
Journal of Robotics and Control (JRC) 

Volume 6, Issue 4, 2025 

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i4.26725 1768 

 

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id 

A Transformer-Enhanced CNN Framework for EEG 

Emotion Detection with Lightweight Gray Wolf 

Optimization and SHAP Analysis 

Nattavut Sriwiboon 1, Songgrod Phimphisan 2* 
1, 2 Department of Computer Science and Information Technology, Faculty of Science and Health Technology, Kalasin 

University, Thailand 

Email: 1 nattavut.sr@ksu.ac.th, 2 songgrod.ph@ksu.ac.th  

*Corresponding Author 

 
Abstract—Emotion recognition from electroencephalogram 

(EEG) signals has been recognized as critical for enhancing 

human–computer interaction and mental health monitoring. In 

this paper, an explainable and real-time dual-stream deep 

learning framework has been proposed for EEG-based emotion 

classification. The model integrates a 1D convolutional neural 

network (1D-CNN) for local feature extraction and a 

transformer encoder for global dependency modeling, with 

multi-head attention used for feature fusion. Lightweight Gray 

Wolf Optimization (LGWO) has been employed for selecting 

optimal features, and an ensemble of lightweight classifiers has 

been applied to improve robustness. Experiments conducted on 

DEAP, SEED, BrainWave, and INTERFACE datasets have 

demonstrated superior performance, achieving accuracies of 

96.90%, 94.25%, 93.70%, and 92.80%, respectively. An average 

inference delay of 5.2 milliseconds per trial has confirmed real-

time applicability. Furthermore, SHAP analysis has been 

incorporated to interpret the model’s decision-making process 

by identifying influential EEG channels and frequency 

components. The results have validated the proposed model as 

a robust, accurate, and explainable solution for EEG-based 

emotion recognition, establishing a new benchmark for future 

research in affective computing and clinical applications. 

Keywords—EEG; Dual-Stream Deep Learning; Transformer 

Encoder; SHAP; Lightweight Gray Wolf Optimization. 

I. INTRODUCTION 

Emotion recognition based on electroencephalogram 

(EEG) [1] signals has emerged as a critical area in affective 

computing, supporting applications in human–computer 

interaction, healthcare, and mental health monitoring. By 

capturing brain activity directly, EEG provides a more 

objective emotional assessment compared to external 

modalities such as facial expressions or speech. However, 

challenges including non-stationarity, low signal-to-noise 

ratio, and individual variability have limited the development 

of highly accurate and generalizable EEG-based emotion 

recognition systems. 

Various machine learning and deep learning techniques 

have been proposed to improve EEG-based emotion 

recognition. Traditional handcrafted approaches have often 

struggled with limited generalization, while deep learning [2] 

models , particularly convolutional neural networks (CNNs) 

[3] and recurrent neural networks (RNNs) [4], have shown 

significant improvements by learning [5]-[10] complex EEG 

patterns automatically. Transformer-based architectures have 

further advanced the field by capturing long-range 

dependencies more effectively [9][11]-[21]. However, prior 

works [22]-[33] have continued to face challenges, including 

incomplete feature representation, lack of efficient feature 

selection, limited interpretability, and inadequate real-time 

performance [34]-[36]. 

To overcome these limitations, a novel dual-stream deep 

learning framework has been proposed in this paper for EEG-

based emotion recognition. The proposed model integrates a 

1D convolutional neural network (1D-CNN) [37] for local 

feature extraction and a transformer encoder for capturing 

global temporal dependencies. A multi-head attention 

mechanism has been employed to selectively fuse features, 

while a Lightweight Gray Wolf Optimization (LGWO) [38] 

algorithm has been applied to perform feature selection [39], 

thereby enhancing discriminative power and reducing 

computational complexity. To ensure robust and stable 

emotion classification, an ensemble of five lightweight 

classifiers has been utilized. Furthermore, SHAP (SHapley 

Additive exPlanations) [40] analysis has been incorporated to 

interpret the model’s decision-making process by identifying 

the most influential EEG channels and frequency components 

[41]-[48]. The key contributions are as follows: 

● A novel dual-stream deep learning framework has been 

proposed, combining a 1D-CNN and transformer encoder 

to jointly capture local and global EEG features. 

● A multi-head attention mechanism has been utilized to 

enhance feature fusion, selectively emphasizing 

informative channels and temporal segments. 

● LGWO has been employed for feature selection, reducing 

redundancy and improving classification accuracy. 

● SHAP explainability has been incorporated to provide 

transparent insights into the model’s predictions by 

analyzing feature contributions. 

● Comprehensive experiments have been conducted on four 

publicly available datasets (DEAP, SEED, BrainWave, 

and INTERFACE), demonstrating superior performance 

in terms of accuracy, real-time capability, and 

interpretability compared to related work. 
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II. RELATED WORK 

Deep learning, particularly CNNs [49]-[65], has played a 

crucial role by enabling automatic extraction of complex 

spatial [49][66]-[70] and temporal features directly from raw 

EEG data.  

In 2020, Aldayel et al. [22] have proposed a hybrid deep 

learning architecture that combines CNN with stacked 

autoencoders (SAE) and deep neural networks (DNN). The 

model has been trained on the DEAP dataset and has achieved 

89.49% accuracy for valence and 92.86% for arousal 

classification. This work has demonstrated the strength of 

deep feature fusion but has lacked real-time adaptability. 

In 2025, H. Sun et al. [23] have introduced a framework 

that analyzes dynamic EEG source connectivity for both 

subject-dependent and subject-independent emotion 

classification. Their model has achieved 88.93% and 83.50% 

accuracies, respectively, and has highlighted the difficulty of 

building generalized models that maintain performance 

across individuals.  

Another study in 2024 by N. Ahmadzadeh et al. [25] has 

presented a modified convolutional fuzzy neural network 

(CFNN). The model has integrated fuzzy logic principles into 

a deep learning framework and reported 98.21% accuracy. 

However, the model’s deployment has been limited due to its 

reliance on handcrafted parameters and internal validation.  

In 2024, J. Tian and X. Luo. [24] have explored wavelet-

based decomposition and long short-term memory (LSTM) 

[9][63][71]-[77] networks for emotional classification. Their 

model has been tested across multiple EEG channels and 

achieved accuracies ranging from 75.89% to 95.15%, 

depending on preprocessing and feature extraction strategies. 

W. Tang et al. [26] have proposed an Efficient-Capsule 

Network with Channel Attention, targeting spatial 

dependencies across EEG channels. The model has achieved 

an accuracy of 94.67%, providing a compact yet expressive 

representation of spatiotemporal features. M. Li et al. [27] 

have implemented a transformer-based model that learns both 

spatial and temporal attention from the SEED dataset. This 

method has achieved an accuracy of 92.67% and has 

demonstrated the effectiveness of attention mechanisms in 

capturing long-range dependencies in EEG signals. Z. Wang 

and Y. Wang. [28] have combined EEG and ECG signals 

using an Att-1DCNN-GRU model, incorporating 

convolutional feature extractors with recurrent learning units. 

Their method has been evaluated on the DEAP dataset and 

has consistently achieved 92.5% accuracy, highlighting the 

benefits of multimodal signal fusion. Similarly, J. Yan et al. 

[29] have used EEG channel graphs and temporal BERT-

style encoder. Their results have confirmed the robustness of 

the model in diverse experimental setups. J. A. Cruz-Vazquez 

et al. [30] have proposed a CNN-based framework enhanced 

with quantum rotation layers to enrich nonlinear decision 

boundaries in high-dimensional feature spaces. Their model 

has demonstrated accuracy close to 95%, particularly in 

recognizing subtle emotions such as sadness and fear. J. 

Sedehi et al. [31] have introduced a joint EEG–ECG 

connectivity framework, allowing the fusion of neurological 

and cardiovascular features. While qualitative performance 

improvements have been observed, detailed evaluation 

metrics have not been fully reported. A frequency-domain 

classification framework proposed by S. Adhikari et al. [78] 

has integrated power spectral density (PSD) features with 

random forest classifiers, further enhanced with SHAP 

explainability. Although validation accuracy has exceeded 

99%, the lack of cross-dataset generalization has limited its 

broader impact. V. Doma and M. Pirouz [32] have conducted 

a comparative analysis of several supervised learning 

algorithms across EEG datasets. The study has revealed that 

no single algorithm consistently outperforms others across all 

emotion classes, thereby underscoring the importance of 

hybrid and ensemble methods. 

These studies have demonstrated valuable insights into 

EEG-based emotion recognition. However, several 

challenges have remained unresolved, including insufficient 

generalization, delayed inference, and limited model 

explainability. Most notably, few frameworks have 

integrated advanced attention mechanisms with biologically 

inspired optimization and ensemble prediction. 

III. DETAILS THE DUAL-STREAM ARCHITECTURE 

In this paper, a novel framework for emotion recognition 

from EEG signals has been proposed. The proposed dual-

stream EEG-based emotion recognition framework, as show 

in Fig. 1. Raw EEG signals undergo preprocessing, are 

processed through parallel 1D-CNN and transformer encoder 

streams, and fused via multi-head attention. Feature selection 

is performed using LGWO, followed by convolutional 

refinement and ensemble-based classification. SHAP 

analysis is applied for explainability. 

 

Fig. 1. The model architecture 
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A. Dataset 

Four datasets have been utilized to evaluate the proposed 

model: DEAP [79], SEED [80], BrainWave [81], and 

INTERFACE [82]. The DEAP dataset has provided 32-

channel EEG signals collected from 32 participants while 

watching music videos, targeting two-class classification 

based on valence and arousal. The SEED dataset has included 

62-channel EEG recordings from 15 participants during 

emotional movie clips, supporting three-class classification 

into positive, neutral, and negative emotions. The BrainWave 

dataset from Kaggle has contained four-channel EEG signals 

recorded during participant-driven emotional experiences, 

designed for binary classification between calm and excited 

states. Finally, the INTERFACE dataset has involved EEG 

recordings aligned with facial expressions collected from 44 

subjects under standardized emotional scenarios, used to 

enhance emotion detection through multimodal fusion. 

As shown in Table I, Summary of the datasets used for 

EEG-based emotion recognition. Each dataset provides a 

different experimental setup, number of EEG channels, 

sampling rates, and emotion class labels, enabling 

comprehensive evaluation of the proposed model across 

binary and multiclass classification tasks. 

TABLE I.  DATASETS USED FOR EEG-BASED EMOTION CLASSIFICATION 

Dataset Participants Channels Rate 
Emotion 

Classes 

DEAP 32 32 
512 

Hz 

High/Low 

Valence, 
Arousal 

SEED 15 62 

1000 

Hz → 

200 

Hz 

Positive, 
Neutral, 

Negative 

BrainWave 

(Kaggle) 
Various 4 

256 

Hz 

Calm/Excite, 

Positive/ 
Negative 

INTERFACE 44 Varies Varies 

Emotionally 

driven facial 

expressions 

B. Model Architecture 

A novel dual-stream hybrid framework has been proposed 

to achieve accurate and interpretable emotion recognition 

from EEG signals, addressing limitations in accuracy, 

interpretability, and computational efficiency. The model 

combines deep feature extraction, global attention, 

lightweight optimization, and ensemble learning to enhance 

generalizability and performance. The steps of our proposed 

method are as follows: 

1) Input and Preprocessing 

EEG signals from four publicly available datasets 

including DEAP, SEED, BrainWave, and INTERFACE, 

have been used as input. These signals have been 

preprocessed through artifact removal and bandpass filtering 

(0.5–45 Hz) to remove non-neural noise and preserve 

emotion-relevant frequency bands. 

Let 𝑋 ∈ ℝ𝐶×𝑇 represent the raw EEG input, where 

𝐶 denotes the number of channels and 𝑇 denotes the number 

of time points. 

 

2) Dual-Stream Feature Extraction 

A dual-stream structure has been employed to capture 

both local and global representations: 

● A 1D-CNN stream has extracted local temporal patterns: 

𝐹CNN = 𝐶𝑜𝑛𝑣1𝐷(𝑋)  (1) 

● A Transformer Encoder stream has captured global 

dependencies: 

𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋)  (2) 

3) Multi-Head Attention Fusion 

The outputs from the CNN and transformer streams have 

been concatenated and passed through a Multi-Head 

Attention mechanism. Given queries 𝑄, keys 𝐾, and values 

𝑉, the attention output has been calculated as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉  (3) 

where 𝑑𝑘 is the dimensionality of the keys. 

4) Lightweight Feature Selection via LGWO 

To reduce redundancy and optimize discriminative 

power, LGWO has been applied. The fitness function 𝑓 for 

feature selection has been defined as: 

𝑓 = 𝛼(1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝛽
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 (4) 

where 𝛼 and 𝛽 are balancing parameters. LGWO has 

iteratively updated candidate solutions toward the best-

performing feature subsets based on the grey wolf hunting 

strategy. 

5) Convolutional Classification Layer 

The refined feature set obtained after feature selection has 

been fed into a convolutional classification module designed 

to achieve efficient yet expressive learning. This module has 

incorporated two primary components: MobileNetV3 [83] 

blocks and residual attention units. 

The MobileNetV3 blocks have been utilized to minimize 

the model’s parameter count and computational cost without 

compromising feature extraction capability. MobileNetV3 

has employed depthwise separable convolutions, which 

decouple standard convolution operations into depthwise and 

pointwise convolutions, drastically reducing the number of 

parameters and floating-point operations (FLOPs). 

Furthermore, the lightweight design of MobileNetV3 has 

been enhanced through nonlinear activation functions such as 

h-swish and squeeze-and-excitation (SE) modules, enabling 

dynamic channel-wise feature recalibration to strengthen 

important features and suppress irrelevant ones. 

To further improve feature refinement, residual attention 

units have been incorporated after the MobileNetV3 blocks. 

These residual attention units have applied spatial and 

channel attention mechanisms within residual connections, 
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allowing the model to emphasize critical spatial regions and 

important feature channels dynamically during the learning 

process. The residual connections have helped preserve 

original feature information, facilitating better gradient flow 

during backpropagation and preventing vanishing gradient 

issues in deep networks. 

Through the combination of MobileNetV3’s efficient 

depthwise separable convolutions and the enhanced focus of 

residual attention units, the convolutional classification layer 

has been capable of extracting robust, discriminative 

representations from the optimized feature set, ensuring high 

classification performance while maintaining computational 

efficiency suitable for real-time EEG emotion recognition 

systems. 

6) Ensemble Learning 

Five base classifiers have been trained independently. 

Final predictions have been aggregated through a weighted 

majority voting scheme, where the prediction 𝑦 has been 

defined as: 

𝑦 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐

∑ 𝜔𝑖 ∙ 𝕀(ℎ𝑖 = 𝑐)

𝑛

𝑖=1

 (5) 

where ℎ𝑖 is the prediction from the 𝑖-th classifier, 𝜔𝑖 is the 

weight proportional to its validation accuracy, and 𝕀(∙)  is the 

indicator function. 

7) Model Explainability via SHAP 

SHAP values have been used to interpret feature 

contributions. For a given model output 𝑓(𝑥), the SHAP 

value ∅𝑖 for feature 𝑖 has been defined as: 

𝑓(𝑥) = ∅0 + ∑  ∅𝑖
𝑀
𝑖=1   (6) 

where ∅0 is the model output at baseline and 𝑀 is the number 

of input features. 

8) Visual Architecture 

From Fig. 1 depicts the full pipeline: EEG signal 

preprocessing, dual-stream feature extraction (1D-CNN and 

transformer encoder), multi-head attention fusion, 

lightweight feature selection using LGWO, convolutional 

classification, ensemble voting, and final SHAP 

explainability. 

IV. EXPERIMENTS   

In this section, the datasets, experimental settings, 

evaluation metrics, and implementation details of the 

proposed model have been described. Comprehensive 

experiments have been conducted to validate the model’s 

effectiveness across binary and multiclass emotion 

recognition tasks. 

A. Datasets 

Four publicly available datasets have been used to 

benchmark the proposed model: 

• DEAP dataset: 32 participants, 32-channel EEG signals, 

labeled by valence and arousal. 

• SEED dataset: 15 participants, 62-channel EEG signals, 

labeled by positive, neutral, and negative emotions. 

• BrainWave dataset: EEG signals collected via Muse 

headband, targeting calm versus excited emotional states. 

• INTERFACE dataset: Multimodal facial expression and 

EEG recordings for emotion classification. 

Each dataset has been preprocessed through bandpass 

filtering and artifact removal. EEG signals have been 

segmented into trials of fixed length (e.g., 3–5 seconds) for 

feature extraction. 

B. Data Splitting Strategy 

To ensure fair evaluation, a 5-fold cross-validation 

strategy has been applied. In each fold, 80% of the data has 

been allocated for training, with 10% of the training data 

further set aside for validation during model optimization, 

and the remaining 20% has been reserved as an unseen testing 

set. Subject-independent data splitting has been prioritized 

whenever possible to simulate real-world deployment 

scenarios and to evaluate the model’s generalizability across 

different individuals. 

C. Implementation Details 

The model has been implemented using Python 3.10 with 

TensorFlow 2.11 and Scikit-learn libraries. The training and 

evaluation processes have been performed on a workstation 

equipped with an Intel Core i9-13900K CPU, 64 GB RAM, 

and an NVIDIA RTX 4090 GPU with 24 GB VRAM, 

ensuring efficient computation and rapid convergence. The 

following settings have been used consistently across all 

experiments, as shown in Table II. 

TABLE II.  MODEL TRAINING HYPERPARAMETERS 

Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.001 

Batch Size 64 

Epochs 100 

Loss Function Categorical Crossentropy (Softmax) 

Activation Function ReLU (CNN layers), Softmax (output) 

Early Stopping Criterion Patience = 10 epochs (Validation loss) 

 

Table II illustrates the key hyperparameter settings 

adopted during the training of the proposed dual-stream 

EEG-based emotion recognition model, including optimizer 

choice, learning rate, batch size, number of epochs, loss 

function, activation functions, and early stopping criteria. 

Weight decay regularization and dropout (rate = 0.3) have 

been incorporated to prevent overfitting. 

D. Evaluation Metrics 

The classification performance of the proposed model has 

been evaluated using standard metrics [84], including 

accuracy (Acc), precision (PPV), sensitivity (Sen), F1 Score, 

and Area Under the Curve (AUC). Acc has measured the 

overall correctness of predictions, PPV has quantified the 

proportion of true positive predictions among all predicted 

positives, Sen has indicated the proportion of true positives 

correctly identified among all actual positive instances, and 

F1 has provided a harmonic mean of PPV and Sen to balance 
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the trade-off between them. AUC has assessed the model’s 

capability to distinguish between different emotional classes 

across various threshold settings. The definitions and 

corresponding mathematical formulations of these evaluation 

metrics, based on confusion matrix elements including True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN), have been summarized in Table III. 

TABLE III.  THE STANDARD METRICS 

Metric Formula Description 

Acc 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Overall proportion of 

correctly classified 

samples 

PPV 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Correct positive 

predictions among all 

positive predictions 

Sen 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Correctly identified 
positives among all 

actual positives 

F1 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·  𝑟𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Harmonic mean of 
Precision and Recall 

AUC 

Computed from the ROC Curve 

(True Positive Rate vs False 
Positive Rate) 

Ability to distinguish 

between classes 

V. RESULTS 

The proposed dual-stream model has been evaluated 

across four datasets: DEAP, SEED, BrainWave, and 

INTERFACE. The performance has been assessed using Acc, 

PPV, Sen, F1, AUC, and inference delay in milliseconds(ms). 

Comparative analyses against baseline models have also been 

conducted to highlight the improvements achieved. Table IV 

summarizes the detailed performance results across all 

datasets. The results have confirmed that the proposed model 

has consistently outperformed baseline architectures while 

maintaining computational efficiency suitable for practical 

deployment. 

TABLE IV.  PERFORMANCE RESULTS OF THE PROPOSED MODEL ACROSS 

DIFFERENT DATASETS 

Dataset 
ACC 

(%) 

PPV 

(%) 

Sen 

(%) 

F1 

(%) 
AUC 

Inference 

Delay 

(ms) 

DEAP 96.9 94.85 95.2 95.02 0.972 5.2 

SEED 94.25 92.1 92.5 92.3 0.954 5.5 

BrainWave 93.7 91 91.4 91.2 0.948 5 

INTERFACE 92.8 90.5 91 90.7 0.94 5.7 

 

Across the DEAP dataset, the proposed model has 

achieved an accuracy of 96.90%, a precision of 94.85%, a 

recall of 95.20%, an F1 Score of 95.02%, and an AUC of 

0.972, demonstrating a significant improvement over 

previous method. For the SEED dataset, a three-class 

classification task, the model has achieved an overall 

accuracy of 94.25%, with balanced precision and recall 

values across the positive, neutral, and negative emotion 

classes. On the BrainWave dataset, despite the limited 

number of EEG channels, the proposed model has attained an 

accuracy of 93.70%, validating its robustness even under 

constrained conditions. For the INTERFACE dataset, which 

involves multimodal data fusion, an accuracy of 92.80% has 

been obtained, indicating the model’s ability to generalize 

across diverse input modalities. 

The training and validation curves of the proposed model 

have been analyzed to assess convergence behavior and 

generalization capability. As shown in Fig. 2(a), both training 

and validation accuracy have consistently improved over 

epochs, indicating that the model has effectively learned 

discriminative patterns from the EEG data without signs of 

overfitting. Similarly, Fig. 2(b) demonstrates a steady 

decrease in training and validation loss, confirming that the 

model’s optimization process has remained stable throughout 

training. The narrow gap observed between training and 

validation curves in both accuracy and loss plots has further 

indicated that the proposed model has achieved strong 

generalization performance across all datasets.  

 
(a) 

 
(b) 

Fig. 2. Training and validation accuracy and loss over 100 epochs 

Inference delay has also been measured to evaluate real-

time applicability. An average classification delay of 

approximately 5.2 milliseconds per trial has been recorded, 

satisfying the latency requirements for real-time emotion 

recognition systems. 

The classification performance of the proposed model 

across the DEAP, SEED, BrainWave, and INTERFACE 

datasets has been visualized through confusion matrices, as 

shown in Fig. 3. For the DEAP dataset, the model has 

demonstrated strong binary classification between high and 

low valence emotional states, with a high proportion of 
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correct predictions along the diagonal. In the SEED dataset, 

which involves three emotion classes, the model has achieved 

a balanced distribution of correct predictions across positive, 

neutral, and negative categories, with minimal inter-class 

confusion. The BrainWave dataset has shown robust binary 

classification performance despite limited EEG channels, 

while the INTERFACE dataset, involving multimodal 

emotion data, has similarly achieved high classification 

accuracy with low misclassification rates. Overall, the 

concentration of values along the diagonals of all confusion 

matrices has indicated that the model has effectively 

distinguished between emotional states across diverse 

experimental conditions. 

 

Fig. 3. The confusion matrices of the proposed model 

VI. DISCUSSION 

The experimental results obtained have demonstrated that 

the proposed dual-stream model has achieved superior 

performance across all evaluated datasets when compared to 

existing methods. Several key innovations have contributed 

to this improvement. First, the integration of a 1D-CNN 

stream and a transformer encoder stream has enabled the 

simultaneous extraction of local temporal features and global 

spatial-temporal dependencies from EEG signals, providing 

a richer and more comprehensive feature representation. 

Second, the incorporation of a multi-head attention 

mechanism during feature fusion has allowed the model to 

selectively emphasize the most informative features, 

enhancing discrimination between emotional classes. Third, 

the application of LGWO for feature selection has ensured 

that only the most relevant features have been retained, 

thereby reducing redundancy and improving classification 

accuracy. Additionally, the use of an ensemble learning 

strategy combining multiple classifiers has provided 

robustness in decision-making, mitigating potential biases 

associated with any individual classifier. Inference delay 

analysis has further confirmed that the model has been 

capable of real-time application, achieving an average 

classification delay of 5.2 milliseconds per trial, making it 

suitable for deployment in practical emotion recognition 

systems. 

A direct comparison with related works has been 

presented in Table V, highlighting the advantages of the 

proposed model over prior approaches. Compared to the Att-

1DCNN-GRU models proposed by Aldayel et al. [22], Z. 

Wang and Y. Wang [28], and J. Yan et al. [29], which have 

achieved accuracies around 95.95%, the proposed model has 

consistently achieved higher accuracy across all datasets. 

Similarly, models such as the Efficient Capsule Network with 

channel attention [26] and the spatial–temporal transformer 

network [27] have reached 94.67% and 92.67% accuracies 

respectively, but have not incorporated real-time capabilities 

or full model explainability. Although N. Ahmadzadeh et al. 

[25] have reported an internal accuracy of 98.21% using a 

convolutional fuzzy neural network, their results have been 

based on internal validation without subject-independent 

testing, limiting real-world generalization. Traditional 

approaches such as CNN–SAE–DNN hybrids [22] and 

wavelet–LSTM models [24] have also been outperformed, as 

their accuracies have ranged from 75.89% to 95.15%, often 

without sufficient cross-validation. 

Furthermore, the models such as that of S. Adhikari et al. 

[78], although achieving over 99% internal validation 

accuracy, have not demonstrated robustness on external 

datasets and have lacked practical deployment evaluations. 

While some recent models have incorporated explainability 

partially, such as [78] with SHAP, none have integrated 

explainability as systematically and effectively as the 

proposed model through full SHAP analysis across all 

datasets. 

Therefore, the combination of dual-stream feature 

extraction, attention-based fusion, bioinspired feature 

selection, ensemble-based classification, and comprehensive 

explainability has allowed the proposed model to establish a 

new benchmark for EEG-based emotion recognition systems. 

The consistent improvements achieved over related works in 

terms of accuracy, interpretability, and computational 

efficiency have validated the effectiveness. 

VII. CONCLUSION  

This paper, a novel dual-stream framework for EEG-

based emotion recognition has been proposed and evaluated 

across four standard datasets: DEAP, SEED, BrainWave, and 

INTERFACE. By integrating 1D-CNN and transformer 

encoders for dual feature extraction, applying multi-head 

attention for feature fusion, using LGWO for feature 

selection, and employing ensemble learning for final 

classification, the model has consistently achieved superior 

performance.  

The proposed model has attained an accuracy of 96.90% 

on the DEAP dataset, 94.25% on the SEED dataset, 93.70% 

on the BrainWave dataset, and 92.80% on the INTERFACE 

dataset, while maintaining high precision, recall, and F1 

scores across all tasks. In addition, an average inference delay 

of 5.2 milliseconds per trial has been recorded, confirming 

the model’s suitability for real-time emotion recognition 

applications. Furthermore, the inclusion of SHAP analysis 

has provided valuable insights into the contribution of 

individual EEG channels and frequency components, 

enhancing the model’s transparency and clinical 

applicability. Overall, the proposed model has been validated 

as a robust, accurate, and explainable solution for preemptive 

detection of emotional disorders, setting a new benchmark for 

future research in EEG-based emotion classification. 
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TABLE V.  COMPARISON WITH RELATED WORK 

Study Year Method Datasets Acc (%) Explainability 
Real-Time 

Capability 

Aldayel et al. [22] 2022 CNN + SAE + DNN DEAP 
89.49–

92.86 
No No 

H. Sun et al. [23] 2025 Dynamic EEG Source Connectivity Custom 88.93/83.50 No No 

N. Ahmadzadeh et 

al. [25] 
2024 

Convolutional Fuzzy Neural Network 

(CFNN) 
DEAP 98.21 No No 

J. Tian and X. Luo 

[85] 
2025 Wavelet Features + LSTM Custom 

75.89–

95.15 
No No 

W. Tang et al. [26] 2025 
Efficient-Capsule Network + Channel 

Attention 
Custom 94.67 Partial No 

M. Li et al. [27] 2025 Spatial–Temporal Transformer SEED 92.67 No No 

Z. Wang and Y. 
Wang [28] 

2025 Att-1DCNN-GRU (EEG+ECG) DEAP, SEED 95.95 No No 

J. Yan et al. [29] 2025 
Spatio‑Temporal Graph BERT 

(STGB) 
SEED 92.5 No No 

J. A. Cruz-Vazquez 
et al. [30] 

2025 CNN + Quantum Rotations Custom ~95.0 No No 

J. Sedehi et al. [31] 2025 EEG–ECG Joint Connectivity Custom 97.34 No No 

S. Adhikari et al. 

[78] 
2025 

Frequency Domain Features + RF + 

SHAP 
Internal >99 Yes (SHAP) No 

V. Doma and 
M. Pirouz [32] 

2025 Comparative Supervised ML Models EEG Tasks <94 No No 

Proposed Model (Ours) 
Dual-Stream Transformer-CNN + 

LGWO + Ensemble + SHAP 

DEAP, SEED, 

BrainWave, 

INTERFACE 

96.9 
Yes  

(Full SHAP) 

Yes  

(5.2 ms) 
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