtering evaluations were conducted at the pixel level 

without spatial calibration. To improve anatomical contrast, 

the HU thresholds were determined by clinical imaging 

standards and visual inspection. 

The binary templates that were generated were employed 

for the purpose of volumetric reconstruction, segmentation, 

and additional denoising. No annotated ground-truth 

segmentation masks were available for benchmarking, so 

qualitative validation relied on visual consistency with 

anatomical references derived from standard CT atlases and 

prior literature. No clinical expert validation or inter-observer 

assessment was performed, which is acknowledged as a 

limitation and an area for future improvement. The 3D 

compilation of the original DICOM segments is illustrated in 

Fig. 2, which facilitates 3D rendering and multiplanar 

visualization (axial, sagittal, and coronal). These outputs are 

well-suited for research, instructional purposes, and 

preliminary prototyping in biomedical engineering 

applications. 

 

Fig. 2. Workflow of CT image processing, starting from stacked DICOM 

slices (left), through multiplanar reformatting (middle), to final 3D volume 

rendering (right) 

B. Segmentation and Thresholding 

The quality of medical imaging is significantly enhanced 

by noise reduction, particularly in CT scans that are used for 

3D reconstruction and anatomical modeling. Salt-and-pepper 

noise is a notable occurrence, characterized by the arbitrary 

arrangement of brilliant and dark pixels. This noise has the 

potential to substantially alter anatomical boundaries and 

reduce the accuracy of segmentation, potentially affecting the 

reliability of downstream applications including surgical 

planning, diagnosis, and 3D printing. 

Median filtering is the primary preprocessing technique 

employed in this investigation to address this matter. It is a 

nonlinear technique that is highly regarded for its ability to 

reduce impulse noise while preserving critical edge details. 

This method is especially advantageous in medical 

applications that necessitate precise organ boundary 

identification. Unlike linear filters such as the mean filter, 

which may blur structural features, the median filter replaces 

each pixel with the median value of its neighborhood, thereby 

supporting the retention of fine anatomical structures. 

The primary objective of this investigation is to enhance 

the precision of CT image data obtained from a modified 

DICOM dataset by employing median filtering. To mitigate 

noise artifacts before key operations, the filtering process is 

performed prior to thresholding and 3D model generation. 

This section outlines the justification for applying median 

filtering and presents the framework adopted to assess its 

effectiveness. 

The subsequent sections explain (1) why different median 

filter window sizes were chosen and how they were selected 

based on visual fidelity and processing considerations and (2) 

the steps taken using MATLAB, including preparation steps 

and the method used to measure how well noise was reduced, 

how long processing took, and how well anatomical details 

were kept. 

C. Choice of Median Filter 

An often-occurring artifact in medical imaging, especially 

in CT scans, is salt-and-pepper noise. It appears as 

haphazardly distributed high-contrast pixels that significantly 

reduce image quality and compromise the accuracy of 

subsequent image segmentation and 3D reconstruction. Such 

noise introduces abrupt intensity variations that are 

challenging to remove using traditional linear filters. The 

median filter, a nonlinear spatial filter that is effective in 

reducing impulsive noise while preserving the structural 

integrity of anatomical details, is employed in this study to 

resolve this issue. The median filter replaces the intensity of 

each pixel with the median value of its neighbors, in contrast 

to linear filters like the Gaussian or average filter, which 

frequently blur boundaries. By refraining from averaging, 

which would otherwise obfuscate fine details, this 

replacement mechanism maintains sharp anatomical 

boundaries. This method is especially beneficial for the 

precise preservation of organ boundaries, which is crucial for 

clinical applications. 

The median filtering process is quantitatively expressed by 

the following (1). 
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𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑓(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝜔(𝑥, 𝑦)} (1) 

where 𝑓(𝑖, 𝑗) represents the original intensity values inside the 

neighborhood 𝜔(𝑥, 𝑦), and 𝑔(𝑥, 𝑦) indicates the output 

intensity following filtering. This formulation effectively 

removes outlier values while preserving surrounding 

anatomical consistency. 

Four different window sizes (3×3, 5×5, 7×7, and 9×9) 

were evaluated in this work. Each size offers a different 

balance between detail retention and noise-lowering 

effectiveness. Smaller windows retain more anatomical detail 

but may be less effective at eliminating extensive noise, 

whereas larger windows suppress noise more thoroughly but 

may reduce structural fidelity. The decision to assess several 

kernel sizes was motivated by the need to find the best trade-

off between fidelity and efficiency. 

As shown in Fig. 3, the 3×3 median filter ranks the 

intensity levels of every pixel within its local 3×3 

neighborhood window (marked in red). In the example, the 

center pixel (highlighted in green) and its surrounding 

neighbors are used. The window's sorted pixel values allow 

one to choose a median value to replace the center pixel. 

Applying this method across the image results in a filtered 

output that maintains important structures and lowers impulse 

noise. The right panel in Fig. 3 shows clear edge preservation 

together with noise artifact reduction, thereby demonstrating 

the pragmatic efficiency of median filtering. 

 

Fig. 3. Example of 3×3 median filtering 

D. Implementation 

This work used 813 axial CT images in DICOM format, 

each with a 16-bit grayscale depth and 512×512 pixels. 

Obtained from the CT chest collection “DCM_01,” which was 

developed to comply with clinical imaging guidelines and is 

publicly accessible and anonymized, these images were used 

for analysis. For preprocessing, each segment was imported in 

MATLAB R2024b using the functions “dicominfo” and 

“dicomread”. Bit-depth normalization and grayscale scaling 

were used to standardize intensity representation across all 

segments. 

Using four different square kernel sizes (3×3, 5×5, 7×7, 

and 9×9), the aim was to reduce salt-and-pepper noise across 

all images. This was accomplished using the built-in function 

medfilt2. This filtering made comparative evaluation of 

anatomical detail retention against noise suppression possible. 

The syntax employed in this procedure is delineated in (2). 

𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐼𝑚𝑎𝑔𝑒 =  𝑚𝑒𝑑𝑓𝑖𝑙𝑡2(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐼𝑚𝑎𝑔𝑒, [𝑤 𝑤]) (2) 

The variable 𝑤 denotes the width of the square kernel and 

belongs to the set {3,5,7,9}. Every image underwent filtering 

separately to ensure consistency and preserve localized 

control. Archived and then evaluated using FlashPrint 5 tools, 

the filtered sections served for visual inspection and 3D model 

building. 

For each kernel size, key performance parameters were 

recorded, including approximate processing time per segment, 

edge fidelity, and visual noise reduction. These assessments 

helped to identify the 3×3 kernel arrangement that offers the 

best desired balance between anatomical integrity and 

filtering performance. Quantitative metrics were not 

computed, which is acknowledged as a limitation and will be 

addressed in future investigations. 

E. Mean Filtering for Noise Reduction 

The mean filter is a fundamental linear filtering technique 

that is frequently employed in the field of image processing to 

attenuate noise and normalize images. It operates by replacing 

each pixel with the average value of its neighboring pixels 

within a predetermined window size. This technique is 

effective in reducing Gaussian noise or minor intensity 

variations by smoothing random fluctuations in pixel 

intensity. 

The mathematical expression of the mean filter's output at 

pixel location (𝑥, 𝑦) is as follows (3). 

𝑔(𝑥, 𝑦) =
1

𝑁
∑ 𝑓(𝑖, 𝑗)(𝑖,𝑗∈𝜔(𝑥,𝑦))   (3) 

The intensity value of the input image at coordinates 
(𝑖, 𝑗) is denoted by 𝑓(𝑖, 𝑗), while the neighborhood window 

centered around the pixel at (𝑥, 𝑦) is defined by 𝜔(𝑥, 𝑦). The 

variable 𝑁 represents the total number of pixels in the 

window, such as 9 for a 3×3 kernel. The average of all pixel 

values within the window is used to calculate the output 

intensity 𝑔(𝑥, 𝑦). This method smooths local intensity 

variations but may blur structural boundaries. 

The computational simplicity and ease of implementation 

of the mean filter make it advantageous in general image 

processing tasks. Nevertheless, its primary drawback is its 

tendency to blur edges and reduce structural clarity. The 

uniform treatment of all pixels within the window frequently 

mitigates abrupt transitions, such as edges or complex 

anatomical structures, which are essential in medical imaging 

applications such as CT and MRI. 

The mean filter is less suitable for tasks that require 

structural accuracy, such as organ segmentation or 3D model 

generation, due to its tendency to degrade anatomical 

boundaries, even though it improves image uniformity in 

medical applications. In such contexts, median filtering is the 

preferable method because it effectively eliminates impulsive 

noise, including salt-and-pepper noise, while preserving 

edges. 

In conclusion, the mean filter is appropriate for general-

purpose denoising, but its application in high-precision 

medical imaging requires careful evaluation, especially when 

the preservation of anatomical detail is critical. 

F. Model Refinement, 3D Reconstruction, and Printing 

Workflow 

The erase tool in FlashPrint 5 was utilized to manually 

eradicate any remaining noise artifacts, such as floating 
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voxels, speckle noise, or broken parts, following the median 

filtering and segmentation procedure. This step helped 

improve model clarity and reduce non-anatomical fragments, 

enhancing the suitability of the model for fabrication using 

FDM printing. The erase function effectively eliminated false-

positive areas that were introduced by thresholding or 

aggressive filtration while preserving the main anatomical 

features. 

Subsequently, a comprehensive 3D organ model was 

produced by volumetrically stacking the filtered and corrected 

image slices. The model was converted into a surface 

geometry using MATLAB and FlashPrint 5, and the resulting 

file was exported in STL format for slicing applications. In 

order to prevent printing failures and maintain the structure of 

the model, the mesh structure of each STL file was visually 

examined, and obvious artifacts were manually removed. 

The desktop FDM 3D printer was utilized, and FlashPrint 

5 was the slicing software employed in the construction stage. 

PLA filament was used for printing, and its specifications 

included a layer height of 0.1 to 0.2 mm, an infill density of 

15 percent to 25 percent, and a nozzle temperature of 210 

degrees Celsius. These printing parameters were selected to 

achieve stable fabrication and recognizable anatomical form. 

The computational framework for image processing and 

reconstruction efficiently processed the 813-slice dataset on a 

workstation outfitted with an Intel Core i7 CPU, 32 GB of 

RAM, and 1 TB of SSD storage, utilizing MATLAB R2024b. 

A consistent pipeline was implemented for converting CT data 

affected by noise into 3D-printable anatomical representations 

through filtering, manual refinement, model reconstruction, 

and physical printing. 

The STL file generated by MATLAB and prepared in 

FlashPrint 5 prior to 3D printing is illustrated in Fig. 4. The 

reconstructed rib and pelvic skeleton model from CT data is 

depicted in the left panel, while the same model with 

automatically generated support structures is depicted in the 

right panel. This example demonstrates the connection 

between digital processing and fabrication steps in anatomical 

modeling workflows. 

 

Fig. 4. STL file of the rib and pelvic skeleton created in MATLAB and 

configured in FlashPrint 5 with automatically built supports for 3D printing 

III. RESULTS AND DISCUSSION 

The median filter's efficacy in noise reduction and its 

influence on the reconstruction of 3D models were assessed 

using a CT dataset featuring 813 DICOM segments (512×512 

pixels, 16-bit grayscale). The study evaluated the efficacy of 

four distinct median filter window sizes, 3×3, 5×5, 7×7, and 

9×9, in suppressing salt-and-pepper noise while maintaining 

anatomical fidelity. The evaluation was conducted through 

visual inspection rather than quantitative image quality 

metrics due to the lack of ground truth annotations and the 

unavailability of standardized segmentation references. The 

primary emphasis was placed on visual clarity and practical 

feasibility for medical 3D printing rather than statistical image 

analysis, which is acknowledged as a methodological 

limitation in this experimental study. 

A. Comparative Examination of Filtering Methods for CT 

Spine Visualization 

The initial part of the image processing technique involved 

selecting an area of interest (ROI) from a standard axial CT 

slice. This step was intended to evaluate the preliminary 

effectiveness of the pipeline in separating anatomical features 

before the application of further segmentation and 3D 

reconstruction techniques. 

Fig. 5(a) shows the raw CT slice, highlighting different 

body parts such as bone, soft tissue, and air spaces, along with 

a basic grayscale intensity pattern. A basic thresholding 

method was applied to identify clinically significant regions. 

The threshold range was manually adjusted through visual 

inspection until skeletal structures, including ribs and spinal 

segments, were sufficiently separated. Fig. 5(b) shows the 

initial selection, with green highlights indicating the areas 

identified based on this visual segmentation. 

The segmentation results were improved through filtering 

and noise reduction after thresholding, as illustrated in Fig. 

5(c). This resulted in a more precise and focused 

representation. Soft tissue artifacts and background noise were 

minimal, while key features and skeletal structures persisted. 

This refinement step contributed to improved visual clarity 

and supported STL export for subsequent 3D printing. 

   
(a) (b) (c) 

Fig. 5. CT image preprocessing workflow: (a) original, (b) segmented ROI, 

(c) final binary mask 

The simplicity and adaptability of this threshold-based 

method are its greatest assets. Specific threshold values were 

not predefined; however, dynamic adjustments were 

implemented for each scan to improve visibility and 

anatomical precision. The results indicate that when combined 

with visual confirmation and domain knowledge, fundamental 

segmentation techniques can yield dependable results. 

In general, this segmentation procedure is a critical 

preprocessing stage that converts raw CT data into refined 

binary masks. It guarantees that the final model contains only 

pertinent anatomical structures and reinforces the stability of 

downstream tasks in MATLAB and 3D reconstruction 

workflows.  

B. Comparative Examination of Filtering Methods for CT 

Spine Visualization 

This study assessed the effectiveness of several filtering 

techniques in enhancing CT image quality for 3D 

reconstruction through visual and comparative evaluations of 

multiple image preprocessing methods. The focus was on 
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preserving anatomical integrity, particularly the spinal 

structure, while effectively reducing salt-and-pepper noise. 

Fig. 6 shows sagittal CT scans of the spine that have been 

processed through several stages. The original image Fig. 

6(A) contained a considerable amount of high-contrast noise, 

but raw anatomical features were retained. A thresholding 

process was used in Fig. 6(B) to separate skeletal components 

and eliminate soft tissue. In order to improve the contrast 

between bone features and background and enable more 

accurate segmentation, the threshold range was manually 

adjusted through visual inspection. 

A 3×3 mean filter was used in Fig. 6(C), which produced 

a smoother output but blurred small bony structures and 

reduced edge definition. On the other hand, the 3×3 median 

filter in (D) significantly reduced high-frequency noise while 

preserving edge sharpness. As the kernel size was increased to 

5×5, 7×7, and 9×9 Fig. 6(E) to (G), over-smoothing caused an 

increasing loss of anatomical detail. 

 

Fig. 6. Sample 2D CT image processing: (A) original, (B) thresholded (130-

1500), (C) mean 3×3, (D) median 3×3, (E) median 5×5, (F) median 7×7, (G) 

median 9×9 

These differences are more noticeable in Fig. 7, which 

shows a magnified view of the lumbar spine region. While 

larger window sizes Fig. 7(F) and (G) made it harder to see 

vertebral boundaries, the 3×3 median filter reduced noise 

while maintaining structural clarity. The mean filter Fig. 7(C) 

resulted in transition blurring and disrupted the continuity 

between adjacent vertebrae. 

The comparative outcomes of the filtering techniques are 

summarized in Table I. The best visual quality was shown by 

the 3×3 median filter, which successfully reduced noise while 

preserving anatomical features. Stronger noise reduction was 

achieved with larger kernel sizes, but fine skeletal features 

were significantly lost, especially in areas with faint edge 

transitions. 

 

Fig. 7. Close-up view of CT slice filtering results: (A) original, (B) 

thresholded (130-1500), (C) mean 3×3, (D) median 3×3, (E) median 5×5, (F) 

median 7×7, (G) median 9×9 

TABLE I. QUALITATIVE COMPARISON OF FILTERING PERFORMANCE ON 

CT IMAGES 

Filter 

Type 

Noise 

Removal 

Edge 

Clarity 

Anatomical 

Detail 

Visual 

Quality 

Mean 

3×3 
Moderate Low Blurred Fair 

Median 

3×3 
High High Preserved Excellent 

Median 

5×5 
Very High Moderate 

Slightly 

blurred 
Good 

Median 

7×7 
Very High Low Flattened Fair 

Median 

9×9 
Very High Very Low Flattened Poor 

 

Due to the absence of annotated ground truth, the 

evaluation was based on qualitative visual inspection rather 

than statistical validation. Metrics such as PSNR, SSIM, or 

edge preservation scores were not applied. The emphasis was 

on practical outcomes relevant to 3D printing and 

segmentation workflows, despite the limitations in numerical 

benchmarking. 

These results are in line with earlier studies that show 

median filters preserve important edge information in medical 

imaging better than mean filters, especially for bone 

structures. This work is unique in that it confirms that the 3×3 

kernel offers a good trade-off between fidelity and filtering 

efficiency by applying these observations to a real-world 3D 

printing scenario. 

The findings support that the 3×3 median filter is the most 

suitable option for preprocessing CT data for anatomical 

modeling. It minimizes the need for further correction while 

supporting diagnostic precision, especially when threshold 

values are carefully adjusted for each dataset. Larger filters 

may be acceptable in low-detail applications but are not 

recommended for tasks involving skeletal segmentation. 

C. Evaluation and Comparison of Median Filter 

Effectiveness 

The performance of median filters applied to CT images 

derived from DICOM data with varying kernel sizes was 

investigated in this study. These images enabled the 
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construction of precise three-dimensional medical models, 

where anatomical fidelity is crucial. 

Applying each median filter size to the initial CT slices 

was the first step in the evaluation. To evaluate the degree of 

noise reduction and anatomical contour preservation, the 

results were visually examined. As demonstrated in Fig. 8, the 

3×3 median filter successfully removed small noise while 

preserving anatomical structure and edge sharpness. 

Significant smoothing was introduced by larger filters, like 

7×7 and 9×9 (see Fig. 8(E)), which reduced boundary clarity 

and eliminated fine anatomical information. To examine filter 

performance in localized regions, Fig. 9 presents an enlarged 

pixel cluster containing 64 pixels. In this context, the 3×3 

median filter demonstrated good noise reduction while 

maintaining pixel structure, especially in regions with delicate 

intensity changes or complex textures. 

 

Fig. 8. Median filtering results for a CT region with size 66 × 55 pixels. (A) 

Original image, (B) Median filter 3×3, (C) Median filter 5×5, (D) Median 

filter 7×7, (E) Median filter 9×9 

 
Fig. 9. Example of a small pixel cluster consisting of 64 pixels. (A) Original 

image, (B) Median filter 3×3, (C) Median filter 5×5 

A comparison with the mean filter was conducted to 

highlight the relative advantages of median filtering. As 

shown in Fig. 10, four images are displayed in sequence: the 

original, the thresholded version, and the outputs from the 

mean and median filters. Compared to the mean filter, the 3×3 

median filter showed superior edge retention and noise 

reduction. More intricate anatomical shapes were the subject 

of additional comparisons. For example, a region with 

irregular contours and curvature is shown in Fig. 11. While 

the mean filter blurred internal boundaries, the 3×3 median 

filter produced more distinct structural edges. The observed 

benefit of median filtering is further supported by Fig. 12 and 

Fig. 13, which show this behavior in smaller segmented 

regions with various geometric properties. 

The collective visual evidence from Fig. 8 to Fig. 13 

indicates that the 3×3 median filter is the most effective in 

reducing noise while preserving anatomical accuracy. Larger 

window sizes, on the other hand, frequently resulted in over-

smoothing and the loss of clinically meaningful detail. 

Since there were no annotated ground truth data available 

for quantitative comparison, this evaluation was done solely 

visually. One known drawback is that no statistical measures 

like SSIM or Dice scores were calculated. Instead of 

objectively benchmarking image quality, the focus was on the 

usefulness of filtered images for 3D reconstruction and 

printing. 

These outcomes are consistent with prior research 

findings, which reported that median filtering is more 

effective than linear filters in preserving edge features in 

medical imaging, especially for osseous structures. While 

those prior studies emphasized algorithmic evaluation, this 

work applies such findings to a physical 3D modeling 

workflow and demonstrates that the 3×3 kernel offers a 

practical and efficient balance between detail preservation and 

noise suppression. 

The results support the conclusion that the 3×3 median 

filter is the most appropriate choice for CT preprocessing in 

anatomical modeling. Particularly when threshold values are 

customized for specific datasets, it minimizes the need for 

post-processing while maintaining diagnostic integrity. Larger 

filters are generally discouraged for tasks involving bone 

segmentation, though they might be useful in situations where 

high detail is not required.  

 

Fig. 10. Comparison of image filtering results for a region with size 66 × 55 

pixels. (A) Original image, (B) Thresholded image, (C) Mean filter 3×3, (D) 

Median filter 3×3 

 

Fig. 11. Comparison of image filtering results for a complex region with size 

40 × 48 pixels. (A) Original image, (B) Thresholded image (130-1500), (C) 

Mean filter 3×3, (D) Median filter 3×3 
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Fig. 12. Example of segmented region with size 12 × 30 pixels. (A) Original 

image, (B) Thresholded image (130-1500), (C) Mean filter 3×3, (D) Median 

filter 3×3 

 

Fig. 13. Example of segmented region with size 21 × 28 pixels. (A) Original 

image, (B) Thresholded image (130-1500), (C) Mean filter 3×3, (D) Median 

filter 3×3. 

D. Assessment of 3D Model Precision Post Noise 

Mitigation 

This section assesses the influence of median filtering on 

the precision of 3D reconstructions obtained from DICOM-

formatted CT scan data. Four preprocessing strategies were 

analyzed, including original pictures, thresholding without 

filtering, a 3×3 mean filter, and a 3×3 median filter. The 

reconstructed models were examined in three dimensions to 

assess structural clarity and residual noise artifacts. 

Fig. 14 demonstrates that thresholding alone produced 

considerable surface abnormalities, notably fine voxel clusters 

linked to salt-and-pepper noise. The mean filter, although 

generating smoother surfaces, induced blurring effects that 

obscured fine anatomical contours such as spinal outlines and 

rib curvatures, thereby reducing visibility. In contrast, the 

application of the 3×3 median filter preserved skeletal 

boundaries while effectively minimizing random noise, 

resulting in structurally coherent models. 

These conclusions are further substantiated by the 

broadened viewpoint in Fig. 15. The raw and thresholded 

datasets clearly displayed irregularities and discontinuities, 

whereas the median-filtered reconstruction exhibited 

smoother and more continuous anatomical outlines. The mean 

filter compromised the visual clarity of critical skeletal 

features, which may affect diagnostic interpretability. 

The results collectively offer persuasive qualitative 

evidence that the 3×3 median filter effectively balances noise 

reduction with the preservation of anatomical detail. This 

observation aligns with earlier research highlighting the 

strength of median filtering in edge preservation, especially in 

bone-focused imaging contexts. Although no quantitative 

metrics were calculated, the visual consistency and structural 

integrity of the output validate the practical use of the 3×3 

median filter in clinical modeling and medical prototyping. 

 

Fig. 14. 3D Bone Model Comparison Using Different Filtering Techniques: 

(A) Original Image, (B) Thresholding (130-1500), (C) Mean Filter 3×3, (D) 

Median Filter 3×3 

 

Fig. 15. Zoomed-in Rib Cage Region Comparison: (A) Original Image, (B) 

Thresholding (130-1500), (C) Mean Filter 3×3, (D) Median Filter 3×3 

E. Assessment of 3D Model Readiness through Slicing 

Simulation and Material Estimation 

This investigation assessed the preparedness of CT-

derived anatomical models for 3D printing with FlashPrint 

software. The workflow encompassed slicing simulation, 

support generation, and material consumption estimation. 

Three preprocessing procedures were evaluated, including 

thresholding without filtering, the use of a 3×3 average filter 

followed by thresholding, and the use of a 3×3 median filter 

followed by thresholding. 

The results illustrated in Fig. 16 through Fig. 18 and Table 

II indicate that thresholding alone produced the maximum 

number of support structures and the largest filament usage, 
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amounting to 103.67 meters. The total print duration was 

almost 61 hours and 3 minutes. The pronounced voxel-level 

noise seen in the unfiltered model led to suboptimal material 

use and extended fabrication time. 

The application of an average filter prior to thresholding 

significantly diminished noise artifacts, which consequently 

enhanced the surface smoothness of the resultant model. This 

method, however, also resulted in edge blurring, reducing 

anatomical clarity. Filament usage was minimized to 90.26 

meters, and the printing time was shortened to 40 hours and 

25 minutes. 

The utilization of a 3×3 median filter yielded the most 

structurally distinct and print-optimized model. This 

arrangement maintained essential anatomical contours while 

reducing superfluous supports. Consequently, filament 

consumption was diminished to 85.13 meters, with the 

projected printing duration being 50 hours and 1 minute. As 

shown in Table II, the model processed with a 3×3 median 

filter necessitated the least filament and produced the most 

balanced print duration. This configuration resulted in an 

18.07 percent reduction in time and a 17.88 percent drop in 

material usage compared to the unfiltered baseline. These 

findings underscore the practical advantage of incorporating 

median filtering into the preprocessing pipeline for medical 

3D printing. 

The results confirm that a 3×3 median filter improves 

printing efficiency while better maintaining anatomical 

characteristics compared to average filtering or unfiltered 

thresholding. This method corresponds with the overarching 

goal of enhancing computational models for subsequent 

physical reconstruction in biomedical applications. 

 
Fig. 16. 3D model Preview from thresholded CT data without filtering 

 

Fig. 17. 3D model preview with average filter 3×3 and thresholding 

 

Fig. 18. 3D model preview with median filter 3×3 and thresholding 

TABLE II. COMPARISON OF 3D PRINTING TIME AND FILAMENT 

CONSUMPTION BASED ON PREPROCESSING METHODS 

Method 
Thresholding 

Only 

Avg Filter 

3×3 + 

Thresholding 

Median 

Filter 3×3 + 

Thresholding 

Print Time 61h 3min 40h 25min 50h 1min 

Filament Used 
(m) 

103.67 90.26 85.13 

Time Saved 

(min) 
- 1248 661 

Time Saved (%) - 34.05% 18.07% 

Filament Saved 

(m) 
- 13.41 18.54 

Filament Saved 

(%) 
- 12.94% 17.88% 

IV. CONCLUSION 

This study presents an effective technique to improve the 

accuracy of 3D organ models obtained from CT medical 

images by utilizing a 3×3 median filter alongside further 

manual modification. The suggested method efficiently 

diminishes salt-and-pepper noise while maintaining 

anatomical features crucial for precise 3D reconstructions. 

The 3×3 median filter attained the most equitable compromise 

between noise reduction and structural integrity, enhancing 

the surface quality of models while maximizing material 

efficiency for 3D printing. These advantages indicate the 

method's potential utility in medical environments, such as 

anatomical modeling for clinical teaching. However, the 

current study does not include clinical validation or cross-

dataset performance, so its broader applicability remains 

uncertain. Nonetheless, additional confirmation is required 

prior to incorporation into diagnostic or surgical planning 

protocols. The limitations of this study include the lack of 

quantitative image quality assessments, such as the Dice 

coefficient or SSIM, and reliance on a single dataset that lacks 

anatomical variety. The segmentation pipeline depends on 

manually adjusted thresholds and deletion steps, which may 

affect repeatability and scalability. Furthermore, no physical 

measurement or expert-based validation of printed outputs 

was conducted to confirm anatomical accuracy. Future 

research may address these constraints by incorporating 

automated, AI-driven segmentation methods, such as U-Net 

or GANs, to improve accuracy and applicability. Extending 

experiments to heterogeneous datasets and incorporating 

reproducibility controls is also essential. Investigating 

comparative benchmarking alongside advanced denoising 

methods and the physical validation of printed models is 

crucial to enhance therapeutic significance. 
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