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Abstract—Even autonomous vehicles are becoming very ad-
vanced. Adverse weather conditions, unclear lane markings, and
unexpected obstacles can still pose challenges, especially to lane
keeping assist systems. The performance of these systems varies
between vehicles depending on sensor quality, environmental
conditions, and data processing algorithms. A focused solution
to improve lane keeping capability is vehicle-to-vehicle (V2V)
communication. V2V enables vehicles to share real-time infor-
mation on speed, position, direction, etc. In this paper, V2V
is used specifically to share lane marking data from a front
vehicle to a following vehicle. These data are fused with local
perception using a confidence-weighted averaging method, where
each lane position input is assigned a confidence score. When
local perception degrades, such as during poor weather, this
approach improves lane keeping by relying on the more reliable
lane marking positions of the front vehicle. We validate our V2V-
enhanced LKA system using MATLAB/Simulink simulations with
one front vehicle. Results show up to a 92.75% reduction in mean
error compared to standard LKA and smoother steering. Since
the system shares only lane marking positions for lane keeping
purposes, the communication load remains low. However, attention
must still be given to cybersecurity aspects, as even limited data
exchange via V2V is vulnerable to threats such as spoofing or
tampering, which could compromise the safety of the lane keeping
function.

Keywords—Lane Keeping Assist; Vehicle-to-Vehicle Communica-
tion; Autonomous Vehicles; Sensor Fusion; Confidence-weighted
Averaging; Adverse Weather; Cybersecurity

I. INTRODUCTION

In the last decade, automated vehicles (AVs) have rapidly
transitioned from concept to reality due to advances in per-
ception, control, and communication technologies that promise
significant improvements in road safety and traffic efficiency
[1]. Early developments such as Carnegie Mellon University’s
NavLab5 in the 1990s and Google’s self-driving car in 2010
demonstrated the feasibility of autonomous driving. Carnegie
Mellon University started building the first self-driving cars,
called NavLab5, in 1990 by using neural networks in image
processing and steering controls. In 1995, the NavLab5 car
traveled from Pittsburgh to San Diego (2,797 miles). The

researchers controlled the speed and braking, but the car was
otherwise autonomous. Enthusiasm about autonomous vehicles
really began with the announcement of the Google car, which
in 2010 was already able to move without a driver in urban
conditions. Since then, all major car manufacturers have initi-
ated autonomous vehicle development programs with their own
prototypes. However, these early systems focused mainly on
basic automation tasks and lacked advanced lateral control and
collaborative features such as V2V communication, which are
critical for higher levels of autonomy.

Automated vehicles (AVs) have become the focus of study
for academic researchers and industry due to their potential to
enhance safety by helping humans through advanced algorithms
that can analyze the environment, manage risks, and take
control [2]-[7]. According to the SAE J3016 standard, AVs
are classified from Level 0 (no automation) to Level 5 (full
automation) with most current systems, including commercial
lane-keeping assist and adaptive cruise control, fall under Level
2 or 3, where the driver still plays a supervisory role. However,
to fully replace the driver, the system must be intelligent enough
to handle different driving scenarios, including obstacles and
road regulations [8]-[10].

Over the past decade, the Lane Keeping Assist (LKA) system
has garnered significant interest from the automotive and com-
puter vision industries. Based on input images, the perception
unit detects lanes and vehicle’s position, then calculates the
position error to adjust the vehicle trajectory by controlling the
brake and steering [7].

The perception is critical, where the environment is rec-
ognized. To detect lane markings, image processing can be
performed using various filters including Gaussian blurring,
Sobel edge detection, and median filtering. In [11], a Gaussian
blurring filter is used to remove noise and smooth the sharp
edges, followed by sliding windows to detect lane edges in
the binary image produced by Canny Edge Detection. While
these conventional techniques can be effective under normal
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conditions, they often struggle in adverse scenarios such as rain,
or low lighting, limiting their robustness.

Despite using conventional image processing to detect lane
markings [12]-[15], modern systems leverage artificial intelli-
gence. particularly deep learning, which revolutionized image
processing by enabling systems to learn complex patterns and
features directly from sensor data, such as cameras and LIDAR
[16]-[29]. Based on large datasets, deep learning algorithm are
trained to detect lane markings and other road signs under vari-
ous conditions. However, deep learning models may suffer from
high computational costs and can be sensitive to adversarial
conditions such as spoofed lane markings or sensor occlusion,
which pose challenges for real-time applications.

While deep learning is powerful in perception and decision-
making, it remains vulnerable when visibility is limited due
to weather conditions or sensor limitations. Vehicle-to-vehicle
(V2V) communication can mitigate these gaps by providing
the data about the environment that may not be captured by
onboard sensors or by getting the data earlier to have a faster
response. Nonetheless, the use of V2V introduces challenges
such as communication latency, packet loss, and the need for
efficient and reliable data fusion to ensure the consistency and
safety of decisions based on shared data.

The research contribution is the development and simulation
based evaluation of a Collaborative Lane Keeping Assist (C-
LKA) system to improve lane detection and control using V2V
received data. The idea is to fuse the data provided by the
front vehicle about the detected road lanes and obstacles with
onboard data using a confidence-weighted averaging method
that accounts for both sensor reliability and communication
quality. Based on the fused data, the C-LKA system adjusts
its trajectory to mitigate the effects of sensor limitations and
reduced visibility. This method builds on existing LKA systems
by integrating shared perception from leading vehicles and
addressing the limitations of standalone sensing systems. The
main contributions of this work are summarized as follows:

o Propose a V2V-enabled Collaborative Lane Keeping Assist
(C-LKA) system architecture that enhances lane percep-
tion by incorporating shared lane data from a front vehicle.

o Develop a confidence-weighted data fusion algorithm that
combines onboard and received lane information based on
detection confidence and communication reliability.

o Implement a trajectory replanning and lateral control
strategy that leverages fused perception to improve lane-
keeping performance under degraded visibility conditions.

« Validate the effectiveness of the proposed C-LKA system
through simulations, demonstrating improvements in lane
detection accuracy and lateral control over conventional
LKA.

This paper is organized as follows. Section 2 presents the
vehicle dynamics control implemented for Lane Keeping Assist.

Section 3 introduces the onboard lane detection approach based
on image processing techniques. Section 4 details the V2V data
integration method for collaborative lane perception. Section
5 discusses the experimental results and system evaluation.
Finally, Section 6 concludes the paper and outlines future
research directions.

II. RESEARCH METHOD

This section outlines the research design, centered on the
development of a Cooperative Lane Keeping Assist (C-LKA)
system. The proposed C-LKA enhances traditional Lane Keep-
ing Assist by integrating Vehicle-to-Vehicle (V2V) communi-
cation for real-time data sharing. Through the exchange of lane
marking and environmental information from leading vehicles,
the system fuses V2V inputs with onboard sensor data to
improve robustness and decision-making accuracy (Fig. 1).
This cooperative approach not only mitigates the limitations
of individual sensors but also contributes to safer and more
reliable autonomous driving in complex scenarios.
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Fig. 1. The overview of our proposed V2V based Lane Keeping Assist, where the front
vehicle sent lane marking to rear vehicle to enhance lane tracking control

The research pipeline is designed as a three-stage framework
aimed at enhancing lane detection and steering control in
autonomous vehicles Fig. 2. The proposed methodology is
structured as follows:
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Fig. 2. Cooperative Lane-Keeping Assist (C-LKA) system flowchart
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e Onboard Lane Detection : The vehicle performs real- equations:
time perception by detecting road lanes using input images )
from a front camera. Computer vision techniques (e.g. m(i —wr) = Fyr M
edge detection, Hough transform, or deep learning-based m(0+ur) = Fyy + Fy, )
segmentation) process the raw image data to extract lane Li =1;Fy; —1,.F, (3)
markings. 6 —r @)
« V2V Data Integration : Locally detected lanes are merged .
with additional road lane data received via Vehicle-to- X =ucost —wvsinb Q)]
Vehicle (V2V) communication. This fusion refines lane Y =vcosf + wusin b (6)

estimation, improving environmental perception accuracy
and robustness under challenging conditions.

o Vehicle Position Adjustment : The enhanced lane data
feed into a control algorithm (e.g. PID) to adjust the
vehicle’s steering angle, ensuring that it remains within
the detected road boundaries.

In the following sections, we will detail each of these three
stages.

A. Vehicle Dynamics Control

In this research, we employ the dynamic bicycle model for
vehicle dynamics representation, which simplifies the system
to a two-wheel abstraction while preserving essential lateral
and yaw dynamics Fig. 3. The model is defined through the
equations of motion (1)-(6), capturing both inertial and force-
based behaviors, as well as the global position and orientation of
the vehicle. Although often referred to as a ”’bicycle model,” this
formulation includes dynamic effects such as lateral tire forces,
yaw moment, and vehicle mass distribution, making it more
accurate than purely kinematic models, especially at moderate
to high speeds.

A
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\/

O X

Fig. 3. Dynamic bicycle model [30]

The dynamic bicycle model is governed by the following

A linear tire model is used for lateral tire forces. The vehicle
model employs a front steering system, and the lateral forces
for the front and rear tires are given by:

v+ler
Fyp=Cray=Cy <5— uf ) (7)
—1,
F’!JT:CT'O‘T':CT (_U u T) (8)

The model’s validity for lane-keeping applications is well-
established, with prior studies demonstrating its effectiveness
when paired with various control strategies, including PID [31],
fuzzy-PID [32], MPC [33], and Pure Pursuit [34], as well as
advanced methods such as sliding mode control [35], [36] and
robust H-infinity control [37]. Furthermore, the accuracy of
the model has been experimentally validated in [38], which
confirms its suitability for real-world applications.

In this work, we implement a PID-based steering controller
to regulate the lateral position error e = Y — Y, where Y is
the desired lane center. The PID parameters (proportional K,
integral T}, and derivative Ty) were systematically determined
using the Ziegler-Nichols tuning method to ensure optimal
transient response and stability margins. The PID control law
is given by equation (9):

de(t)
dt

t
5(t) = Kye(t) + Ki / e(r)dr + K. ©)
0

The PID controller is selected for its simplicity, ease of
tuning, and widespread use in automotive control systems.
Although more advanced controllers such as MPC and adaptive
PID offer enhanced performance under varying conditions, the
PID controller provides a strong baseline and facilitates direct
comparison with existing literature.

The vehicle model parameters (Table I) are derived from a
2023 Ford F-150 SuperCrew 4x4 to ensures the model replicates
real-world vehicle behavior.

B. Onboard Lane Detection

Lane detection is a vital component of lane keeping assist
systems. The process begins with capturing the road environ-
ment through a front camera. The perception unit then processes
these images to extract road markings and estimate the vehicle’s
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lateral position, enabling steering control adjustments to main-
tain vehicle lateral position. The perception pipeline consists of

TABLE 1. VEHICLE DYNAMICS PARAMETERS

No. | Parameter Symbol Value Unit
1 Front tire cornering stiffness Cy 112000 | N/rad
2 Rear tire cornering stiffness [ 112000 | N/rad
3 Front axle distance from CG Ly 1.2 m
4 Rear axle distance from CG L, 1.8 m
5 Yaw moment of inertia I, 4382 kg-m?
6 Vehicle mass m 2812 kg
7 Front/Rear slip angles ag, ar - rad
8 Lateral tire forces (front/rear) Fy 15 Fyr - N
9 Yaw rate r - rad/s
10 | Longitudinal/Lateral velocity u, v - m/s
11 Global X/Y position X, Y - m
12 | Vehicle heading angle 1) - rad
13 | Steering angle 0 - rad
14 | Proportional (P) Ky 0.015 -
15 Integral (I) K; 0.02 -
16 Derivative (D) Ky 0.012 -

o Pre-processing: Image enhancement (e.g., contrast adjust-
ment, noise reduction) to highlight lane features

« Lane Detection: Identification of lane markers using edge
detection or segmentation algorithms

The locally detected path serves as the baseline for subse-
quent fusion with V2V data (Section II-C) to improve robust-
ness in challenging scenarios.

1) Preprocessing: Preprocessing aims to prepare raw images
received from the camera for lane identification by enhancing
relevant features and reducing noise and irrelevant information.
The first step is selecting the region of interest (ROI). It’s a
critical step to eliminate unnecessary information and focus
only on the area where the road lanes are located. The ROI
can be fixed or dynamic.

a) Fixed ROI: This is a simple technique to select a
predefined area of the captured image, which covers the lower
part where lanes are most likely to be detected. The fixed ROI
is effective in straight road but present limitation for curves

b) Dynamic ROI: This is a powerful method to select
the region of interest (ROI), it is adjusted dynamically based
on the vanishing point (VP), which is detected using various
techniques based on edge detecton such as Canny or Sobel,
and others rely on image gradient or texture information. The
extracted features are then processed to infer the vanishing point
by using methods such as Hough Transform-Based Methods,
Edge Orientation Histograms, Gradient Orientation Clustering
or Texture Flow Analysis.

Despite its higher computational cost, dynamic ROI is chosen
for its critical advantage: adaptive performance in both straight
and curved roads. By contrast, fixed ROI’s limitations in curves,
where lanes often exit the predefined region, outweigh its
simplicity.

2) Onboard Lane Detection: After ROI selection, the cap-
tured images will be converted to grayscale to simplify pro-
cessing, then smoothed using Gaussian blur to reduce noise for
edge detection using techniques such as Canny edge detection
or Sobel edge detection. Next, lane detection is done using
various techniques, such as sliding windows, RANSAC, or deep
learning-based lane detection.

a) Sliding Windows Algorithm: This algorithm determines
road lane positions. It takes as input a binary image representing
the two lane markings (the original image contains a large
amount of information, thus converting it to binary can help
reduce complexity and enhance processing speed). The first step
is to extract the coordinates of all white pixels in the image,
which correspond to the lane lines. Next, these coordinates are
separated into two arrays: one for the right lane marking and
one for the left. To achieve this, a sliding windows approach is
used along the lane lines to identify the relevant pixels within
each section [39]-[43]. Once the coordinates are classified,
polynomial interpolation is applied to compute the polynomial
coefficients that best fit the points for each lane marking. The
lane marking is approximated using a second-order polynomial
curve Fig. 4a.

Finally, the vehicle’s position relative to the center of the lane
is determined by calculating the offset between the midpoint of
the detected lane and the vehicle’s reference point (typically
the midpoint of the captured images from the camera).

b) RANSAC Algorithm: RANSAC (Random Sample Con-
sensus) is a robust estimation algorithm widely applied in road
lane detection for handling noisy and occluded lane markings.
RANSAC samples subsets of lane points randomly, fits them
with a mathematical model (e.g., linear or polynomial), and
determines the best-fit model as one that maximizes the number
of inliers within a given threshold [44]-[46]. This technique
effectively removes shadows, faded lane markings, and road
artifacts-generated outliers, hence making it extremely relevant
in practical driving conditions. The ability of RANSAC to
handle straight and curved lane models and being robust to
environmental noise makes it an essential pillar in ADAS
and autonomous vehicles. However, it depends on parameter
optimization and computational power, which may be improved
with adaptive or deep learning-based techniques Fig. 4b.

While traditional methods such as sliding windows and
RANSAC-based approaches provide foundational solutions,
artificial intelligence (AI) techniques have emerged to address
their limitations in complex scenarios [19], [47]-[49]. Deep
reinforcement learning, particularly DQN and DDPG algo-
rithms [50], has shown promising results in lane-keeping assist
systems. Comprehensive evaluations [51] and [52] demonstrate
how deep learning methods surpass conventional algorithms
in handling environmental challenges. Recent advancements
include lightweight CNNs like LLDNet [53] for real-time
performance and hybrid architectures such as RS-Lane [54]
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that combine attention mechanisms with multi-task learning.
Optimization techniques like SBBOA-CNN [55] further en-
hance these models, while hybrid RNNs [56] improve trajectory
prediction.

(@) (b)

Fig. 4. Road lane detection with polynomial fitting using sliding windows (a) and
RANSAC algorithm (b)

Table II resumes a comparison between RANSAC, sliding
window, and deep learning for lane detection. Deep learning
achieves the highest accuracy (> 95%) and robustness but
requires substantial computational resources. RANSAC excels
in geometric modeling (> 90% accuracy) but lacks contextual
awareness, while the sliding window method balances accuracy
(> 90%) and computational efficiency, making it suitable
for real-time embedded systems with limited hardware. For
onboard lane detection in this paper, we select the sliding
window method due to its deterministic performance and lower
resource requirements, despite its lower robustness compared to
deep learning.

TABLE II. PERFORMANCE COMPARISON OF LANE DETECTION METHODS

Computational
Method Accuracy Robustness Efficiency
RANSAC > 90% Medium High
Sliding Window > 90% Low to Medium Medium
Deep Learning > 95% High Low

C. V2V Data Integration

Vehicle-to-Vehicle (V2V) communication is an emerging
technology involving real-time wireless data such as speed,
location, and environmental conditions using dedicated short-
range communication (DSRC) or Cellular-Based systems (C-
V2X). V2V is a cornerstone for intelligent transportation sys-
tems (ITS) and an essential technology for road safety, traffic
flow, and autonomous mobility [57]-[64].

This technology has a wide range of applications in au-
tonomous and connected vehicles, particularly in Advanced
Driver Assistance Systems (ADAS) by improving critical safety
functions such as collision avoidance [65], [66] and inter-
section management [67], [68]. Through Vehicle-to-Vehicle
(V2V) communication, it improves road safety by issuing early
warnings about hazards like sudden braking, collisions, or
slippery road conditions while also optimizing traffic flow by

reducing congestion via cooperative driving strategies such as
Cooperative Adaptive Cruise Control (C-ACC) [69]-[77].

This technology plays a pivotal role in autonomous and
connected vehicles, significantly enhancing Advanced Driver
Assistance Systems (ADAS) by improving critical safety func-
tions such as collision avoidance, lane-keeping assistance, and
intersection management. Leveraging Vehicle-to-Vehicle (V2V)
communication, it proactively mitigates risks by providing real-
time alerts about potential hazards, including sudden braking,
imminent collisions, and adverse road conditions. Furthermore,
it optimizes traffic efficiency by reducing congestion through
cooperative driving mechanisms like Cooperative Adaptive
Cruise Control (CACC), enabling smoother vehicle coordina-
tion and improved roadway throughput.

In this research, we address a critical limitation of current
Lane Keeping Assist (LKA) systems, which rely solely on
onboard sensors (e.g., front cameras) for lane detection. While
effective under normal conditions, these sensors can suffer from
reduced reliability due to technological constraints or adverse
weather. Although Vehicle-to-Vehicle (V2V) communication
holds significant potential to enhance driving systems, its adop-
tion in commercial vehicles remains limited.

To bridge this gap, the proposed solution introduces a state
machine that dynamically integrates V2V data into the LKA
system (Fig. 5). Initially, the vehicle operates in Normal Mode,
depending exclusively on onboard sensors. When adverse
weather is detected and V2V data becomes available, the system
transitions to Prepare Mode, where it rigorously validates the
received V2V data through three checks:

o Message freshness (<100 ms, per NHTSA 2005 latency
requirements and SAE J2945/1),

o Lane offset tolerance (£0.25 m), and

o Curvature consistency (<0.01 m™, per AASHTO stan-
dards).

« Time gap validation (typically within 0.9-2.5 s, depending
on system mode and traffic density per NHTSA)

Adverse weather detected
AND V2V available

A

Prepare Mode Normal Mode

Y

Validation failed
OR Validation timeout (5s) A

—_—
'Validation passed:

* Message Freshness (< 100 ms)
« Lane Offset (£ 0.25 m)
e Curvature (<0.01 m™)

o Time Gab (< 2.5s)

)

Fusion Mode

V2V message lost (age > 200ms)

Fig. 5. V2V based lane keeping assist state machine
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If validation succeeds within a 5-second timeout (ISO 26262
ASIL B), the system enters Fusion Mode, merging onboard
sensor data with V2V inputs via a weighted averaging method
(equation (10)) to improve lane-keeping accuracy. If validation
fails, the timeout elapses, or V2V data is lost (e.g., data age >
200 ms), the system reverts to Normal Mode, ensuring robust
fallback behavior.

The estimated lane position is computed using the following
weighted averaging method:

Conboard * Tonboard + Cvav - Tvay
C’onboard + CVZV

Tfused = (10)

where Zonpoarda and wypy are the lane position estimates
from the onboard camera and V2V data, respectively. The
weights Conpoard and Clypy represent dynamic confidence scores
reflecting the reliability of each input based on data freshness,
signal quality, and temporal consistency.

In the baseline implementation, equal weights (Conpoarda =
Clyay = 1) are used, simplifying equation (10) to equation (11):

Y

Tonboard T Tv2v
2

The control architecture was modeled using MAT-
LAB/Simulink to simulate the integration of V2V data within
the Lane Keeping Assist (LKA) system. The simulations were
executed on a PC equipped with an Intel Core i7-1165G7
processor, running at 2.80 GHz, with 16 GB of RAM, using
MATLAB version R2018b. The Simulink model was configured
with a fixed simulation timestep of 10 ms, and solver settings
were adjusted to ensure real-time performance and numerical
stability.

Tfused =

The perception subsystem responsible for lateral position
error detection is illustrated in Fig. 6

Fig. 6. Perception unit modeling in Matlab/Simulink

III. RESULTS AND DISCUSSION
A. Experimental Validation

The developed V2V-based LKA strategy is tested in a
MATLAB simulation environment using Simulink’s 3D virtual
driving scenarios. The vehicle dynamics are modeled using
a bicycle model, and steering control is handled by a PID
controller, with a constant speed of 30 m/s. The test scenarios

simulate highway driving conditions, including both straight
and curved road segments, under daytime lighting with adverse
weather conditions. The V2V-based LKA system was activated
at 1.25 seconds and deactivated at 8 seconds, during which
it effectively maintained the vehicle’s lateral position. Fig. 7
shows a comparison of vehicle lateral position with the V2V
strategy activated and deactivated.

o Pre-V2V Phase (0-1.25 s): (Normal Mode) The vehicle
exhibited lateral deviations (£0.15 m) due to reliance on
onboard sensors alone, highlighting limitations in percep-
tion.

o V2V-Active Phase (1.25-8 s): (Prepare and Fusion Mode)
Lane-keeping stability improved significantly, error and
deviations reduced, demonstrating the impact of lane
marking data from the lead vehicle on path correction.

o Post-V2V Phase (8-10 s): (Normal Mode) Error variability
increased upon V2V deactivation, confirming its critical
role in enhancing system performance.

Position / Lane

5
Time

Fig. 7. Vehicle Lateral Keeping Assist Performance

The time-series snapshot (Fig. 8) confirms V2V-based LKA’s
superior performance, maintaining errors within a tight £0.01
m compared to Standard LKA’s £0.06 m deviations. The sys-
tem eliminates hazardous spikes while demonstrating smoother
corrections and lower oscillation amplitude. These dynamic
improvements align with the histogram’s distributional metrics
(Section III-B) .

5 & & & s
5 & & 8 §& & .
< T

Time (5)

Fig. 8. Time-domain performance: V2V-LKA (blue) maintains consistent +0.02 m
tracking versus standard LKA (red) showing +0.06 m deviations
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Steering angle commands for the standard Lane Keeping As-
sist (LKA) and the proposed V2V-enhanced LKA are shown in
Fig. 9. The standard LKA reveals frequent and high-amplitude
steering oscillations, reaching saturation limits of *1.5 rad.
This behavior suggests a more aggressive control strategy that
can lead to actuator saturation, reduced system stability, and
decreased passenger comfort. The V2V-Based LKA operates
within a lower range of approximately +0.5 rad exhibiting
smoother transitions and significantly fewer abrupt changes.
This improvement in control effort reflects the improved accu-
racy of lane estimation enabled by V2V data fusion, particularly
under degraded perception conditions, resulting in improved
control performance, stability, and driving comfort.

|
i i

o 02 04 06 08 1 12 14 16 18 2
Time (s)

Steering angle (rad)
T T T
|

Fig. 9. Steering command comparison between Standard LKA showing +1.5 rad
saturation and V2V-LKA demonstrating smoothed +0.3 rad control

B. Statistical Analysis

The error distribution histogram of Fusion Mode (Fig. 10b)
demonstrates a marked improvement in precision, with all
errors contained within £0.02 m, surpassing the standard LKA’s
performance (Fig. 10a, 41.8%) by a factor of 2.4.

80 120

D: 0.0263m

Frequency
8

[
01 008 006 -004 002 0
Lane Positioning Error (m)

Normal Mode

002 004 006 008 001 0005 3 0.005 001 0015
Lane Positioning Error (m)
Normal Mode

(a) ()

Fig. 10. Comparative error distributions: (a) Standard LKA showing broad dispersion,
(b) V2V-enhanced system demonstrating concentrated error distribution within £0.02 m

Statistical analysis in Table III confirms that these improve-
ments are both statistically and practically significant:

e« Mean error reduction: An independent samples t-test
indicates a statistically significant reduction in mean error
for the V2V system compared to the baseline (£(1300) =
—6.03, p < 0.001), with a 95% confidence interval of
[—0.0084, —0.0043] m, corresponding to a 0.43-0.84 cm

improvement.

« Effect size: Cohen’s d = —0.33 reflects a small to mod-
erate effect size, suggesting a meaningful improvement in
accuracy.

« Distribution shift: The Kolmogorov-Smirnov test (p <
0.001) confirms a significant difference in the distribution
of errors. Additionally, changes in skewness and kurtosis
in Table IV (Fusion: skewness = -0.30, kurtosis = -0.71;
Normale: skewness = 0.00, kurtosis = -1.27) indicate a
more symmetric and less heavy-tailed error profile in the
Fusion Mode, with fewer extreme deviations.

TABLE III. STATISTICAL COMPARISON BE-
TWEEN NORMAL MODE AND FUSION MODE

Result

t(1300) = —6.03, p = 0.000 < 0.001
[-0.0084, -0.0043] m

—0.33

p = 0.000 < 0.001

Test

Independent samples t-test
95% Confidence Interval
Effect size (Cohen’s d)
Kolmogorov-Smirnov test

TABLE IV. ERROR DISTRIBUTION CHARACTERISTICS COMPARISON

System Skewness | Excess Kurtosis
Normal Mode 0.00 -1.27
Fusion Mode -0.30 -0.71

C. Comparative Benchmarking

To evaluate our V2V-based Lane-Keeping Assistance (LKA)
system, we benchmark it against state-of-the-art lane detec-
tion methods optimized for adverse weather conditions. This
includes:

e LaneScanNET [78], which achieves 75.28% obstacle de-
tection and 91.36% lane detection accuracy through par-
allel convolutional networks for unmarked roads,

o And a fuzzy inference system (FIS) [79] that dynamically
adapts geometric parameters to weather conditions, en-
abling CLRNet to achieve 94.22% + 2.49% lane detection
accuracy.

o A Cross-Layer Refinement Network (CLRN) with image
augmentation [80], which improves lane detection under
adverse weather by 12.1% in F1@50 and 6.3% in overall
F1 score on CULane and TuSimple.

While these deep learning methods achieve high accuracy,
they face three key limitations in real-world deployment:

« Computational Overhead: The neural network architec-
ture increases processing time by 15-20ms per frame,
requiring GPU support for real-time operation.

« Initialization Latency: Systems require 5-8 frames to
stabilize parameters when encountering new conditions.
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o Extreme Condition Sensitivity: Rapid illumination
changes (e.g., tunnel entries) can reduce accuracy by 30-
40% until system re-stabilizes.

Our V2V approach addresses these limitations by:

o Reducing computational load (12 ms/frame) through co-
operative perception

o Eliminating initialization delays through immediate lane
data sharing

o Maintaining consistent performance regardless of illumi-
nation changes

D. Limitations and Future Directions

This study’s simulation-based methodology, while effective
for initial validation of the V2V system’s improved precision
(demonstrated by 100% error containment within +0.02 m
and statistically significant reductions in mean error), neces-
sarily excludes certain real-world complexities. Future research
should investigate system performance under more challeng-
ing conditions, including intermittent V2V connectivity (e.g.,
packet loss, latency), varying traffic densities, and dynamic
environmental factors, to fully assess operational robustness
while maintaining the demonstrated precision advantages.

IV. CONCLUSION

This paper investigates the integration of front vehicle lane
marking data received via Vehicle-to-Vehicle (V2V) commu-
nication within Lane Keeping Assist (LKA) systems, demon-
strating its potential to improve lateral positioning accuracy,
particularly in challenging scenarios such as degraded sensor
performance or ambiguous road markings. Experimental results
show that V2V-enhanced perception can significantly enhance
the robustness of LKA compared to standalone onboard sensor-
based approaches. In our simulation, the system achieved 100%
containment of lateral error within +0.02 m and reduced the
mean lateral deviation by 92.75% compared to the baseline.

However, the study has limitations that require more research.
The current framework assumes reliable V2V communication
and does not fully consider edge cases like signal dropout,
low vehicle density, or conflicting data from heterogeneous
vehicle fleets. Additionally, the computational overhead from
data merging, cybersecurity risks, and latency in real-time
control remain practical challenges. The system’s ability to
scale in heavy traffic and adapt to changing road conditions,
such as construction zones, also needs more validation.

Despite these limitations, this work adds to collaborative
driving research by: First, defining a V2V-augmented percep-
tion framework for LKA; second, measuring its benefits in
lateral control precision during sensor degradation; and third,
analyzing trade-offs between data reliability and system re-
sponsiveness. Future research should prioritize advanced multi-
vehicle coordination strategies, Al-enhanced data fusion tech-

niques, and rigorous adversarial testing in extreme operating
conditions.

By addressing these gaps, this study lays a foundation for
more resilient autonomous systems, motivating further research
into V2V-enhanced perception as a pathway toward safer and
more adaptive vehicle control.
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