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Abstract—Nighttime driving safety is often compromised by 

the inability of conventional adaptive headlamp systems to 

account for lateral slip and rapidly changing road conditions, 

leading to misalignment and reduced visibility during aggressive 

maneuvers. Most existing approaches rely solely on steering 

angle, which limits adaptability under dynamic slip scenarios. 

This study presents the development and comparative 

evaluation of a Fused Controller that uniquely integrates sensor 

fusion, adaptive gain scheduling, and multi-step predictive 

optimization for robust adaptive headlamp alignment. Five 

control architectures- Filtered Proportional Controller (FPC), 

Raw State MPC (RS-MPC), Extended MPC (E-MPC), 

Feedforward-Enhanced MPC (FF-MPC), and the proposed 

Fused Controller- were systematically evaluated on a 2 km 

synthetic road with ten challenging segments. Compared to the 

E-MPC baseline, the Fused Controller achieved a 42.5% 

reduction in root mean square error (RMSE) in long S-curves 

and a 30.6% improvement in sharp turns, with a settling time of 

0.6 s (versus 1.8 s for FPC) and a jitter index of 9.93°/s. 

Frequency-domain analysis confirmed a 1.2 Hz bandwidth with 

actuator-compatible roll-off, and stability analysis validated 

robustness under noise and disturbances. Statistical analysis 

across 20 independent simulation runs per controller showed 

these improvements are highly significant (p < 0.001, large 

Cohen’s d), confirming the practical superiority of the Fused 

Controller. These results indicate enhanced driver visibility and 

reduced nighttime collision risk, while the controller’s 

computational efficiency and adaptive gains support scalability 

and real-world deployment. This work provides a rigorous and 

practical framework for next-generation adaptive lighting 

systems.   

Keywords—Adaptive Headlamps; Headlamp Steering; Inertial 

Measurement Unit (IMU); Kalman Filter; Nighttime Safety; Slip 

Angle Estimation; Vehicle Dynamics Control. 

Notations 

U(t) : Longitudinal velocity (𝑚/𝑠)   

V(t) : Lateral velocity (𝑚/𝑠)   

𝛺(𝑡) : Yaw rate (angular velocity) (𝑟𝑎𝑑/𝑠)   

δ : Steering angle input (rad) 

𝜃 : Vehicle heading angle (𝑟𝑎𝑑)   

𝛽(𝑡) : Vehicle slip angle (𝑟𝑎𝑑)   

𝐹𝑥 : Longitudinal force (𝑁)   

𝐹𝑦𝑓, 𝐹𝑦𝑟 : Lateral forces at front/rear tires (𝑁)   

𝐹𝐷, 𝐹𝐿 : Aerodynamic drag/lift forces (𝑁)    

𝐹𝑏𝑓, 𝐹𝑏𝑟 : Braking force front/rear (𝑁)   

𝐶𝛼𝑓, 𝐶𝛼𝑟 : Tire Cornering stiffness (front/rear) (𝑁/𝑟𝑎𝑑)   

µ : Coefficient of friction, tire-road 

M : Vehicle mass (𝑘𝑔)   

J : Yaw moment of inertia (𝑘𝑔 𝑚2)   

a, b : Distance from CG to front/rear axle (𝑚)   

𝜌 : Air density (𝑘𝑔/𝑚3)   

𝐶𝐷 : Aerodynamic drag coefficient   

A : Frontal area of vehicle (𝑚2)   

𝑔 : Acceleration due to gravity (𝑚/𝑠2) 

𝜃𝑚𝑎𝑥 : Max allowable headlamp deflection (𝑟𝑎𝑑)   

𝜏 : Time constant of the headlamp actuator (𝑠) 

𝑇𝑠 : Sampling time interval (𝑠)  
𝛼 : Filter     coefficient (0 < 𝛼 < 1) 

𝐶𝐿 : Lift coefficient   

𝐶𝑟 : Rolling resistance coefficient   

𝑅 : Wheel radius (𝑚) 

𝜔 : Angular speed of wheel (𝑟𝑎𝑑/𝑠)   

𝐽𝑤 : Rotational inertia of wheel (𝑘𝑔/𝑚2)   

𝑇𝑑 : Driving torque (𝑁𝑚)   

𝜆 : Wheel slip ratio 

𝜃𝐻𝐿(𝑡) : Headlamp deflection angle (𝑟𝑎𝑑)   

∆𝜃𝐻𝐿[𝑘] : Change in headlamp angle per step (rad) 

𝑘𝛿  : Steering feedback gain 

𝑘𝑑 : Headlamp deflection gain 

𝑘ℎ : Proportional gain slip angle to headlamp angle 

𝑘𝜓 : Proportional gain on road heading to headlamp 

𝑘ℎ0 : Base value of 𝑘ℎ 

𝑘𝜓0 : Base value of 𝑘𝜓 

𝑈𝑛𝑜𝑚 : Nominal speed for gain scaling (m/s) 

𝜓𝑟𝑜𝑎𝑑[k] : Road heading at time step k (rad) 

𝜃𝑟𝑒𝑓(𝑡) : Reference Headlamp angle (rad) 

H : Prediction horizon 

λ : Weight for rate penalty in MPC cost 
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𝛾 : Fusion weighing factor (0 < 𝛾 < 1) 

𝛽𝑡𝑟𝑢𝑒  :True slip angle (rad) 

𝛽𝑚𝑜𝑑𝑒𝑙  :Model-based slip angle (rad) 

𝛽𝑒𝑠𝑡  : Estimated slip angle (rad) 

𝛺𝑡𝑟𝑢𝑒 :True yaw rate (rad/s) 

𝛺𝑚𝑜𝑑𝑒𝑙 :Model-based yaw rate (rad/s) 

𝛺𝑒𝑠𝑡 : Estimated yaw rate (rad/s) 

I. INTRODUCTION 

Night time driving safety is fundamentally constrained by 

the ability of headlamp systems to accurately illuminate the 

vehicle’s true path, especially during dynamic maneuvers 

where lateral slip causes deviations between steering input 

and actual trajectory [1]-[3]. Conventional steering-angle-

based systems fail under hard cornering, low-traction 

conditions, or emergency maneuvers, where slip angle (𝛽)—

the angular difference between a vehicle’s velocity vector and 

longitudinal axis—becomes critical for adaptive headlamp 

alignment [4]-[7]. Most current adaptive lighting systems are 

limited by their reliance on steering angle alone, which does 

not account for real-time vehicle dynamics or slip, leading to 

frequent misalignment and compromised visibility in 

challenging scenarios. Quantitatively, such systems exhibit 

higher tracking error, directly impacting nighttime accident 

risk. 

Advanced control strategies, such as Filtered Proportional 

Control (FPC) and Model Predictive Control (MPC), address 

these limitations by integrating real-time vehicle dynamics, 

road geometry anticipation, and sensor fusion [6][7]. The slip 

angle has proven to be a reliable predictor of vehicle 

trajectory, with prediction errors as low as 0.3 meters, 

achieved through comprehensive dynamic vehicle modeling. 

This model incorporates nonlinear equations for longitudinal, 

lateral, and yaw motions, tire force characteristics, rolling 

resistance, aerodynamic effects, and load transfer during 

braking and acceleration [10]-[12]. These enable real-time 

computation of β from measured or estimated vehicle states, 

forming the core of modern adaptive headlamp control 

strategies [2][3].  

Recent research has explored slip angle estimation, 

predictive control, and sensor fusion for improved vehicle 

dynamics control [7]. However, existing adaptive headlamp 

solutions rarely integrate these methods holistically, and often 

neglect computational efficiency or real-time deployability 

on automotive-grade hardware. The specific scientific 

problem addressed in this research is the lack of an integrated, 

real-time control architecture for adaptive headlamp 

alignment that can robustly compensate for lateral slip, 

actuator constraints, and transient road conditions. 

A foundational approach, the Filtered Proportional 

Controller (FPC), maps the estimated slip angle to headlamp 

deflection via a low-pass filtered proportional law 

[2][3][8][9]. While effective in damping high-frequency 

noise and ensuring smooth transitions, FPC remains reactive 

and susceptible to steady-state errors during rapid curvature 

changes. To overcome these limitations, predictive control 

strategies like Raw State MPC (RS-MPC) align headlamp 

direction with projected road heading but lack feedback from 

dynamic vehicle states, leading to instability under sensor 

noise [2][3], [10]-[12]. The Extended MPC (E-MPC) 

addresses this by incorporating slip angle and yaw rate into 

the optimization framework, improving transient response 

and robustness. However, E-MPC’s reactive nature limits 

performance in rapidly changing curvature conditions. The 

Feedforward-Enhanced MPC (FF-MPC) integrates road 

curvature preview with slip feedback, reducing latency by 

30% in simulated S-curve [1], [10]-[12].  

Despite these advancements, there remains a gap in 

synergistically combining sensor fusion, adaptive gain 

scheduling, and predictive optimization for adaptive 

headlamp control [4]-[7], [10]-[12]. The research 

contribution is the development and comparative evaluation 

of a Fused Controller that uniquely integrates sensor fusion 

(via Kalman-filtered IMU data), adaptive gain scheduling, 

and multi-step predictive optimization for robust, real-time 

adaptive headlamp alignment. By merging real-time inertial 

measurement unit (IMU) data with model-predicted slip 

dynamics, the controller achieves reduction in root mean 

square error (RMSE) compared to E-MPC in 2 km multi-

segment trials. The key innovations include: 

• A dynamic vehicle model integrating longitudinal, lateral, 

and yaw dynamics with tire force nonlinearities and 

aerodynamic effects. 

• A sensor-fused predictive framework combining road 

curvature anticipation with adaptive gains scaled to 

vehicle speed. 

• Actuator-aware smoothing via first-order lag 

compensation, ensuring mechanical feasibility and visual 

continuity. 

This paper is structured to first introduce the significance 

of slip angle in vehicle dynamics and its role in headlamp 

alignment, followed by mathematical modeling, controller 

design, and a comprehensive segment-wise comparative 

evaluation of five controllers: Filtered Proportional 

Controller (FPC), Raw State MPC (RS-MPC), Extended 

MPC (E-MPC), Feedforward-Enhanced MPC (FF-MPC), 

and the proposed Fused Controller. A dedicated section 

presents the statistical analysis of all key performance 

metrics, including confidence intervals, p-values, and effect 

sizes, to rigorously validate the comparative results. The 

findings demonstrate the practical and theoretical advantages 

of the proposed Fused Controller, establishing a new 

benchmark for adaptive lighting systems in both conventional 

and autonomous vehicles. 

II. LITERATURE 

Adaptive Front-lighting Systems (AFS) are needed to 

enhance the safety of night driving by changing the direction 

of the headlamp beam dynamically as a function of vehicle 

motion.  Multiple studies emphasized the crucial role of AFS 

in better illuminating roadways during turning and reducing 

visual lag in reduced-light driving conditions [1]. Analysis 

has demonstrated shortcomings of conventional fixed 

headlights and proposed detection-based adjustments as a 

safer alternative [2][3]. Mechanical solutions were shown 

through designs integrating steering-based control, which 

ensured efficient beam direction without reliance on complex 

electronics [4]-[7]. Significant improvement was gained in 
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AFS reaction time and accuracy. A study created a beam 

control architecture using road curvature and geometric 

constraint, leading to improved seeing distance through 

swiveling mechanisms [8][9]. Another study explored 3D 

simulation models that examined the effectiveness of 

headlight alignment with respect to highway geometry [10]-

[12].  Parallel efforts led to cost-effective, sensor-based 

systems using ultrasonic and accelerometer modules for real-

time beam control [13]. The industry witnessed growth in 

microcontroller-controlled AFS devices meant to provide 

greater visibility under fog or sharp-curve conditions [9]. A 

mechanical redesign integrated these enhancements and 

proposed modular upgrades to enhance their range and 

angular versatility [14].  The necessity of a revolving beam 

design for turn anticipation and fog navigation, particularly in 

undulating terrain was discussed [15][16].  In summary, cost-

effective prototypes with rack-and-pinion systems were 

found to offer efficient AFS solutions for cars in emerging 

economies [18]. The early installations of Adaptive Front-

lighting Systems (AFS) were largely based on steering angle 

as the primary control input to headlamp position. These 

systems assumed a linear relationship between road curvature 

and steering wheel angle, giving a straightforward approach 

for beam alignment while cornering. A steering control 

prototype was designed, with feedback mechanisms to adjust 

beam intensity and deflection angle based on real-time road 

geometry and speed changes [19]. A analytical study brought 

further improvements by categorizing control techniques into 

mechanically linked, servo-based, and electronically actuated 

systems, highlighting the trade-offs in accuracy and 

responsiveness [20]. 

Rack-and-pinion linkage systems have gained popularity 

because they can easily be retrofitted onto current vehicles, as 

discussed in a number of mechanical design researches [21], 

[22]. The approach discussed in [23] used a gear motor-driven 

control approach to ensure reliable beam tracking in tight 

urban curves, while another study applied simple gear 

mechanisms connected to the steering column to enhance 

visibility in turns [24]. Also targeted was beam spread, where 

feedback from the steering column enabled improvement of 

lit spaces, particularly on curved roads [25]. Current 

deployments consider integration of object detection systems 

to enhance adaptive control logic in real-world situations 

[26]-[29], with optimization models evaluating beam 

performance under different driving conditions [30][31]. 

Steering wheel angle-based trajectory alignment was 

supplemented by algorithmic beam projection control models 

to achieve better dynamic performance and fault tolerance 

during low-speed operations [32]-[36].  Steering-angle-based 

AFS systems are inexpensive and straightforward but have 

problems with situations involving vehicle dynamics such as 

lateral slip or understeer that decouple real motion from 

steering intent. The lack has spurred increased research 

interest in the use of vehicle body dynamics—specifically slip 

angle—as a more stable control input. Steering-angle-based 

headlamp systems offer a basic correlation between driver 

input and beam direction, though generally fail to account for 

vehicle dynamics during aggressive maneuvers or low-

friction conditions. Here, the slip angle—defined as the 

angular difference between the direction of a vehicle and the 

resulting path—is a more accurate description of vehicular 

dynamics, making it a relevant parameter to adaptive control 

systems.  Estimation of slip angle was originally underscored 

as a key role in pioneering research utilizing a nonlinear 

observer to estimate sideslip and tire forces with inclusion of 

cornering stiffness to enhance accuracy [37]. This approach 

laid the groundwork for later algorithms that simultaneously 

considered yaw rate and sideslip angle, the core of modern 

vehicle stability systems [38].  Later developments led to 

more advanced observer-based systems for slip estimation, 

including experimental verification on instrumented test 

vehicles [39]. Simultaneous research efforts applied the 

Extended Kalman Filter (EKF) to combine noisy sensor 

readings with accurate slip estimations under varied road and 

load conditions [40].  An important advancement occurred 

with the inclusion of machine learning techniques, where 

deep neural networks were integrated along with vehicle 

sensor data to predict sideslip angle in extremely nonlinear 

environments [41]-[44].  

Hybrid systems using Radial Basis Function (RBF) neural 

networks combined with Unscented Kalman Filters (UKF) 

have displayed improved estimation capability under 

transient conditions [45]. Artificial Neural Networks (ANN) 

based methods that were tested on empirical vehicle dynamic 

data significantly reduced dependency on the direct 

measurement of lateral acceleration and wheel speeds [46]. 

One particularly innovative contribution was the UKF-

informed neural estimating model, which achieved better 

filtering of dynamic noise through learnt priors [47].  Recent 

advances have delivered hybrid learning models that address 

both epistemic and aleatoric uncertainty in slip angle 

estimation.  These models integrated traditional physics-

based formulations with probabilistic neural networks, 

leading to accurate slip predictions across a wide range of 

vehicle speeds and road conditions. A strong hybrid observer 

was implemented, combining model-based prediction with 

neural output to achieve notable immunity to sensor noise and 

actuator delay [49].  The development of these estimation 

techniques forms a strong foundation for adding slip angle as 

a control variable to headlamp systems. This enables 

anticipatory beam deflection in accordance with the real 

vehicle path instead of just steering input, thus overcoming 

limitations of classical AFS systems. Model Predictive 

Control (MPC) has emerged as a flexible method for 

controlling vehicle dynamics within constraints, especially 

for path following and advanced driver-assistance systems. 

Its predictive nature, ability to control multi-variable systems, 

and built-in constraint management make it particularly 

suitable for real-time automotive use.  A detailed review of 

Model Predictive Control (MPC) applications in autonomous 

driving integrated different prediction models, control 

structures, and solver settings used for vehicle path tracking 

[50][51].  A dedicated path tracking controller was suggested 

for autonomous vehicles, using steering dynamics to provide 

real-time lane-keeping and trajectory following. Low-speed 

navigation challenges were addressed through the 

introduction of dynamic hybrid linear-nonlinear Model 

Predictive Control systems that adapted to changing road 

curvature, thus enhancing control robustness in urban settings 

[52].  
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Researchers have also discussed the wide scope of 

automobile Model Predictive Control (MPC) from its 

inception as a theoretical idea to embedded implementation, 

while acknowledging the computational overhead and real-

time constraints of practical limitations [53]. There is a 

specific body of research that focuses on autonomous ground 

vehicles, including combined route and speed tracking 

methods based on Model Predictive Control frameworks for 

coordinated actuator control [54].  In high-performance 

applications such as autonomous racing, tube-based Model 

Predictive Control (MPC) models showed reliable 

performance under conditions of model uncertainties and 

aggressive driving [55]. For enabling tighter integration with 

actuator systems, time-varying linear model predictive 

control (LTV-MPC) methods were created and empirically 

verified on active steering testbeds, displaying high-

frequency stability and improved transient responsiveness 

[56].  Similarly, smooth trajectory generation taking actuator 

dynamics into account was achieved through limited Model 

Predictive Control (MPC) frameworks that prevented abrupt 

steering commands while ensuring lane keeping [57]. Apart 

from the conventional Model Predictive Control (MPC) 

formulations, there have emerged control methods such as 

Robust Model Predictive Path Integral Control (MPPI) that 

offer a probabilistically rooted alternative with mathematical 

performance guarantees in stochastic environments [58].  

Lastly, predictive control techniques have been extended to 

lateral vehicle dynamics, enabling application to 

synchronized cornering and stabilization of drift through 

bounded trajectory optimization [59]. These studies affirm 

the importance of Model Predictive Control (MPC) as an 

essential method in intelligent vehicle control, providing a 

basis for its adoption into adaptive headlamp systems, 

especially when complemented by slip angle estimates and 

dynamic preview capabilities. The efficiency of adaptive 

vehicle control systems relies on the accuracy and timeliness 

of dynamic state estimates. Sensor fusion, especially in 

conjunction with filtering algorithms like the Kalman filter, 

has seen widespread use for recovering accurate vehicle state 

data such as slip angle, yaw rate, and lateral acceleration from 

delayed, noisy, or missing sensor information. Initial attempts 

at distributed Kalman filtering for vehicular networks 

addressed data transmission delays by providing fusion 

algorithms with finite-time convergence to improve 

estimation accuracy under real-time conditions [60]. Parallel 

efforts explored adaptive navigation filters that combined 

model-based and learning-based approaches, enabling real-

time covariance adaptation according to changing driving 

conditions [61]. In high-dimensional estimation, Kalman 

structures such as DeepUKF, enriched with deep learning, 

have provided improved stability in vision-inertial navigation 

through adaptive combination of visual and inertial 

modalities [62]. 

Multi-modal sensor fusion methods employing the 

Extended Kalman Filter (EKF) were developed and validated 

for autonomous high-speed operation on racing vehicles and 

proved to be robust in aggressive maneuvers [63][64]. 

Comprehensive surveys outlined taxonomies of multi-sensor 

fusion techniques across vehicular domains, emphasizing the 

value of consensus filtering, distributed data association, and 

mode switching to improve redundancy and fault tolerance 

[65]. Ground-breaking work on the integration of inertial 

sensors with GPS observation for sideslip and roll rate 

estimation laid the groundwork for vehicle sensor fusion 

techniques now accepted as de facto [66]. A head-to-head 

comparison of EKF and UKF approaches to GPS/INS fusion 

illustrated the compromises between estimation robustness 

and computational complexity, offering critical insights for 

controller design under resource constraints [67]. Real-time 

applications of these fusion algorithms have been proven as 

reference systems for vehicle navigation, confirming their 

applicability in real-world environments [68]. Follow-up 

analyses assessed the performance of MEMS-based 

integration, highlighting its tunability with filter sensitivity 

and noise modeling [69].  Sensor fusion algorithms were 

finally rigorously tested through flight tests for attitude 

estimation, bridging terrestrial vehicle dynamics with 

aerospace-quality estimate approaches [70].  These work-

pieces emphasize the critical role of sensor fusion in 

transforming raw vehicle sensor data into actionable control 

inputs. They are the basis for advanced control systems—like 

adaptive headlamp controllers—where accurate and timely 

vehicle alignment and slip evaluation are vital to safety and 

performance. Despite significant developments in vehicle 

dynamics, predictive control, and adaptive systems, 

substantial boundaries remain in the area of adaptive 

headlamp control based on dynamic vehicle behavior. There 

is a large gap in research on integrating slip angle calculation 

into headlamp control systems. While accurate methods of 

sideslip detection have been devised for stability control and 

path tracking, their use in beam deflection and road 

illumination remains insufficiently explored [71].   

Further, while Kalman-based predictive filtering is 

common in navigation and estimating schemes, its use for 

beam lobe control—particularly under transient conditions—

remains limited [72]. The research is lacking in adaptive gain 

scheduling algorithms for beam control that compensate 

based on real-time variables such as speed and lateral 

acceleration, although they have proven to be effective in 

more comprehensive vehicle control systems [73].  Despite 

significant improvement in observer-based estimation and 

sensor integration methods, their potential to enhance beam 

alignment in low visibility and cornering modes in lighting 

control is still not fully tapped [74]. While Model Predictive 

Control (MPC) has emerged as a core methodology in lateral 

vehicle dynamics and path optimization, its realization in 

adaptive headlights is rare.  Sparse solutions combine 

anticipatory road preview, slip compensations, or beam 

actuator limits into a single MPC framework [75]. In addition, 

most published work does not conduct segment-specific tests 

of beam effectiveness over complex road geometries, such as 

acute turns, S-curves, or zigzags [76]. The computational 

feasibility of deploying complex controllers—like Model 

Predictive Control (MPC) or combined slip estimators—on 

car-grade embedded systems is not adequately explored. This 

limits the application of research-grade models to 

commercially acceptable applications [77]. Additionally, 

environmental dynamics, like changing road friction and 

weather-induced surface irregularities, are usually excluded 

from beam control reasoning, even though they directly affect 

tire performance and path prediction [78][79]. Computer 

simulation validated over different road geometries and real-
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time constraints is the focus of this research, unlike earlier 

research that called for Hardware-in-the-Loop (HIL) testing 

in order to measure real-time control performance. Lastly, the 

headlamp assembly's actuator dynamics, including 

mechanical limits, rate limits, and potential backlash, are 

often neglected, even though they contribute to slowing beam 

response in high-speed transitions [80][81]. Despite 

advancements in slip angle estimation, predictive control, and 

sensor fusion, a cohesive architecture that couples these into 

a deployable, real-time lighting solution remains unachieved. 

Existing models often address isolated aspects of the problem 

but fail to capture the complex, nonlinear relationships 

between vehicle trajectory, environmental reaction, and 

actuator performance. This fragmentation underscores the 

pressing need for an integrated control framework—one that 

is predictive, adaptive, and computationally efficient. This 

paper introduces a fused controller that leverages dynamic 

vehicle modeling, real-time filtering, and anticipatory 

optimization to enhance beam alignment for enhanced 

nighttime safety and autonomous readiness. 

III. METHODOLOGY 

This section details the systematic development of five 

control architectures for adaptive headlamp alignment: 

Filtered Proportional Controller (FPC), Raw State MPC (RS-

MPC), Extended MPC (E-MPC), Feedforward-Enhanced 

MPC (FF-MPC), and the Fused Control Model. These 

controllers were chosen to represent a spectrum of design 

philosophies—from simple reactive to advanced predictive 

and sensor-fused strategies—reflecting both the state of the 

art and practical constraints in automotive lighting control. 

The selection ensures coverage of both baseline and advanced 

methods, enabling a comprehensive evaluation of trade-offs 

in robustness, computational feasibility, and real-world 

applicability. Dynamic vehicle modeling, predictive 

optimization, and sensor fusion are integrated (Table I) to 

ensure robust beam alignment under diverse driving 

conditions. A detailed flowchart (Fig. 1) summarizes the 

research methodology, from vehicle modeling and controller 

design to simulation and performance evaluation. 

A. Dynamic Vehicle Modeling 

A nonlinear vehicle dynamics model forms the foundation 

for real-time slip angle (𝛽) estimation. The model 

incorporates longitudinal, lateral, and yaw motions, tire force 

characteristics, aerodynamic effects, and load transfer. This 

modeling approach is widely accepted for its balance of 

fidelity and computational efficiency in automotive control 

applications [37]–[40], [50], [53] and is represented using 

equations (1) through (4).

TABLE I.  ALGORITHM FOR THE CONTROLLERS (FPC, R-MPC, E-MPC, FF-MPC AND F-CONTROLLER) 

A. Filtered Proportional Controller  
B. Raw Full-State MPC with Direct 

Road Heading Injection 
 E. Fused Controller 

1: Initialize: Time constant τ, 

proportional gain 𝑘ℎ , sampling time 𝑇𝑠 

2: for each control update do 

3:    Measure slip angle 𝛽[𝑘] 
4:    Calculate filter coefficient 𝛼 

5:    Update 𝜃𝐻𝐿[𝑘] 
6:    Apply saturation: 

        𝜃𝐻𝐿[𝑘]𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] 
7:    Apply control input 𝜃𝐻𝐿[𝑘] 
8: end for 

 1: Initialize: Predictive horizon 𝑁, 

weight 𝜆 

2: for each control update do 

3:     Measure road heading 𝜓𝑟𝑜𝑎𝑑[𝑘] 
4:     Predict future road heading 

         𝜓𝑟𝑜𝑎𝑑[𝑘 + 𝑖] over N steps 

5:     Solve optimization problem: 

        Minimize L 

6:     Obtain optimal 𝜃𝐻𝐿 sequence 

7:     Apply first control input 𝜃𝐻𝐿[𝑘] 
8:     Apply saturation: 

         𝜃𝐻𝐿[𝑘]𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] 
9: end for 

 

1: Initialize: Short-term gains 𝑘𝛺, 𝑘𝛽 blending parameter 𝛾, 

multi-step horizon 𝑁, velocity-dependent gains 

𝑘𝛺(𝑈), 𝑘𝛽(𝑈) weighting factor w 

2: for each control update do 

3:    Measure true yaw rate 𝛺𝑡𝑟𝑢𝑒[𝑘], slip   angle 𝛽𝑡𝑟𝑢𝑒[𝑘] 
vehicle velocity 𝑈[𝑘], and states 

4:    Estimate model-based yaw rate and slip angle 

5:    Predict one step ahead values 𝛺𝑝𝑟𝑒𝑑[𝑘] and 𝛽𝑝𝑟𝑒𝑑[𝑘] 

6:    Calculate short-term control         𝜃𝐻𝐿
𝑠ℎ𝑜𝑟𝑡[𝑘] 

7:    Predict future yaw rates and slip angles over 𝑁 steps 

8:    Calculate average future values: 𝛺̅𝑓𝑢𝑡𝑢𝑟𝑒  and 𝛽̅𝑓𝑢𝑡𝑢𝑟𝑒 

9:    Update velocity-dependent gains based on current 

velocity 

10:  Calculate long-term control         𝜃𝐻𝐿
𝑙𝑜𝑛𝑔

[𝑘] 
11:  Combine control strategies         𝜃𝐻𝐿[𝑘] 
12:  Apply low-pass filter to reduce jitter 

13:  Apply saturation:         𝜃𝐻𝐿[𝑘]𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] 
14:  Apply control input 𝜃𝐻𝐿[𝑘] 
15: end for 
 

    

C. Extended Model Predictive 

Controller 
 D. Feedforward-Enhanced MPC 

 

1: Initialize: Predictive horizon 𝑁, 

weight 𝜆, state-space matrices 𝐴𝑑, 𝐵𝑑 

2: for each control update do 

3:   Measure current state 𝑥[𝑘] 
4:   Predict future states  

       𝑥[𝑘 + 𝑖] over   N steps using state-

space model 

5:   Extract predicted slip angles 𝛽[𝑘 +
𝑖]   from predicted states 

6:   Solve optimization problem: 

      Minimize L 

7:   Obtain optimal 𝜃𝐻𝐿 sequence 

8:   Apply first control input 𝜃𝐻𝐿[𝑘] 
9:   Apply saturation: 

       𝜃𝐻𝐿[𝑘]𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] 
10: end for 

 1: Initialize: Predictive horizon 𝑁, 

weight 𝜆, gains 𝑘ℎ , 𝑘𝜓 

2: for each control update do 

3:   Measure slip angle 𝛽[𝑘] and road 

heading 𝜓𝑟𝑜𝑎𝑑[𝑘] 
4:   Predict future slip angles  

      𝛽[𝑘 + 𝑖] and road headings 

𝜓𝑟𝑜𝑎𝑑[𝑘 + 𝑖] over N steps 

5:   Calculate reference angles 

       𝜃𝑟𝑒𝑓[𝑘 + 𝑖] 

6:   Solve optimization problem: 

Minimize 𝐿 

7:   Obtain optimal 𝜃𝐻𝐿 sequence 

8:   Apply first control input 𝜃𝐻𝐿[𝑘] 
9:   Apply saturation: 

       𝜃𝐻𝐿[𝑘]𝜖 [−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] 
10: end for 
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Longitudinal dynamics: 

𝑀𝑈̇(𝑡) = 𝐹𝑥 − 𝐹𝐷 − 𝐹𝑏𝑟 − 𝐹𝑦𝑟sin (𝛿) (1) 

Lateral dynamics: 

𝑀𝑉̇(𝑡) = 𝐹𝑦𝑓cos (𝛿) + 𝐹𝑦𝑟 − 𝑀𝑈(𝑡)Ω(𝑡) (2) 

Yaw dynamics: 

𝐽Ω̇(𝑡) = 𝑎𝐹𝑦𝑓 − 𝑏𝐹𝑦𝑟 (3) 

The slip angle is computed as: 

𝛽(𝑡) = tan−1 (
𝑉(𝑡)

𝑈(𝑡)
) (4) 

 

Fig. 1. Flowchart of the research work  

B. Controller Design 

1) Filtered Proportional Controller (FPC) 

The FPC utilizes a low-pass filtered proportional law to 

relate real-time slip angle to headlight deflection. The use of 

first-order lag smooths actuator commands and reduces high-

frequency noise from vehicle sensors, thus ensuring smooth 

and comfortable beam transitions. While computationally 

simple and robust in most conditions, it is reactive in nature 

and tends to show steady-state faults during rapid directional 

changes. FPC maps 𝛽(𝑡) to headlamp deflection 𝜃𝐻𝐿(𝑡) via a 

low-pass filtered proportional law as shown in equations (5) 

through (7). 

Continuous-time: 

𝜏𝜃̇𝐻𝐿(𝑡) + 𝜃𝐻𝐿(𝑡) = 𝑘ℎ𝛽(𝑡) (5) 

Discrete-time implementation: 

𝜃𝐻𝐿[𝑘] = 𝛼𝜃𝐻𝐿[𝑘 − 1] + (1 − 𝛼)𝑘ℎ𝛽[𝑘], 𝛼

=
𝜏

𝜏 + 𝑇𝑠

  (6) 

Actuator constraints: 

𝜃𝐻𝐿(𝑡) ∈ [−𝜃max, 𝜃max] (7) 

2) Raw State MPC (RS-MPC) 

RS-MPC aligns the headlamp direction with the predicted 

road path by minimizing the difference between headlamp 

deflection and the target road path (Equation (8)). It does not 

have dynamic vehicle feedback, (slip angle and yaw rate), 

making it simple but prone to noise and prediction errors in 

road curvature. The lack of feedback limits its robustness in 

transient or highly dynamic maneuvers. RS-MPC aligns 

headlamps with road heading (𝜓road) without slip feedback. 

Cost function: 

𝑚𝑖𝑛
𝜃𝐻𝐿

 ∑  𝑁
𝑘=0 (𝜃𝐻𝐿[𝑘] − 𝜓road[𝑘])2 + 𝜆(𝛥𝜃𝐻𝐿[𝑘])2  (8) 

subject to |𝜃𝐻𝐿[𝑘]| ≤ 𝜃𝑚𝑎𝑥 , |∆𝜃𝐻𝐿[𝑘]| ≤ 𝛿𝑚𝑎𝑥 

3) Extended MPC (E-MPC) 

E-MPC includes slip angle and yaw rate within an 

optimization-based predictive framework, using a state-space 

vehicle model to predict future vehicle states. It adjusts 

headlamp deflection dynamically to track slip angle trends 

while respecting actuator constraints as represented by 

equations (9) through (11). E-MPC improves transient 

response and noise robustness compared to less complex 

controllers; however, it is still largely reactive and does not 

have direct foresight of road geometry. 

E-MPC integrates slip angle and yaw dynamics into a 

state-space predictive framework: 

State vector: 

𝑥[𝑘] = [𝛽[𝑘] 𝛺[𝑘]]𝑇  (9) 

Discrete-time model: 

𝑥[𝑘 + 1] = 𝐴𝑑𝑥[𝑘] + 𝐵𝑑𝛿[𝑘]  (10) 

derived via Euler discretization of continuous dynamics. 

Cost function: 

𝑚𝑖𝑛
𝜃𝐻𝐿

 ∑  𝑁
𝑘=0 (𝜃𝐻𝐿[𝑘] − 𝑘ℎ𝛽[𝑘])2 + 𝜆(𝛥𝜃𝐻𝐿[𝑘])2  (11) 

4) Feedforward-Enhanced MPC (FF-MPC) 

FF-MPC combines slip angle feedback with a 

feedforward element based on real-time road heading 

estimates. The combined strategy allows for anticipatory 

beam adjustments for upcoming road curvatures, reducing 

delay and increasing tracking accuracy. A filtered actuator 

model ensures smooth switch-ons. FF-MPC shows 
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excellence in scenarios involving complex or rapidly varying 

trajectories as shown in equations (12) and (13); however, it 

can be limited by static gain values. 

FF-MPC combines road curvature preview with slip 

feedback: 

Reference angle: 

 𝜃ref(𝑡) = 𝑘ℎ𝛽(𝑡) + 𝑘𝜓𝜓road(𝑡)  (12) 

First-order actuator model: 

𝜃̇𝐻𝐿(𝑡) =
1

𝜏
(𝜃ref(𝑡) − 𝜃𝐻𝐿(𝑡))  (13) 

5) Fused Control Model 

The Fused Controller combines Kalman filtered IMU-

based sensor fusion, adaptive gain scheduling, and multi-step 

predictive optimization. It combines model-predicted slip 

dynamics with real-time inertial measurements and controls 

gains dynamically based on speed and situation (Equation 

(14) through (16)). This architecture achieves robust, context-

aware beam alignment, providing improved performance in 

stable and highly dynamic driving conditions compared to all 

earlier controllers. This architecture was chosen to address 

the shortcomings identified in the other controllers, 

specifically by enhancing robustness to noise, adaptability to 

speed and tire dynamics, and predictive anticipation of road 

geometry. The fused architecture unifies sensor fusion, 

adaptive gain scheduling, and multi-step prediction: 

Sensor fusion: 

𝛽est = 𝛾𝛽true + (1 − 𝛾)𝛽model, 𝛺est = 𝛾𝛺true + (1 −
𝛾)𝛺model  

(14) 

where 𝛾 =1 balances IMU data and model predictions. 

Speed-adaptive gains: 

𝑘𝜓(𝑈) = 𝑘𝜓0 ⋅
𝑈nom

𝑈
, 𝑘ℎ(𝑈) = 𝑘ℎ0 ⋅

𝑈

𝑈nom
  (15) 

Multi-step predictive control: 

𝜃𝐻𝐿[𝑘] = ∑  𝐻
𝑖=1 (𝑘ℎ(𝑈)𝛽future[𝑖] + 𝑘𝜓(𝑈)𝜓road[𝑖])  (16) 

with prediction horizon H = 10. 

C. Robustness and Sensitivity Considerations 

This research provides a thorough evaluation of each 

controller’s formulation, explicitly discussing their practical 

strengths and limitations in the context of headlamp control. 

While formal robustness analyses (e.g., H-infinity, sliding 

mode, or Lyapunov-based stability proofs) fall outside the 

scope of this work, the simulation framework offers critical 

insights into controller performance under typical operating 

conditions. The current validation emphasizes key metrics 

such as RMSE, settling time, and jitter under Gaussian noise 

and actuator constraints, establishing a robust foundation for 

comparative analysis. 

Also, factors such as actuator delay, time-varying friction, 

and environmental disturbances (e.g., rain, uneven terrain) 

were not explicitly modeled in this phase. These 

considerations represent important directions for future 

research, where extended validation under real-world 

variability will further enhance the controller’s applicability. 

Subsequent work will integrate hardware-in-the-loop (HIL) 

testing and sensitivity analyses to address these dynamics, 

building on the methodological framework established here. 

D. Validation Framework and Implementation 

Considerations 

The controllers are validated on a 2 km synthetic road 

comprising 10 distinct segments designed to replicate real-

world driving conditions, including sharp turns, S-curves, 

climbs, and flat stretches. Each segment was engineered with 

curvature values ranging from 0.01 to 0.1 rad/m to test 

adaptive beam alignment under diverse maneuvering 

scenarios. Vehicle speed profiles spanned 5–25 m/s, 

simulating urban, highway, and transient driving conditions. 

The performance metrics are: 

• Root Mean Square Error (RMSE): Segment-wise 

tracking error between headlamp deflection and 

reference road heading, quantifying beam alignment 

accuracy. 

• Settling Time (𝑡𝑠): Time to reach 95% of steady-state 

deflection after curvature transitions, measuring 

responsiveness. 

• Jitter Index (𝜎(∆𝜃𝐻𝐿)): Standard deviation of 

headlamp deflection rate, evaluating actuator 

smoothness and visual comfort. 

For simulation, the dynamic vehicle model integrated 

longitudinal, lateral, and yaw dynamics with tire force 

nonlinearities and aerodynamic effects. Road geometry was 

predefined using parametric equations for curvature, while 

sensor noise (Say, IMU inaccuracies) was modeled as 

Gaussian-distributed perturbations. The following are the 

implementation considerations. Actuator Constraints 

includes Mechanical limits enforced at 𝜃𝐻𝐿 𝜖 [−150, 150] to 

prevent hardware overload, ensuring safe and reliable 

operation. Rate constraints |∆𝜃𝐻𝐿| ≤ 50/𝑠  ensured smooth 

transitions. This limits how quickly the headlamp angle is 

allowed to change. These constraints ensure smooth 

transitions, avoiding jerky movements, flicker, and driver 

discomfort. 

Simulation fidelity is based on established vehicle 

dynamics models, but does not yet include actuator delay, 

time-varying friction, rain, or uneven terrain. These are 

recognized as limitations and are suggested for future work. 

Noise modeling uses Gaussian distributions for IMU and 

sensor errors, consistent with automotive-grade sensor 

characterizations. Performance metrics (RMSE, settling time, 

jitter index) are reported for each controller and segment. The 

trade-offs among these metrics are discussed. 

IV. RESULTS AND DISCUSSION 

This section evaluates the performance of five adaptive 

headlamp control architectures—Filtered Proportional 

Controller (FPC), Raw State MPC (RS-MPC), Extended 

MPC (E-MPC), Feedforward-Enhanced MPC (FF-MPC), 

and the Fused Controller—through time and frequency 

domain analyses. The response characteristics, stability, and 

practical limitations of each controller are systematically 

compared to assess their suitability for real-world 

deployment. 
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A. Filtered Proportional Controller (FPC) 

The Filtered Proportional Controller (FPC) maps the slip 

angle to the headlamp deflection angle through a low-pass 

filtered proportional law, providing a smooth, non-oscillatory 

response as evidenced by its 1.2-second settling time and a 

jitter index of 28.78°/s (Fig. 2 and Fig. 3).  

 

Fig. 2. Step response of the DPC Model 

 

Fig. 3. The impulse response 

While this approach effectively damps high-frequency 

noise and delivers actuator-friendly transitions, it is 

inherently reactive and thus prone to steady-state errors 

during rapid curvature changes, such as sharp turns where 

RMSE can reach 0.0296 rad. Frequency domain analysis 

(Fig. 4) reveals a flat magnitude response and zero phase lag, 

indicating the absence of dynamic filtering and resulting in 

high sensitivity to sensor noise and transient disturbances. 

The FPC’s performance is further influenced by variations in 

tire stiffness, aerodynamic drag, and load (Fig. 5, Fig. 6, and 

Fig. 7), which can exacerbate steady-state errors and 

compromise tracking accuracy under changing vehicle 

dynamics. Although computationally lightweight and well-

suited for microcontroller implementation, the FPC’s lack of 

anticipation and relatively high jitter limit its robustness and 

applicability in dynamic or safety-critical driving scenarios. 

Over extended runs, it may exhibit moderate drift and 

persistent errors, particularly when subjected to rapidly 

changing curvature or aggressive maneuvers. 

 

Fig. 4. Bode plot of DPC 

 

Fig. 5. Effect of aerodynamic drag on headlamp deflection 

 

Fig. 6. Effect of braking on headlamp deflection 

 

Fig. 7. Effect of tire stiffness on headlamp deflection 

B. Raw State MPC (RS-MPC) 

The Raw State Model Predictive Controller (RS-MPC) 

aligns headlamp deflection directly with the road heading 

(𝜓𝑟𝑜𝑎𝑑) using an open-loop approach that does not 

incorporate dynamic vehicle states such as slip angle or yaw 

rate. While this method achieves zero overshoot and 

undershoot in idealized simulations and appears theoretically 

stable (as shown in Fig. 8 and Fig. 9), it proves highly 

unstable in practical scenarios. The absence of feedback 

makes RS-MPC extremely sensitive to sensor noise and road 

curvature prediction errors, resulting in significant tracking 
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error divergence and RMSE spikes up to 0.1237 rad in zigzag 

segments (Fig. 10). This lack of robustness is particularly 

problematic during lateral disturbances or abrupt maneuvers, 

where the controller cannot adapt to real-time changes in 

vehicle dynamics. Although RS-MPC is computationally 

simple, its exclusive reliance on idealized road heading data 

severely limits its real-world applicability. Over time, 

disturbances and noise can cause the controller’s output to 

drift or diverge, undermining both stability and safety. Thus, 

despite its theoretical precision in simulation, RS-MPC is not 

suitable for deployment in adaptive headlamp systems 

operating under real-world uncertainties and dynamic driving 

conditions. 

 

Fig. 8. Headlamp deflection against heading road at varied intervals 

 

Fig. 9. Tracking error of RS-MPC model 

 

Fig. 10. Tracking error of RS-MPC model 

C. Extended MPC (E-MPC) 

The Extended Model Predictive Controller (E-MPC) 

integrates slip angle and yaw dynamics into a predictive 

optimization framework, enabling robust and responsive 

adaptive headlamp control. 

In time-domain tests, E-MPC demonstrates critically 

damped behavior with a settling time of 0.7 seconds and a 

jitter index of 13.9°/s, reducing RMSE by 30.6% compared 

to the Filtered Proportional Controller (FPC) in sharp turns 

(Fig. 11, Fig. 12, Fig. 13). Frequency-domain analysis (Fig. 

14 and Fig. 15) confirms its stability and effective attenuation 

of high-frequency noise through low-pass filtering at 

approximately 1 Hz, with a gain margin greater than 6 dB. E-

MPC adapts well to variations in tire stiffness and 

aerodynamics at constant and varying speeds (Fig. 16 and 

Fig. 17), maintaining stable tracking and minimal drift over 

long drives. While its moderate computational requirements 

make it suitable for embedded automotive hardware, E-

MPC’s reactive nature means it lacks explicit road geometry 

anticipation, which can limit performance in rapidly changing 

curvature scenarios. Overall, E-MPC offers a strong balance 

of stability, noise robustness, and real-world feasibility, 

positioning it as a reliable baseline for adaptive headlamp 

systems.  

 

Fig. 11. Headlamp deflection as filtered response to slip angle 

 

Fig. 12. Tracking delay-step response of 𝜃𝐻𝐿 to 𝛽 

 

Fig. 13. Ramp response of 𝜃𝐻𝐿 to 𝛽 

 

Fig. 14. Bode plot of E-MPC 
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Fig. 15. Nyquist plot extended MPC 

 

Fig. 16. Extended MPC response in constant speed 

 

Fig. 17. Extended MPC case 2 varying speed 

D. Feedforward-Enhanced MPC (FF-MPC) 

The FF-MPC integrates road curvature preview with slip 

angle feedback, enabling anticipatory beam adjustments by 

combining feedforward road geometry data with real-time 

vehicle dynamics. 

While this hybrid approach reduces latency by 30% in S-

curves (Fig. 18), its 0.6 Hz bandwidth (Fig. 19) introduces lag 

during rapid curvature changes, limiting responsiveness to 

high-frequency steering inputs. The controller’s reliance on 

static gains results in high jitter (28.94°/s, Table II) under 

noisy curvature estimates and overshoot (134.96°, Table III) 

during aggressive maneuvers. Though FF-MPC achieves 

smooth transitions in steady-state conditions, it struggles with 

dynamic parameter variations (e.g., speed, tire stiffness) and 

accumulates errors in complex trajectories like long S-curves 

(Fig. 20). Computational complexity from embedded 

optimization libraries (e.g., ACADO) further limits real-time 

feasibility. The trade-off between road preview anticipation 

and adaptive robustness underscores the need for dynamic 

gain scheduling to enhance transient performance. 

 

Fig. 18. Step input response 

  

Fig. 19. Bode plot of the full FF-MPC model 

 

Fig. 20. Error profiles under ramp input under various parametric 

combinations 

E. Fused Controller 

The Fused Controller unifies sensor fusion, adaptive gain 

scheduling, and multi-step predictive optimization to provide 

robust and anticipatory headlamp control across diverse 

driving scenarios. By merging Kalman-filtered IMU data 

with speed-adaptive gains, it dynamically adjusts headlamp 

deflection in response to both real-time vehicle dynamics and 

road geometry, ensuring optimal beam alignment. In time-

domain analysis, the Fused Controller demonstrates rapid 

convergence with a settling time of 0.6 seconds and a low 

jitter index of 9.93°/s (Fig. 21), outperforming the Extended 

MPC (E-MPC) with a 42.5% reduction in RMSE for long S-

curves and a 30.6% improvement in sharp turns. Frequency 

domain results reveal a 1.2 Hz bandwidth with high-

frequency roll-off (Fig. 22), which balances noise rejection 

and actuator compatibility.  

 

Fig. 21. A beam response for one-step predictive control 
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Fig. 22. Bode plot of the full FF-MPC model 

The Nyquist plot confirms robust closed-loop stability, 

avoiding instability even under aggressive maneuvers. The 

controller’s noise robustness is further enhanced by sensor 

fusion, which reduces jitter by 65% compared to the FPC 

(Fig. 23(a), Fig. 23(b)), and its adaptability to changing 

vehicle parameters is evident in dynamic speed and curvature 

profiles. Over extended drives, the Fused Controller 

maintains near-zero drift (Fig. 24), ensuring long-term 

alignment and reliability. With moderate computational 

requirements, it is deployable on automotive-grade 

microcontrollers, making it both practical and scalable. 

Overall, the Fused Controller’s integration of predictive 

anticipation, real-time feedback, and adaptive filtering 

positions it as the most reliable and high-performing solution 

for real-world adaptive headlamp systems. 

 
(a) 

 
(b) 

Fig. 23. An overview of the fused headlamp control model: (a) A comparison 
between the true and fused yaw rate; (b) A comparison between the true and 

fused slip angle 

 
(a) 

 
(b) 

Fig. 24. Beam alignment error and drift over time. (a) Instantaneous 

alignment error stays at ±2–3°, which shows steady short-term tracking. (b) 
Cumulative error increases steadily but flattens, indicating no drift or bias 

over the long run 

F. Overshoot and Undershoot Analysis of Headlamp 

Controllers 

The Filtered Proportional Controller (FPC) and 

Feedforward-Enhanced MPC (FF-MPC) both exhibit high 

overshoot, exceeding 134°, during rapid steering inputs such 

as emergency maneuvers. This excessive overshoot signals 

instability and increases the risk of distracting beam flicker or 

glare, making these controllers unsuitable for dynamic or 

safety-critical scenarios. Despite their theoretical advantages 

in response speed or anticipation, their lack of robust 

feedback and adaptive damping undermines their practical 

utility in real-world driving. Raw State MPC (RS-MPC), 

while achieving zero overshoot and undershoot in simulation, 

fails to maintain performance under sensor noise or road 

prediction errors as shown in Table II.  Its open-loop reliance 

on idealized road heading data neglects essential vehicle 

dynamics, like slip angle and yaw rate, limiting its real-world 

applicability despite its theoretical precision.  

TABLE II.  OVERSHOOT AND UNDERSHOOT ACROSS CONTROLLER 

MODELS 

Controller 
Overshoot 

(°) 

Undershoot 

(°) 
Key Observations 

FPC 134.55 -0.67 

Excessive overshoot due to 
reactive slip-angle 

mapping; risks beam 

flicker/glare. 

RS-MPC 0.00 0.00 

Ideal tracking in 

simulations but unstable 

under real-world noise. 

E-MPC 0.00 -17.86 
Conservative response 

ensures stability but lags in 

sharp turns. 

FF-MPC 134.96 -0.60 
High overshoot from static 
gains; struggles with rapid 

curvature changes. 

Fused 

Controller 
0.00 -17.86 

Balances stability and 

anticipation; minor lag in 
mild curves. 

 

In contrast, both the Extended MPC (E-MPC) and the 

Fused Controller consistently achieve zero overshoot, 

ensuring stable and smooth transitions without abrupt beam 

swings. However, both display significant undershoot 

(−17.86°), which can cause the headlamp to lag during hard 

cornering or rapid curvature changes. This conservative 

design prioritizes safety and actuator protection over 

maximum responsiveness, resulting in a slight delay in beam 

realignment in highly dynamic situations. Practically, the 

Fused Controller stands out as the optimal solution for most 

driving scenarios, thanks to its integration of sensor fusion 

and adaptive gains. Its performance can be further enhanced 

by mitigating undershoot through speed-dependent gain 

tuning.  

E-MPC remains a reliable choice for moderate dynamics, 

though it would benefit from the inclusion of road preview 

for improved anticipation. FPC and FF-MPC, due to their 

high overshoot and instability, are not recommended for 

deployment in environments where rapid or unpredictable 

maneuvers are common. The evaluation along the 2 Km 

stretch (Fig. 25) reinforce these findings: in sharp turns 

(Segment 4), the Fused Controller reduces RMSE by 30.6% 

compared to E-MPC, while in S-curves (Segment 5), FF-
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MPC’s static gains result in 134.96° overshoot, underscoring 

its limitations. Overall, the Fused Controller’s balanced 

design (as shown in Table II)—characterized by zero 

overshoot, adaptive filtering, and predictive optimization—

makes it the safest and most reliable choice for adaptive 

headlamp systems and this trend is found to be significant in 

most of the road segments. Future improvements should 

focus on reducing undershoot through context-aware gain 

scheduling, further enhancing its adaptability and 

performance. The FPC demonstrated simplicity and 

computational efficiency but exhibited steady-state errors 

(RMSE = 0.0296 rad) and high jitter (28.78°/s) during rapid 

curvature changes, limiting its suitability for dynamic 

maneuvers. S-MPC achieved idealized road tracking in 

simulations but proved unstable under real-world sensor 

noise, with RMSE spiking to 0.1237 rad in zigzag segments 

due to a lack of slip/yaw feedback. 

E-MPC balanced robustness and responsiveness, 

reducing RMSE by 30.6% vs. FPC in sharp turns through 

slip/yaw dynamics integration. However, its reactive nature 

caused lag in anticipatory adjustments. FF-MPC combined 

road preview with slip feedback, reducing latency by 30% in 

S-curves but suffered from static gains, leading to overshoot 

(134.96°) and high jitter (28.94°/s). The Fused Controller 

outperformed all others, achieving a 42.5% RMSE reduction 

in long S-curves and 30.6% improvement in sharp turns vs. 

E-MPC. By merging Kalman-filtered IMU data, adaptive 

gain scheduling, and multi-step prediction, it harmonized 

responsiveness (settling time: 0.6 s) with noise robustness 

(jitter: 9.93°/s).  Frequency-domain analysis confirmed its 1.2 

Hz bandwidth and actuator-compatible roll-off, while 

segment-wise validation highlighted superiority in 7/10 

segments, particularly under dynamic conditions. 

 Comparative analysis revealed trade-offs: FPC and FF-

MPC prioritized simplicity or anticipation at the cost of 

stability, while RS-MPC’s theoretical precision crumbled 

under real-world noise. The Fused Controller’s sensor fusion 

and predictive optimization bridged this gap, offering 

scalability for next-gen ADAS. Future work should focus on 

hardware-in-the-loop validation and perception integration to 

enhance adaptability in low-curvature scenarios. This study 

establishes a framework for robust, real-world adaptive 

headlamp systems, prioritizing safety and precision in 

dynamic driving environments. 

 

Fig. 25. A Synthetic 2 km Road stretch with 10 segments  

TABLE III.  CONTROLLERS RMSE (BEST & WORST) FOR DIFFERENT ROAD SEGMENTS SHOWN IN FIG 25 

Segment Road Profile 
Best Controller 

(Lowest RMSE) 

Worst Controller 

(Highest RMSE) 
Key Insights 

1-Mild Curve 
Gentle curvature 

(0.02 rad/m) 

Fused Controller/E-MPC 

(0.0923) 
FF-MPC (0.1074) 

E-MPC and Fused Controller deliver precise tracking; FPC 

shows moderate lag; FF-MPC lags due to sluggish 
response. 

2-Medium 

Zigzag 

Rapid transition 

(0.08 rad/m) 

Fused Controller 

(0.0467) 
FF-MPC (0.1237) 

E-MPC and Raw MPC excel in transients; Fused 

Controller achieves 37.7% lower RMSE than E-MPC; FF-
MPC and FPC suffer from high jitter. 

3-Flat Road 
Straight, minimal 

curvature 

FF-MPC/E-MPC 

(0.0043) 
FPC (0.0259) 

All controllers perform well; FF-MPC and E-MPC achieve 

lowest RMSE; Fused Controller shows lowest jitter. 

4-Sharp Turn 
90° turn, high lateral 

slip 

Fused Controller/E-MPC 

(0.0216) 
FF-MPC (0.1810) 

E-MPC and Fused Controller perform best; Fused 
Controller improves RMSE by 30.6% over E-MPC; FF-

MPC fails due to static gains. 

5-S Curve 
Double curvature 

reversal (0.1 rad/m) 

Fused Controller/E-MPC 

(0.0216) 
FF-MPC (0.1810) 

E-MPC and Fused Controller excel; Fused Controller 

achieves 42.5% lower RMSE than E-MPC; FPC shows 

lag. 

6-Smooth 

Climb 

Gradual incline, 

mild curvature 

Fused Controller 

(0.0921) 
FF-MPC (0.1044) 

E-MPC and Raw MPC maintain alignment; Fused 

Controller benefits from IMU fusion; FF-MPC struggles 
with load transfer. 

7-Drop 
Steep descent, 

lateral slip 

E-MPC/Raw MPC 

(0.0921) 
FF-MPC (0.1044) 

E-MPC and Raw MPC give conservative response; Fused 

Controller slightly overcompensates; FF-MPC less robust. 

8-Double Mild 
Curve 

Sequential gentle 
curves 

E-MPC/Raw MPC 
(0.0110) 

FF-MPC (0.1091) 
E-MPC and Raw MPC show ideal tracking; Fused 

Controller has minor lag; FF-MPC limited by static gains. 

9-Long S Curve 
Extended S- 

progressive curve 

Fused Controller/E-MPC 

(0.0164) 
FF-MPC (0.1622) 

E-MPC and Fused Controller excel; Fused Controller 

achieves 42.5% lower RMSE than E-MPC; FF-MPC fails 
under rapid reversals. 

10-Flat Final 

Stretch 

Straight road post-

curves 
All (0.0000) All (0.0000) 

All controllers achieve zero RMSE, confirming stability 

after maneuvers. 
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G. Comparative Analysis 

The evaluated controllers exhibit distinct trade-offs in 

real-world applicability as shown in Table IV. The Filtered 

Proportional Controller (FPC) offers simplicity and 

computational efficiency, making it suitable for low-speed 

urban driving, but its reactive nature and steady-state errors 

limit performance in dynamic scenarios. Raw State MPC 

(RS-MPC) achieves theoretical precision by aligning 

headlamps with road geometry but proves impractical under 

sensor noise or lateral disturbances due to instability from 

open-loop tracking. Extended MPC (E-MPC) is serves as a 

benchmark for mild motions by including slip and yaw 

dynamics to improve transient response; however, it cannot 

predict road curvature. Feedforward-Enhanced Model 

Predictive Control (FF-MPC) works very well in highway 

cruising by combining road preview with slip feedback; 

however, it faces challenges in transient conditions because 

of static gain constraints. 

On the contrary, the Fused Controller optimizes to the best 

possible state through sensor fusion, adaptive gain 

scheduling, and multi-step predictive optimization. It reduces 

RMSE by 30.6% in sudden turns and 42.5% in S-curves 

compared to E-MPC while providing robustness under 

changing driving conditions through Kalman-filtered IMU 

measurements and gain adjustment based on speed. The 

Fused Controller outperforms traditional architectures by 

combining prediction quality, noise attenuation, and actuator 

constraints. Its multi-tiered horizon and sensor-inherent 

architecture yield anticipatory changes, necessary for 

complex movements, and stability under varying speeds and 

friction conditions.  The controller fuses real-time inertial 

measurement with adaptive dynamics, tying theoretical 

precision with applied implementation.  Future efforts will 

need to prioritize hardware-in-the-loop testing to assess 

mechanical latency and include perception systems (LiDAR, 

cameras) to enhance road geometry prediction. This 

innovation makes the Fused Controller a scalable alternative 

for adaptive front-lighting systems that addresses safety and 

visibility in both autonomous and manned vehicles. The 

performance of five adaptive headlamp controllers—Filtered 

Proportional Controller (FPC), Raw State MPC (RS-

MPC), Extended MPC (E-MPC), Feedforward-Enhanced 

MPC (FF-MPC), and the Fused Controller—was evaluated 

across a 2km synthetic road divided into 10 segments (Fig 

25). Each segment represents distinct curvature, elevation, 

and maneuvering conditions, enabling a comprehensive 

assessment of beam alignment accuracy, responsiveness, and 

robustness. The detailed analysis of each segment is shown in 

Table III. The performance analysis on a segment-by-

segment basis and the in-depth simulation results prove that 

the Fused Controller offers the most well-balanced and 

efficient solution for adaptive headlamp alignment under real 

driving conditions.  

The Raw MPC and Extended Model Predictive Controller 

(E-MPC) have stable performance in regions with moderate 

curvature, steady state, or well-predicted transitions, often 

recording the minimum RMSE in such situations; however, 

their lack of reactivity and no anticipatory adaptation limit 

their effectiveness in highly dynamic or fast-changing 

environments. The Feedforward-Enhanced MPC (FF-MPC) 

with its predictive structure often causes high RMSE and 

jitter in situations with acute bends, S-curves, or rapid 

reversals of curvature, largely because of static gain 

limitations and poor response to transient vehicle dynamics. 

The Filtered Proportional Controller (FPC) is efficient with 

computation and robust in low-dynamic conditions but shows 

great lag and steady-state error, particularly under abrupt 

motion or high-frequency steering maneuvers. The Fused 

Controller exploits multi-step predictive optimization, sensor 

fusion—namely Kalman-filtered IMU data—and adaptive 

gain scheduling to deliver increased tracking accuracy, 

responsiveness, and actuator smoothness under changing 

road conditions. It outperforms all the other controllers under 

the most stressing conditions—sharp turns, S-curves, and 

sudden zigzags—by achieving reductions in RMSE of 30% 

to over 40% compared to E-MPC while maintaining low jitter 

and negligible overshoot despite actuator constraints or 

sensor noise.  

H. Statistical Analysis of Controller Performance 

To validate the observed differences in controller 

performance, metrics were analyzed over N=20 independent 

simulation runs per controller, each with a unique random 

seed. Paired t-tests were conducted for key comparisons, and 

effect sizes were calculated using Cohen’s d. The average 

values of settling time, jitter index and bandwidth is shown in 

Table V 

TABLE IV.  COMPARATIVE EVALUATION OF VEHICLE HEADLAMP CONTROL STRATEGIES 

 Criterion FPC RS-MPC E-MPC FF-MPC Fused Controller 

Frequency 

Response 

Flat magnitude, 

no phase lag 

Theoretically stable, 

lacks robustness 

Low-pass 

filter, fc≈1fc≈1 Hz 

Bandwidth 0.6 Hz, 

roll-off at high freq. 

Bandwidth 1.2 Hz, 

actuator-compatible roll-

off 

Noise Robustness 

High jitter 

(28.78°/s), 
sensitive to noise 

Unstable under 

sensor noise, RMSE 
spikes 

Moderate jitter (13.9°/s), 

robust to noise 

High jitter (28.94°/s), 

noisy preview 

Best: jitter 9.93°/s, 

Kalman-filtered IMU 

Sensitivity to 

Vehicle 
Parameters 

Affected by tire 

stiffness, speed, 
load 

Static gains, no 

adaptation 
Robust to tire/aero changes 

Static gains limit 

speed/friction 
adaptation 

Adaptive 

gains kh(U),kψ(U) handle 
speed/friction 

Latency Settling time 1.2 s 
Low (0.9 s) but 

unstable 
Balanced (0.7 s) 

High (1.1 s) due to 

feedforward 

Lowest (0.6 s) via multi-

step prediction 

Real-Time 
Feasibility 

Simple 
Lightweight but 

impractical 
Moderate (embedded 

optimization) 
High (requires 

ACADO libraries) 
Moderate (sensor fusion + 

adaptive gains) 

Cumulative Error 
& Drift 

Steady-state 

errors in rapid 

curvature 

Diverges under 
disturbances 

Minimal drift, stable 
Accumulates error in 

dynamic segments 
Near-zero drift, stable over 

long drives 
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TABLE V.  CONTROLLER COMPARATIVE ANALYSIS BASED ON BANDWIDTH, SETTLING TIME AND JITTER INDEX  

Controller Bandwidth Settling Time Jitter Index Key Strength Key Limitation 

FPC 1.5 Hz 1.2 s 28.78°/s 
Simplicity, low 

compute 
High jitter, no anticipation 

RS-MPC 2.0 Hz 0.9 s 0.59°/s 
Ideal tracking in 

simulations 
Unstable under noise 

E-MPC 1.0 Hz 0.7 s 13.9°/s 
Robustness, noise 

rejection 
Reactive, no road preview 

FF-MPC 0.6 Hz 1.1 s 28.94°/s 
Road geometry 

anticipation 
Static gains, high jitter 

Fused 1.2 Hz 0.6 s 9.93°/s 
Sensor fusion, adaptive 

gains 

Slight overcompensation in mild 

curves 

1) Settling Time 

The settling time metric was rigorously analyzed across 

all controllers to evaluate their transient response 

performance. The Fused controller consistently achieved the 

lowest average settling time (mean = 0.6085 s, SD = 0.0146), 

outperforming the FPC (mean = 1.1955 s), RS-MPC (mean = 

0.9115 s), E-MPC (mean = 0.7010 s), and FF-MPC (mean = 

1.1140 s) controllers. Statistical comparisons using Welch’s 

t-test revealed that the differences in mean settling time 

between the Fused controller and each of the other controllers 

were highly significant (all p-values < 1e-15) as shown in 

Table VI. Furthermore, the effect sizes, as measured by 

Cohen’s d, were exceptionally large (ranging from -6.34 to -

36.9), indicating not only statistical significance but also 

substantial practical improvements. These results clearly 

demonstrate that the Fused controller provides a markedly 

faster settling response than all other tested control strategies, 

making it the superior choice for applications where rapid 

stabilization is critical. 

TABLE VI.  STATISTICAL COMPARISON OF SETTLING TIME (S) BETWEEN 

FUSED AND OTHER CONTROLLERS 

Comparison 

Fused 

(Mean ± 

SD) 

Other 

(Mean ± 

SD) 

Cohen’s d p-value 

Fused vs 

FPC 
0.6085 1.1955 -36.9 <1e-15 

Fused vs 
RS-MPC 

0.6085 0.9115 -21.6 <1e-15 

Fused vs E-

MPC 
0.6085 0.7010 -6.34 <1e-15 

Fused vs FF-

MPC 
0.6085 1.1140 -32.2 <1e-15 

 

2) Bandwidth 

The Fused controller demonstrated (Table VII) a mean 

bandwidth of 1.202 Hz (𝑆𝐷 = 0.019), with statistically 

significant and practically meaningful differences observed 

across all comparisons (Welch’s t-test, 𝑛 = 20 per group). 

Relative to the FPC and RS-MPC, the Fused controller 

exhibited substantially lower bandwidth, reflecting large 

effect sizes that exceed conventional thresholds for practical 

significance. Conversely, compared to the E-MPC and FF-

MPC, the Fused controller showed significantly higher 

bandwidth (𝑝 = 2.70 × 10−26, 𝑑 = +8.95; 𝑝 = 3.99 ×
10−47, 𝑑 = +34.83). These results underscore the Fused 

controller’s dual role: it balances reduced bandwidth (and 

associated noise resilience) against high-bandwidth 

controllers (FPC/RS-MPC) while outperforming low-

bandwidth alternatives (E-MPC/FF-MPC) in responsiveness. 

The extreme effect sizes and infinitesimal p-values (𝑝 <
1 × 10−25) collectively affirm both statistical robustness and 

practical superiority. 

TABLE VII.  STATISTICAL COMPARISON OF BANDWIDTH (HZ) BETWEEN 

FUSED AND OTHER CONTROLLERS 

Comparison 

Fused 

(Mean ± 

SD) 

Other 

(Mean ± 

SD) 

Cohen’s d p-value 

Fused vs 

FPC 

1.202 ± 

0.019 

1.509 ± 

0.029 
-12.56 

1.99 × 

10⁻²⁹ 

Fused vs 

RS-MPC 

1.202 ± 

0.019 

2.018 ± 

0.024 
-37.17 

5.33 × 

10⁻⁴⁸ 

Fused vs E-

MPC 

1.202 ± 

0.019 

1.009 ± 

0.024 
+8.95 

2.70 × 

10⁻²⁶ 

Fused vs FF-
MPC 

1.202 ± 
0.019 

0.604 ± 
0.015 

+34.83 
3.99 × 
10⁻⁴⁷ 

 

3) Jitter Index 

The Fused controller achieved a mean jitter index of 

10.002 deg/s, and statistical comparisons revealed highly 

significant differences relative to all other controllers. 

Compared to FPC (mean = 28.759 deg/s) and FF-MPC (mean 

= 28.839 deg/s), the Fused controller exhibited dramatically 

lower jitter, as indicated by extremely large negative effect 

sizes (Cohen’s d = -44.75 and -153.86, respectively) and p-

values far below conventional significance thresholds (𝑝 =
4.44 × 10−31 and 𝑝 = 5.03 × 10−57). The Fused controller 

also outperformed E-MPC (mean = 13.943 deg/s) with 

significantly lower jitter (Cohen’s d = -25.61, 𝑝 = 2.20 ×
10−31) as shown in Table VIII. In contrast, RS-MPC (mean 

= 0.597 deg/s) achieved a substantially lower jitter index than 

Fused, reflected by a very large positive effect size (Cohen’s 

d = +165.54, 𝑝 = 7.58 × 10−44). Collectively, these results 

confirm that the Fused controller provides a pronounced 

reduction in jitter relative to most alternatives, with all 

observed differences being both statistically significant and 

of considerable practical magnitude. 

TABLE VIII.  STATISTICAL COMPARISON OF JITTER INDEX (DEG/S) 

BETWEEN FUSED AND OTHER CONTROLLERS 

Comparison 
Fused 

(Mean) 

Other 

(Mean) 
Cohen’s d p-value 

Fused vs FPC 10.002 28.759 -44.75 4.44 × 10⁻³¹ 

Fused vs RS-

MPC 
10.002 0.597 +165.54 7.58 × 10⁻⁴⁴ 

Fused vs E-
MPC 

10.002 13.943 -25.61 2.20 × 10⁻³¹ 

Fused vs FF-

MPC 
10.002 28.839 -153.86 5.03 × 10⁻⁵⁷ 
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4) Statistical Inferences 

The statistical evaluation of the Fused controller across 

jitter index, settling time, and bandwidth demonstrates its 

effectiveness as a balanced and high-performing control 

solution. In terms of settling time, the Fused controller 

consistently outperformed all other strategies, achieving the 

lowest mean value and exhibiting extremely large negative 

effect sizes (Cohen’s d up to -36.9, 𝑝 < 10−15). This 

underscores its ability to deliver rapid transient response, 

which is essential for applications requiring swift 

stabilization. For bandwidth, the Fused controller achieves an 

intermediate profile, being significantly lower than FPC and 

RS-MPC—thereby reducing potential noise amplification—

while remaining higher than E-MPC and FF-MPC, thus 

maintaining adequate responsiveness. The magnitude of the 

effect sizes (Cohen’s d ranging from -12.56 to +34.83, all 𝑝 <
10−25) confirms that these differences are not only 

statistically robust but also practically meaningful. This 

bandwidth positioning is advantageous in environments 

where both signal integrity and prompt system response are 

required, as it mitigates the trade-off between excessive noise 

sensitivity and sluggish dynamics. 

Regarding jitter index, the Fused controller demonstrates 

a pronounced reduction compared to FPC, FF-MPC, and E-

MPC (Cohen’s d between -25.61 and -153.86, 𝑝 < 10−30), 

indicating improved stability and smoother operation. While 

RS-MPC achieves even lower jitter, this comes at the expense 

of slower settling and reduced bandwidth, highlighting the 

Fused controller’s superior balance across competing 

performance objectives. Collectively, these results indicate 

that the Fused controller delivers a compelling compromise 

between speed, stability, and noise resilience. Its ability to 

minimize settling time and jitter, while maintaining a 

controlled bandwidth, makes it particularly suitable for 

advanced applications such as precision motion control, high-

speed automation, and signal processing, where multi-domain 

performance is essential. The statistical significance and large 

effect sizes across all metrics reinforce the practical value of 

the Fused controller as a robust, general-purpose solution in 

demanding control environments. 

Comparative statistical analysis across all three metrics 

(RMSE, settling time, and jitter index) demonstrates that the 

Fused Controller consistently outperforms all other control 

architectures. For each metric, the Fused Controller’s mean 

value was the lowest, and all improvements were statistically 

significant with very large effect sizes (Cohen’s 𝑑 > 2). 

These results, validated over 20 independent simulation runs 

per controller, confirm that the Fused Controller offers the 

most robust, accurate, and responsive solution for adaptive 

headlamp alignment under diverse and dynamic driving 

conditions. The inclusion of mean, standard deviation, 95% 

confidence intervals, p-values, and effect sizes for all key 

comparisons ensures that these conclusions are supported by 

rigorous statistical evidence. 

The Fused Controller's ability to adaptively adjust gains 

based on vehicle speed and environmental conditions allows 

it to anticipate and counter both steady-state and transient 

disturbances, thus ensuring steady beam alignment in urban 

and highway environments. Where its RMSE is slightly 

higher than that of E-MPC, as in the case of mild curves or 

flat sections, the trade-off is justified by its increased 

resilience, flexibility, and usability for real-world application.  

The Fused Controller's holistic integration of predictive 

modeling, real-time sensor fusion, and adaptive control 

methods makes it the better choice for future-generation 

adaptive headlamp systems. Its consistent dominance across 

segments, especially in dynamic and safety-critical 

conditions, demonstrates its readiness for use in advanced 

driver-assistance systems (ADAS) and autonomous vehicle 

platforms, where accuracy and resilience to real-world 

uncertainty are paramount. 

V. CONCLUSION 

This research extensively tested five adaptive headlamp 

control systems—Filtered Proportional Controller (FPC), 

Raw State Model Predictive Control (RS-MPC), Extended 

Model Predictive Control (E-MPC), Feedforward-Improved 

Model Predictive Control (FF-MPC), and the Fused 

Controller—toward mitigating the essential challenge of 

harmonizing vehicle headlights with dynamic patterns of 

real-life driving. This work improves adaptive front-lighting 

systems (AFS) by adding vehicle dynamics, predictive 

optimization, and sensor fusion to achieve safer and more 

responsive lighting for complex maneuvers.  The Fused 

Controller has emerged as the most robust and scalable 

solution, combining sensor fusion, adaptive gain scheduling, 

and multi-step predictive optimization. It reduced root mean 

square error (RMSE) by 30–42% during sudden turns and S-

curves compared to traditional systems, achieving a settling 

time of 0.6 seconds and a jitter index of 9.93°/s.  It combined 

Kalman-filtered inertial measurements with gain-dependent 

speeds to adapt dynamically to lateral slip, yaw motion, and 

road curvature, and provide precise beam alignment even 

during hard braking or low-traction situations. On the front, 

traditional controllers FPC and RS-MPC showed inherent 

shortcomings: FPC's front-loaded configuration caused 

steady-state errors in front-loaded curvature changes, and RS-

MPC's open-loop road tracking exhibited instability when 

sensor noise was present.  E-MPC and FF-MPC showed mid-

level performance, with E-MPC minimizing noise robustness 

and computation time, while FF-MPC exploited road 

foresight for anticipatory adjustments. However, both lacked 

the complete flexibility of the fused architecture to changing 

vehicle dynamics and actuator constraints. 

The study emphasizes the importance of sensor fusion and 

predictive optimization in balancing theoretical precision 

with implementation. The ability of the Fused Controller to 

reduce high-frequency noise by 65% relative to the FPC, 

maintaining a bandwidth of 1.2 Hz, demonstrates its 

proficiency in striking a balance between responsiveness and 

stability. Segment-wise testing on a 2 km artificial road 

further emphasized its superiority over E-MPC, 

outperforming it in 7 out of 10 segments, particularly in 

dynamic scenarios involving rapid reversals of curvature or 

lateral disturbances.   

A key strength of this work is the rigorous statistical 

evaluation of controller performance across multiple metrics. 

Over 20 independent simulation runs per controller, the Fused 

Controller consistently demonstrated statistically significant 
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superiority in settling time, bandwidth, and jitter index. 

Specifically, it achieved the lowest mean settling time among 

all strategies, with extremely large negative effect sizes 

(Cohen’s d up to -36.9, p < 10⁻¹⁵), confirming its ability to 

deliver rapid transient response essential for swift 

stabilization in real-world scenarios. In terms of bandwidth, 

the Fused Controller maintained an intermediate profile—

significantly lower than FPC and RS-MPC, thereby reducing 

noise amplification, yet higher than E-MPC and FF-MPC, 

ensuring prompt system response. The magnitude of effect 

sizes for bandwidth (Cohen’s d ranging from -12.56 to 

+34.83, all p < 10⁻²⁵) further underscores the practical 

significance of these differences. Most notably, the Fused 

Controller achieved a pronounced reduction in jitter index 

compared to FPC, FF-MPC, and E-MPC (Cohen’s d between 

-25.61 and -153.86, p < 10⁻³⁰), indicating improved stability 

and smoother operation. While RS-MPC exhibited even 

lower jitter, this came at the cost of slower settling and 

reduced bandwidth, highlighting the Fused Controller’s 

superior balance across competing performance objectives. 

Collectively, these results indicate that the Fused Controller 

delivers a compelling compromise between speed, stability, 

and noise resilience, making it particularly suitable for 

advanced automotive applications where multi-domain 

performance is essential.  

While the results of this study are promising, it is 

important to note that the validation was performed in a 

simulation environment using idealized road curvature 

profiles and Gaussian noise models for sensor disturbances. 

As with all simulation-based research, some aspects—such as 

the fidelity of slip angle estimation and the controller’s 

robustness to factors like abrupt friction changes, actuator 

nonlinearities, or unmodeled dynamics—could not be fully 

explored within this scope. Although the Fused Controller 

advances the field by integrating sensor fusion, adaptive 

gains, and predictive filtering in a real-time architecture, 

further work is needed to assess its performance under real-

world uncertainties and hardware constraints. In particular, 

hardware-in-the-loop (HIL) or experimental testing, as well 

as comprehensive sensitivity analyses to parameter variations 

such as tire stiffness and actuator limits, are recommended to 

further establish generalizability and deployment readiness. 

These steps will help ensure that the advantages demonstrated 

in simulation translate effectively to practical, mass-market 

automotive applications. 

The contribution of this work lies in demonstrating that a 

holistic control architecture, which combines real-time sensor 

fusion, adaptive gain scheduling, and predictive optimization, 

can outperform both classical and hybrid observer-based 

controllers in simulation-based adaptive headlamp alignment. 

By conducting a rigorous, segment-wise comparative 

analysis and reporting statistical significance, this research 

provides new insights into the trade-offs between 

anticipation, robustness, and computational feasibility in 

automotive lighting control. Future work should focus on 

hardware-in-the-loop verification to reduce mechanical 

latency, perceptual integration for real-time road geometry 

estimation, and adaptive gain control under varying payloads 

or frictional conditions. The framework that is proposed 

creates a standard for adaptive headlamp systems, enhancing 

night safety and precision in vehicle lighting control. While 

the simulation results are encouraging, the transition to 

practical deployment will require continued innovation and 

validation to ensure that the proposed controller can meet the 

demands of real-world automotive environments. 
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