
Journal of Robotics and Control (JRC)

Volume 6, Issue 4, 2025

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i4.26809 1729

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Inverse Kinematics Optimization Using ACO,

MOA, SPOA, and ALO: A Benchmark Study on

Industrial Robot Arms

Aziz El Mrabet 1*, Hicham Hihi 2, Mohammed Khalil Laghraib 3, Mbarek Chahboun 4, Mohcine Abouyaakoub 5, Ali Ait Ali 6,

Aymane Amalaoui 7
1, 2, 3, 4, 5, 6 Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben

Abdellah University, Fez, Morocco
7 Laboratory of innovative technologies, National School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez,

Morocco

Email: 1 aziz.elmrabet@usmba.ac.ma, 2 hicham.hihi@usmba.ac.ma, 3 Mohammedkhalil.laghraib@gmail.com,
4 mbarek.chahboun@usmba.ac.ma, 5 mohcine.abouyaakoub@usmba.ac.ma, 6 ali.aitali@usmba.ac.ma,

7 aymane.amalaoui@usmba.ac.ma

*Corresponding Author

Abstract—This study investigates the application of

metaheuristic algorithms to solve the inverse kinematics (IK)

problem in robotic manipulators, which is often challenging for

high-degree-of-freedom systems. The research contribution is

the comparative evaluation of four recent metaheuristic

algorithms—Ant Colony Optimization, Mayfly Optimization

Algorithm, Stochastic Paint Optimizer, and Ant Lion

Optimizer—across different robot configurations. A kinematic

analysis was conducted on three robotic arms: a 4-DOF

SCARA, a 6-DOF ABB IRB 1600, and the dual-arm 15-DOF

Motoman SDA20D/12L. For each manipulator, the end-effector

pose was optimized by solving the IK problem using the selected

algorithms. A total of 30 random target positions were tested

within the operational space to ensure diversity in pose

challenges; while not exhaustive, this sampling provides

statistically informative trends. We evaluate each algorithm

based on the number of optimal solutions obtained, the precision

of the computed joint configurations, and execution time. The

results indicate that the Mayfly Optimization Algorithm

consistently delivered the highest precision with relatively low

execution time across all robot types. In contrast, the Ant Lion

Optimizer showed inconsistent performance in higher-DOF

settings. Unlike traditional Jacobian-based or analytical IK

methods, metaheuristics offer flexibility in handling complex,

nonlinear systems without requiring gradient information.

These findings provide practical insight for selecting suitable

algorithms in real-world robotic applications.

Keywords—Robot Arm; Inverse Kinematics; Metaheuristic

Algorithm; Optimization Techniques; Computational Complexity.

I. INTRODUCTION

The resolution of the inverse kinematics (IK) issue is

essential for the attainment of precise control within robotic

systems. Inverse kinematics pertains to the process of

ascertaining the requisite joint angles necessary to position a

manipulator's end-effector at a designated spatial location and

orientation. As advancements in robotics lead to the

development of increasingly intricate and redundant

manipulators, particularly those exhibiting degrees of

freedom (DOF) that surpass six, the resolution of this issue

presents heightened challenges. Conventional analytical

methodologies, including the algebraic method [1],

geometric techniques [2], [3], and iterative solutions,

frequently prove inadequate [4]. This inadequacy is

particularly pronounced in robots characterized by high DOF,

where multiple joint configurations may yield identical end-

effector positions. Such redundant configurations introduce

complexities, including singularities and nonlinearities [5],

[6], necessitating alternative computational methodologies.

Practical applications of robotics introduce further

complexities, encompassing joint limitations, sensor

inaccuracies, physical impediments, and model discrepancies

[7], [8], [9]. These uncertainties undermine the reliability of

idealized mathematical frameworks, thereby constraining the

efficacy of traditional IK solvers. Although calibration may

alleviate certain challenges, it remains incapable of entirely

obviating the requirement for more adaptive and flexible

solution strategies [10], [11].

In response to these constraints, metaheuristic algorithms

have emerged as viable alternatives for the resolution of IK

challenges within complex, nonlinear, and high-dimensional

search spaces[12], [13], [14] . These algorithms—such as

Genetic Algorithms, Particle Swarm Optimization [15], and

Ant Colony Optimization [16]—draw inspiration from

natural phenomena and possess the capability to transcend

local optima through dynamic mechanisms of exploration

and exploitation. Nonetheless, these algorithms are

accompanied by trade-offs, including a heightened sensitivity

to parameter calibration, stochastic behavior, and potential

limitations in real-time applications.

A multitude of studies have highlighted the potential of

these techniques across diverse robotic platforms. For

example, as illustrated in [17], the integration of Particle

Swarm Optimization (PSO) and Genetic Algorithms (GA)

with Artificial Neural Networks (ANNs) for a 4-DOF

SCARA robot resulted in a mean squared error (MSE) of

0.12846 with the PSO-ANN hybrid—surpassing GA-ANN in

terms of accuracy and underscoring the potential of hybrid

methodologies for real-time control applications. In the case

of the 6-DOF ABB IRB 1600 robot, [18] implemented

NSGA-II and the Bacterial Chemotaxis Multi-Objective

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1730

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

Algorithm (BCMOA), achieving highly precise end-effector

poses with orientation errors as minimal as 5.4 × 10⁻⁸ and

mean positional errors of merely 0.8 mm. Additionally, the

Boomerang Algorithm, introduced by [19], exhibited

promising real-time capabilities by achieving a precise IK

solution within 8 seconds for the ABB IRB120 robot, with a

mean positional error of 0.04 mm and a success rate of

95%—outperforming several variants of PSO. For more

sophisticated robots, such as the Motoman SDA20D/12L,

[20] proposed a Multi-Objective Full-Parameter

Optimization PSO (MOFOPSO) methodology that

concurrently optimized position, posture, and joint

constraints. This algorithm attained a positional error of only

0.52 mm, demonstrating both precision and stability in high-

DOF manipulators.

Despite these advancements, comparative evaluations of

newer metaheuristic algorithms across diverse manipulator

architectures remain scarce. This study endeavors to bridge

this gap by assessing the performance of four recent and

promising metaheuristic algorithms—Ant Colony

Optimization (ACO), Mayfly Optimization Algorithm

(MOA), Stochastic Paint Optimizer Algorithm (SPOA), and

Ant Lion Optimizer (ALO)—on a representative array of

robotic arms, encompassing both redundant and non-

redundant manipulators.

The research contribution is a systematic comparative

analysis of these four metaheuristics across three

manipulators: a 4-DOF SCARA, a 6-DOF ABB IRB 1600,

and a 15-DOF Motoman SDA20D/12L. Using 30 randomly

generated end-effector targets per manipulator, the study

assesses each algorithm’s performance based on positional

accuracy, convergence behavior, computational time, and

solution reliability. The findings aim to guide robotics

researchers and engineers in selecting appropriate

optimization strategies for various IK scenarios—particularly

in contexts requiring scalable, precise, and real-time

solutions.

As illustrated in Fig. 1, this paper is structured as follows:

Section 1 presents the kinematic analysis of the manipulator

robot examined in the study. Section 2 delves into an

overview of metaheuristic techniques and kinematic analysis.

Section 3 then describes the optimization problems

addressed. Subsequently, Section 4 comprehensively details

the performance of the algorithms and reports the obtained

results. Finally, Section 5 encapsulates the conclusions drawn

from this research, offering insights into the implications of

the findings for future work in the field of robotic kinematics.

II. KINEMATIC ANALYSIS OF MANIPULATOR ROBOTS

In the context of robotic manipulators, two fundamental

kinematic problems arise: forward kinematics and inverse

kinematics. Forward kinematics involves determining the

end-effector's position and orientation relative to the base,

using the joint angles of the robot manipulator. Conversely,

inverse kinematics focuses on identifying the necessary joint

angles to achieve a desired end-effector position.

Establishing the forward kinematic model of the

manipulator is a crucial step in addressing the inverse

kinematics challenge. The Denavit-Hartenberg convention is

the most widely adopted standard for elucidating the

kinematic relationships between the links and joints of a

serial manipulator. Firmly rooted in the mechanical

configuration of the manipulator, this standard provides a

robust framework for analysis [21].

Fig. 1. IK Problem-Solving Process for SCARA, ABB, and Motoman

Manipulators

A. Denavit-Hartenberg (DH)

The Denavit-Hartenberg (DH) method is a widely

adopted approach in robotics for modeling the kinematics of

robots with i-degrees of freedom. This technique utilizes four

key parameters: joint angle 𝜃, joint distance 𝑑, link length 𝑎,

and joint twist 𝛼, to characterize the geometric relationships

between consecutive robot joints. These parameters are

determined for each joint up to the 𝑖-th joint in the robot. The

DH method provides a systematic framework for describing

the kinematic structure of robotic systems.

● 𝜃𝑖 represents the joint angle, the angle between 𝑥𝑖−1 and

𝑥𝑖.

● 𝑑𝑖 denotes the translation along the 𝑧𝑖−1 axis.

● 𝑎𝑖 corresponds to the length of the 𝑖-th link.

● 𝛼𝑖 signifies the joint twist, the angle between 𝑧𝑖−1 and 𝑧𝑖.

The homogeneous transformation for each joint can be

represented as the product of four basic transformations:

𝐴𝑖 = 𝑅𝑜𝑡𝑧𝑖𝜃𝑖
𝑇𝑟𝑎𝑛𝑠𝑧𝑖𝑑𝑖

𝑇𝑟𝑎𝑛𝑠𝑥𝑖𝑎𝑖
𝑅𝑜𝑡𝑥𝑖𝛼𝑖

 (1)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1731

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

𝐴𝑖 =

[

𝐶𝜃𝑖

𝑆𝜃𝑖

0
0

−𝑆𝜃𝑖
𝐶𝛼𝑖

𝐶𝜃𝑖
𝐶𝛼𝑖

𝑆𝛼𝑖

0

𝑆𝜃𝑖
𝑆𝛼𝑖

−𝐶𝜃𝑖
𝑆𝛼𝑖

𝐶𝛼𝑖

0

𝑎𝑖𝐶𝜃𝑖

𝑎𝑖𝐶𝜃𝑖

𝑑𝑖

1

]

 (2)

B. 4-DOF SCARA manipulator

The 4-DOF SCARA manipulator is renowned for its

simple yet highly effective design [22], making it a preferred

choice for pick-and-place and assembly applications. The

Denavit-Hartenberg parameters of the 4-DOF SCARA

manipulator, accompanied by an illustrative GIF image, are

referenced in Fig. 2 and Table I.

TABLE I. THE DH PARAMETERS FOR THE 4-DOF SCARA

Joint i 𝛉𝒊(𝒅𝒆𝒈) 𝒅𝒊(𝒎𝒎) 𝒂𝒊 𝜶𝒊(𝐝𝐞𝐠)

1 𝜃1 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 ± 120 290 250 0

2 𝜃2 Between ±130 0 150 180

3 0

𝑑3

Between

0 − 150

0 0

4 𝜃4 Between ±360 150 0 0

where (𝜃1 , 𝜃2, 𝑑3, 𝜃4) are the joint variables. The key

advantages of the 4-DOF SCARA manipulator include its

inherent structural rigidity, high precision, and impressive

performance capabilities, such as a repeatability of

approximately ±0.01 mm and a maximum linear velocity.

This SCARA manipulator was chosen for its suitability for

applications requiring vertical pick-and-place operations and

precise horizontal movement. Its kinematic construction

facilitates swift and accurate placement, aligning with the

objectives of the research endeavor.

Fig. 2. The Simulation of 4-DOF SCARA manipulator in MATLAB

C. 6-DOF ABB IRB 1600 manipulator

The 6-degree-of-freedom (6-DOF) ABB IRB 1600

industrial robot, a prominent product from ABB Robotics, is

distinguished by its exceptional accuracy and adaptability

within industrial automation environments. Table II below

outlines the Denavit-Hartenberg parameters, and a GIF image

in Fig. 3 illustrates the configuration of this robotic

manipulator.

In this configuration, the joint variables are

(𝜃1 , 𝜃2, 𝑑3, 𝜃4, 𝜃5, 𝜃6). The ABB IRB 1600 manipulator is a

mainstay for activities requiring complex manipulation and

multidirectional motions due to its increased degrees of

freedom and robust construction. Its exceptional kinematic

flexibility allows us to investigate and assess metaheuristic

algorithms for addressing the intricate problems associated

with robotic manipulation. This opens the door for a wide

range of applications within the purview of our research,

enabling us to explore innovative solutions and push the

boundaries of what is possible in industrial automation and

robotic systems.

TABLE II. DH PARAMETERS FOR THE 6-DOF ABB IRB 1600

Joint i 𝛉𝒊(𝒅𝒆𝒈) 𝒅𝒊(𝒎𝒎) 𝒂𝒊 𝜶𝒊(𝐝𝐞𝐠)

1 𝜃1 Between ±180 715 0 90

2
𝜃2 Between 30 −

180
0 350 0

3 0
𝑑3 Between 0 −

630
0 −90

4 𝜃4 Between ±300 100 1200 90
5 𝜃5 Between ±120 0 0 −90
6 𝜃6 Between ±360 0 120 0

Fig. 3. Simulation of 6-DOF ABB IRB 1600 in MATLAB

D. 6-DOF 12 link Motoman SDA20D

The Yaskawa Motoman SDA20D is a highly advanced

and versatile robotic manipulator system that is renowned for

its rapid operational speed and impressive payload capacity.

Equipped with 6 degrees of freedom and 12 links, this

manipulator offers exceptional versatility and performance

capabilities, making it a popular choice for a wide range of

applications. Table III shows the Denavit-Hartenberg settings

for this 6-DOF, 12-link Motoman SDA20D manipulator, and

Fig. 4 visual representation of the manipulator's configuration

provided in the accompanying GIF image.

In this robot arm, the joint variables are

(𝑑1 , 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9, 𝜃10, 𝜃11, 𝜃12). The Motoman

SDA20D robotic manipulator is distinguished by its

exceptional reliability and operational capabilities,

particularly when executing tasks requiring precise trajectory

control and managing substantial payloads. Owing to its

expansive range of motion, this manipulator enables the

execution of complex movements critical to the research

study, thereby ensuring optimal performance and accuracy

throughout the experimental process.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1732

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

TABLE III. DH PARAMETERS FOR THE 6-DOF 12 LINKS MOTOMAN

SDA20D

Joint

i
𝛉𝒊(𝒅𝒆𝒈) 𝒅𝒊(𝒎𝒎) 𝒂𝒊 𝜶𝒊(𝐝𝐞𝐠)

1 0
𝑑1 Between 0 −

 360
0 0

2 𝜃2 Between ±180 0 170 −90

3 𝜃3 Between ±135 0 835 0

4 𝜃4 Between ±180 1160 160 −90

5 𝜃5 Between ±180 200 0 90

6 𝜃6 Between ±360 1250 0 −90

7 𝜃7 Between ±180 200 0 90

8 𝜃8 Between ±360 1250 0 −90

9 𝜃9 Between ±180 200 0 90

10
𝜃10 Between

±180
1160 160 −90

11
𝜃11 Between

±135
0 835 90

12
𝜃12 Between

±180
0 170 −90

Fig. 4. Simulation of 6-DOF 12 links Motoman SDA20D in MATLAB

III. METAHEURISTIC OPTIMIZATION ALGORITHMS

In recent decades, metaheuristic optimization algorithms

have emerged as highly effective tools for addressing

optimization problems [23], [24], [25]. Drawing inspiration

from natural phenomena, these algorithms explore the

solution space in search of optimal outcomes. A diverse array

of techniques, including genetic algorithms [26], artificial bee

colony algorithms [27], particle swarm optimization [28],

[29], stochastic paint optimization, and ant lion optimization,

are among those inspired by nature [30], [31], [32].

In contrast to traditional analytical methods heavily

reliant on mathematical deductions, metaheuristic algorithms

offer a more adaptable and robust approach. Characterized by

the dual attributes of diversification and intensification, these

algorithms facilitate efficient exploration of the search space

through the use of randomness, while also conducting local

searches around the current best solution.

The resilience of metaheuristic algorithms in addressing a

wide range of optimization challenges, their capacity to

handle complex and lengthy problems, their ability to identify

global solutions, and their rapid convergence rates have

propelled them to the forefront of various domains.

Consequently, they have become indispensable tools,

offering significant advantages over conventional

optimization methodologies.

A. Particle Ant Colony Optimization Algorithm (ACO)

Ant Colony Optimization (ACO) is a metaheuristic

algorithm inspired by the foraging behavior of ant colonies.

It is a combinatorial optimization method that assembles

candidate solutions from a set of components that compete

for attention, avoiding the need for extensive fine-tuning.

ACO is colony-oriented, consisting of two distinct

"colonies": the set of components that make up the candidate

solution and the set of trials that constitute the candidate

solution [33], [34]. The set of components is fixed, while the

fitness of each component is updated over time. Each

generation of the algorithm constructs one or more ant trails

based on the pheromone selection components, and the

fitness of each trail is then evaluated. The pheromone of each

component is subsequently updated based on the fitness of

the trail.

As we can see in Fig. 5, the ACO algorithm can be viewed

as population-oriented, comprising two different

"populations": the set of components that make up possible

solutions and the set of trials that represent possible solutions

[35]. The number of components is fixed, while the fitness of

each component is updated over time. Each generation of the

algorithm builds one or more ant trails based on the selected

pheromones, and the fitness of each trail is evaluated. The

pheromone of each component is then updated according to

the fitness of the trail.

Fig. 5. Pseudocode for the ACO algorithm

At each iteration 𝑡, an ant 𝑘 builds a complete solution by

selecting values for each joint variable. The probability of

selecting a specific value 𝑗 for joint 𝑖 is:

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]
𝛼

⋅ [𝜂𝑖𝑗(𝑡)]
𝛽

∑ [𝜏𝑖𝑙(𝑡)]
𝛼 ⋅ [𝜂𝑖𝑙(𝑡)]

𝛽
𝑙∈𝛺𝑖

 (3)

Where, 𝜏𝑖𝑗(𝑡)is the pheromone value for variable 𝑗 of joint 𝑖.

𝜂𝑖𝑗(𝑡) is the heuristic value (e.g., inverse of the estimated

error). 𝛼 and 𝛽 control the influence of pheromone vs.

heuristic. 𝛺𝑖 is the set of available discrete values for joint 𝑖.

After evaluating all ants, pheromone levels are updated to

reinforce high-quality solutions:

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1733

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ⋅ 𝜏𝑖𝑗(𝑡) + ∑ 𝛥𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

 (4)

with:

𝛥𝜏𝑖𝑗
𝑘 = {

𝑄

𝑓(𝛩𝑘)
 , 𝑖𝑓 𝛩𝑘 𝑢𝑠𝑒𝑠 𝜃𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

Where, 𝜌 is the evaporation rate. 𝑄 is a constant pheromone

deposit factor. 𝑚 is the number of ants.

This rule ensures that components of lower-error

solutions gain higher pheromone reinforcement, improving

their selection probability in the next iteration. Table IV

shows the parameter settings used in this paper.

TABLE IV. TYPICAL PARAMETER SETTINGS USED FOR ACO

Parameter Typical Range Purpose

𝑚 30–50 Number of ants per iteration

𝛼 1–2 Influence of pheromone trails

𝛽 2–5 Influence of heuristic information

𝜌 0.1–0.5 Evaporation rate

𝑄 1 Pheromone deposit constant

𝑇 300–500 Total number of iterations

In the context of inverse kinematics (IK), ACO is used to

iteratively generate candidate joint angle configurations that

minimize a composite error function comprising position and

orientation discrepancies between the desired and actual end-

effector poses. Each solution, corresponding to a complete set

of joint variables for a robot manipulator, is treated as a

“path” constructed by an artificial ant. These ants simulate

the pheromone-guided movement found in nature, with high-

performing solutions reinforcing the desirability of their

components.

B. Mayfly Optimization Algorithm (MA)

The Mayfly Optimization Algorithm (MOA) is a

metaheuristic approach that significantly improves upon the

particle swarm optimization (PSO) [36], [37], genetic

algorithm (GA) [38], and the firefly algorithm (FA) to create

a powerful hybrid framework [39]. This innovative approach

leverages the social behavior of mayflies and incorporates

crossover techniques and local search mechanisms. Inspired

by the life cycle of mayflies, where maturity triggers

reproductive behavior, MOA aims to ensure the survival of

the fittest and reflects the ability of the strongest mayflies to

reproduce. Within the context of the algorithm, the position

of each mayfly in the search space represents a potential

solution to the optimization problem.

As shown in Fig. 6, the MOA algorithm operates as

follows: two distinct groups of mayflies, representing males

and females, are randomly initialized within the problem

space. These mayflies embody possible solutions, which are

encoded as d-dimensional vectors 𝑥 and evaluated according

to a predefined objective function 𝑓. The velocity vector 𝑣

reflects the adjustments in the mayflies' positions. The

trajectory of each mayfly encapsulates the dynamic interplay

between individual experience and social influences.

Specifically, at each iteration, the mayfly adjusts its path to

reach its personal best position based on the collective

experience of the group, as described in the research by [40].

Fig. 6. Pseudocode for the MOA algorithm

In the field of entomology, as shown in Fig. 2, mayflies

exhibit a distinctive life cycle: they spend several years as

aquatic larvae before emerging as short-lived adult forms that

fly in the air for a period of only one to seven days. The need

to study the mating behaviors of male and female mayflies

inspired the development of the Mayfly Optimization (MO)

algorithm. Building upon the Particle Swarm Optimization

(PSO) framework, the MO algorithm simulates the position

updates of mayflies:

𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡) (6)

The position 𝑝𝑖 represents the position for the 𝑖 −th

individual in the next iteration. Accounting for the distinct

behaviors of male and female mayflies, their velocities are

updated using different approaches.

For male mayflies, which exhibit remarkable speeds as

they soar above water surfaces, the velocity calculations are

distinctive:

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑎1𝑒
−𝛽𝑟𝑝(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))

+ 𝛼2𝑒
−𝛽𝑟𝑔

2
(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))

(7)

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡) (8)

In this context, 𝑣𝑖 represents the velocity of the 𝑖-th

mayfly at the current time step, while 𝑥𝑖 denotes the position

of that mayfly. The parameter 𝛽 is a fixed visibility

coefficient that limits the range over which a mayfly can

perceive its environment. Additionally, 𝑝𝑏𝑒𝑠𝑡𝑖 indicates the

optimal position previously visited by the 𝑖 −th mayfly, and

𝑔𝑏𝑒𝑠𝑡𝑖 refers to the position of the best male mayfly

component. The positive attraction constants 𝛼1 and 𝛼2

capture the cognitive and social influences, respectively, that

guide the mayflies' movements.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1734

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

Regarding the female mayflies, they are attracted to their

male counterparts and follow deterministic attraction models

that dictate the changes to their location and velocity.

𝑣𝑖(𝑡 + 1) = {
𝑔. 𝑣(𝑡) + 𝑎𝑓𝑒

−𝛽𝑟𝑚𝑓
2

(𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)) ; 𝑓(𝑦𝑖(𝑡)) > 𝑓(𝑥𝑖(𝑡))

𝑔. 𝑣(𝑡) + 𝑓𝑙. 𝑟1 ; 𝑓(𝑦𝑖(𝑡)) ≤ 𝑓(𝑥𝑖(𝑡))
 (9)

Where 𝛼𝑓 and 𝛽 are fixed parameters, 𝑔, and 𝑓𝑙 represent

weights that decrease from their maximum to lowest values

and 𝑓(𝑥𝑖(𝑡)) and 𝑓(𝑦𝑖(𝑡)) denote the fitness values. A

random integer sampled from the uniform distribution from -

1 to 1 is represented by 𝑟1.

When mayflies engage in mating, a selection process akin

to the male-female attraction dynamics occurs, whereby the

superior male mayflies mate with the better female mayflies

to produce offspring:

{
𝑜𝑓𝑓1 = 𝛼3𝑚𝑎𝑙𝑒 + (1 − 𝛼3)𝑓𝑒𝑚𝑎𝑙𝑒

𝑜𝑓𝑓2 = (1 − 𝛼3)𝑚𝑎𝑙𝑒 + 𝛼3𝑓𝑒𝑚𝑎𝑙𝑒
 (10)

Here the male is the parent male mayfly, the female is the

female parent, and 𝛼3 represents a random number adhering

to a Gaussian distribution.

In this study, MOA is applied to solve the inverse

kinematics (IK) problem by minimizing a composite

objective function that accounts for both position and

orientation errors of the end-effector. The algorithm’s ability

to navigate high-dimensional, nonlinear, and multimodal

search spaces makes it particularly effective for robotic

systems with redundancy or singularities. The specific

parameter settings used for MOA in this work are

summarized in Table V.

TABLE V. TYPICAL PARAMETER SETTINGS USED FOR MOA

Parameter Range Description

Population size 30–50 Number of male + female mayflies

𝑎1, 𝑎2 1.0–2.0 Cognitive and social coefficients

𝛽 1.0–2.0 Visibility coefficient

𝑔 , 𝑓𝑙 0.9–0.1
Female damping and random

weights

𝛼3 0.2–0.8 Crossover factor

𝑇 300–500 Max number of iterations

C. Stochastic Paint Optimizer Algorithm (SPO)

In this section, a new meta-heuristic technique called the

Stochastic Paint Optimizer (SPO) is presented, which utilizes

the rich semantic associations of colors in painting. The SPO

algorithm is inspired by the complex processes involved in

selecting and combining colors, akin to an artist's approach to

creating an artwork.

Through a series of meticulously designed procedural

steps, the SPO algorithm optimizes color compositions on a

virtual canvas. These procedures encompass the creation of

initial paint configurations, paint combinations, paint

clustering, and termination criteria. The canvas serves as the

search space in the SPO algorithm, where paints are

represented as solutions with their constituent colors acting

as design variables. Evaluating the visual appeal of paint is

part of the assessment process, facilitated by a "beauty index"

derived from objective function values. The distinct

contributions of each color on the canvas to the overall

perception of the artwork necessitate a sophisticated grading

system based on the primary, secondary, and tertiary color

categories on the color wheel. Leveraging established color

combination techniques, the SPO algorithm orchestrates the

synthesis of novel colors to craft optimal paint configurations

[41], [42].

The algorithmic implementation of the SPO technique

involves iterative phases of color mixing, color clustering,

and fitness evaluation [43], [44]. In each iteration, the

algorithm explores the paint search space by introducing

controlled stochastic perturbations to the current paint

configuration, akin to an artist's experimental approach, as

represented in Fig. 7.

Fig. 7. Pseudocode for the SPO algorithm

The effectiveness of the SPO algorithm stems from its

seamless integration of color theory principles with

optimization methodologies, leading to the generation of

visually appealing and harmonious artworks. By leveraging

the inherent stochasticity in color selection and combination

processes, the SPO algorithm transcends conventional

optimization paradigms, providing a novel perspective on

artistic expression and creativity in the digital realm.

In this context, each candidate solution (analogous to a

"paint") is represented as a vector of real-valued decision

variables:

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑], 𝑋𝑖 ∈ ℝ𝑑 (11)

where 𝑑 is the number of joint parameters for the

manipulator.

The algorithm proceeds through iterative refinement of a

solution population 𝑃 = {𝑋1, 𝑋2, . . . , 𝑋𝑁}, using a stochastic

update rule designed to perturb and explore new regions of

the solution space. In each iteration, solutions are modified

using controlled noise and clustering heuristics as follows:

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜖 ⋅ 𝑁(0, 𝜎2) (12)

Where, 𝜖 is a learning or perturbation rate. 𝑁(0, 𝜎2) is

Gaussian noise with variance 𝜎2.

A clustering-based selection mechanism is applied after

each generation to retain the top 𝑘 individuals with minimum

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1735

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

error, simulating the refinement of "visual harmony" in the

solution population. The population is then replenished by

generating new candidates via interpolation of top solutions

and perturbation:

𝑋𝑛𝑒𝑤 = 𝜆1𝑋𝛼 + 𝜆2𝑋𝛽 + 𝜆3𝑋𝛿 + 𝛿 (13)

Where, 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿 are three high-fitness solutions. 𝜆1 + 𝜆2 +

𝜆3 = 1, with 𝜆𝑖 ∈ [0,1] being the blending coefficients. 𝛿 is

a small random vector (mutation).

The algorithm terminates after a fixed number of

iterations 𝑡 or when the best solution achieves an error below

a threshold 𝜖min.Table VI summarizes the specific parameter

settings used for SPO in this work.

TABLE VI. TYPICAL PARAMETER SETTINGS USED FOR SPO

Parameter Range Description

Population
size

30–50
Number of candidate solutions

in each generation

Top-k

selection
10–30% of N

Percentage of elite individuals

retained for interpolation

𝜆1, 𝜆2, 𝜆3
Random or fixed

(sum = 1)
Weights used in generating new

candidates via interpolation

𝑇 300–500 Max number of iterations

D. Ant Lion Optimizer Algorithm (ALO)

Ant Lion Optimizer Algorithm is a powerful population-

based Metaheuristic Algorithm that meticulously emulates

the sophisticated hunting strategies of antlions in their natural

habitats [45]. Named after their remarkable hunting prowess

and favored prey, antlions employ a distinctive tactic of

excavating cone-shaped pits in sand using circular motions

executed by their formidable jaws. These patient predators

then position themselves at the pit's base, awaiting

unsuspecting prey to stumble into their snare. Upon detecting

an ensnared insect unable to escape the steep pit walls,

antlions swiftly dispatch their quarry. In nature, as insects

instinctively strive to evade traps, they often engage in frantic

movements to flee from predators. In response, astute

antlions deftly fling sand just ahead of the prey's path,

inducing them to slide inexorably into the pit's depths. It

meets its demise when the prey's evasive maneuvers fail to

outpace the encroaching jaws. Interestingly, antlions also

adjust the dimensions of their pits based on factors such as

their degree of hunger and the lunar phase [46].

As shown in Fig. 8, the algorithm employs two distinct

types of search agents: ants and antlions. Antlions, the

superior agents, maintain fixed positions unless replacing a

specific ant. In contrast, ants perform random walks within

the search space and risk being captured by antlions if they

fall into the antlions' traps [47].

The algorithmic formulation initializes a population of

solutions as ants navigating the search landscape. Each ant's

position is represented as a vector:

𝐴𝑛𝑡𝑖 = [𝐴𝑖
1, 𝐴𝑖

2, 𝐴𝑖
3, … . , 𝐴𝑖

𝑑] (14)

where 𝐴𝑛𝑡𝑖 represents the 𝑖 −th ant's, and indicates its

coordinates in the 𝑑-th dimension. The locations of the ants

are determined by the following rule (15):

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
 (15)

Where, 𝑅𝐴
𝑡 denotes a random walk performed by an ant near

the antlion selected through the roulette wheel mechanism at

the 𝑡 −th iteration. 𝑅𝐸
𝑡 represents the location of a randomly

walking ant, denoted as 𝐴𝑛𝑡𝑖, near the best-performing

antlion, known as the elite antlion, within the ant swarm.

Fig. 8. Pseudocode for the ALO algorithm

The roulette wheel mechanism utilizes the fitness values

of the antlions to select an antlion 𝐴 for an ant to perform a

random walk nearby, while the elite antlion, identified as the

best-performing antlion, is designated as 𝐸.

The random walking behavior of an ant 𝐴𝑛𝑡𝑖
𝑡 in proximity

to a presumed antlion 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 is expressed as follows:

𝑅𝑗
𝑡 =

(𝑋𝑖 − 𝑎𝑖) × (𝑑𝑖 − 𝑐𝑖
𝑡)

𝑏𝑖
𝑡 − 𝑎𝑖

+ 𝑐𝑖 (16)

Where, 𝑅𝑗
𝑡 represents the ant's position after performing a

random walk near the selected antlion 𝑗 during iteration 𝑡. 𝑎𝑖

denotes the minimum step size of the random walk 𝑋𝑖
𝑡 in the

𝑖-th dimension. 𝑏𝑖 represents the maximum step size of the

random walk 𝑋𝑖
𝑡 in the 𝑖-th dimension. 𝑐 and 𝑑 define the

lower and upper bounds of the random walk, respectively.

The position of each ant in each dimension is updated

using a random walk process as follows:

𝑥(𝑡) = [0, 𝑐𝑢𝑚(2𝑟(𝑡1)) − 1, 𝑐𝑢𝑚(2𝑟(𝑡2)) − 1,… , 𝑐𝑢𝑚(2𝑟(𝑡𝑇)) − 1] (17)

Where, 𝑇 represents the total number of iterations. 𝑡𝑖 denotes

the index of the current iteration. 𝑐𝑢𝑚 indicates the

cumulative summation operation. 𝑟 is a random function that

is calculated as follows:

𝑟(𝑡) = {
1 ; 𝑟 > 0.5
0 ; 𝑟 ≤ 0.5

 (18)

ALO is effective for multi-DOF manipulators in high-

dimensional, non-convex spaces such as IK. Its dual-random-

walk approach enhances global exploration while

maintaining elite-guided convergence. However, due to its

stochastic nature and high iteration count, ALO can be

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1736

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

computationally expensive and less suitable for real-time IK

control. The specific parameter settings used for ALO in this

work are summarized in Table VII.

TABLE VII. TYPICAL PARAMETER SETTINGS USED FOR ALO

Parameter Range Description

Population

size
30–50 Number of ants and antlions

Top-k

selection

10–30% of

N

Percentage of elite individuals

retained for interpolation

Scaling

factor
Dynamic Bounds shrink with each iteration

𝑇 300–500 Max number of iterations

IV. OPTIMIZATION PROBLEM

This section presents a generalized objective function for

solving inverse kinematics (IK) problems using metaheuristic

optimization techniques. The proposed formulation provides

a unified framework that accommodates the multimodal and

nonlinear characteristics inherent in robotic manipulators,

thus enabling the application of diverse algorithmic strategies

[48].

Utilizing optimization methodologies to address the

inverse kinematics challenge, we can quantify the error E as

a measure of the discrepancy between the current position of

the end effector and its intended position relative to the

specified objective. The orientation error, 𝐸𝑂, delineates the

variance in the desired orientation of the end effector,

facilitating the attainment of precise accuracy. Meanwhile,

the position error, 𝐸𝑝, highlights disparities in the coordinates

of the end effector relative to its designated location.

Consequently, the following equation encapsulates the

composite error 𝐸, which is contingent upon both orientation

and position errors. This composite error is calculated as a

weighted sum of the position error, 𝐸𝑝, and the orientation

error, 𝐸𝑂, where the weighting coefficients 𝛼 and 𝛽 determine

the relative importance of each error component.

𝐸 = 𝛼𝐸𝑝 + 𝛽𝐸𝑂 (19)

The prioritization of position and orientation errors can be

achieved by employing constant weighting coefficients,

denoted as 𝛼 and 𝛽, respectively. The resulting formulation

of the objective function aimed at resolving the inverse

kinematics problem is represented by the equation below:

𝑚𝑖𝑛
𝜃∈[𝜃𝑚𝑖𝑛,𝜃𝑚𝑎𝑥]

𝐸 (20)

A. Position Based Error

The Euclidean distance metric, which represents the

distance between the end-effector's current position and

desired position, is used to quantify the positional

discrepancy of the end-effector. This can be expressed

mathematically as follows [49]:

𝐸𝑝 = ||𝑃𝑑 − 𝑃𝑐|| (21)

B. Orientation Based Error

To measure the orientation error between the required and

current frames, a comparative analysis of their orientations

can offer valuable insights. Although the XYZ and UVW

frames have distinct orientations, they share a common

origin. As a result, aligning the current XYZ frame with the

target UVW frame necessitates a rotational adjustment,

represented by 𝑅𝐸. This rotational alignment of the current

frame towards the target frame serves as a quantifiable metric

for orientation discrepancies.

𝑅𝐸 = 𝑅𝑑𝑅𝑐
−1 = 𝑅𝑑𝑅𝑐

𝑇 = (

𝑛𝑥 𝑜𝑥 𝑎𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧

) (22)

The orientation error can be mathematically quantified by

extracting the variables 𝑛𝑥, 𝑜𝑦, and 𝑎𝑧 from the rotation

matrix 𝑅𝐸 using the following equation, as described in the

work by Kumar et al. [50].

𝐸𝑜 = 2𝑐𝑜𝑠−1 (
1

2
√𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 + 1) (23)

V. RESULTS AND DISCUSSION

In this study, we utilized three distinct robotic

manipulators to conduct our experiments: a 4-degree-of-

freedom SCARA manipulator, a 6-DOF ABB IRB 1600

manipulator, and a 6-DOF 12-link Motoman SDA20D

manipulator. These manipulators were evaluated at thirty

randomly selected locations within their respective

workspaces.

To assess the performance of the Ant Lion Optimizer

algorithm, Stochastic Paint Optimizer Algorithm, Mayfly

Optimization Algorithm, and Ant Colony Optimization, we

employed various metrics, including position error. This error

was quantified by calculating the Euclidean distance between

the algorithm's solution location and the actual position. This

metric provided valuable insights into the accuracy and

effectiveness of each algorithm in solving the inverse

kinematics problem for the robotic manipulators under

investigation:

𝐸𝑟𝑟 = ||𝑃𝑠 − 𝑃𝑟|| (24)

Where 𝐸𝑟𝑟 is the position error.

Additionally, the assessment of orientation errors

involved comparing the pitch (rotation by 𝜃𝑠 about the fixed

y-axis), yaw (rotation by 𝜓𝑠 about the fixed x-axis), and roll

(rotation by 𝜙𝑠 about the fixed z-axis) angles of the

algorithm's solution with the corresponding actual angles (𝜃𝑟,

𝜓𝑟 ,𝜙𝑟):

𝐸𝑟𝑟𝜓
= |𝜓𝑟 − 𝜓𝑠|;

𝐸𝑟𝑟𝜃
= |𝜃𝑟 − 𝜃𝑠|;

𝐸𝑟𝑟𝜙
= |𝜙𝑟 − 𝜙𝑠|

(25)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1737

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

Where, 𝐸𝑟𝑟𝜓
 is the orientation error of the yaw. 𝐸𝑟𝑟𝜃

 is the

orientation error of the pitch. 𝐸𝑟𝑟𝜙
is the orientation error of

the roll.

A. 4-DOF SCARA Manipulator

This section thoroughly assesses the performance of

diverse metaheuristic algorithms when applied to the 4-DOF

SCARA manipulator. The evaluation examines position and

orientation errors and the time required for the algorithms to

converge to the optimal solution. The findings are presented

graphically in Fig. 9 through Fig. 12.

• Ant Colony Optimization: As shown in Fig. 9, this

algorithm achieved outstanding results with minimal

errors. The maximum position error was 8.99e-05 mm,

the minimum was 0 mm, and the mean error was 7.55e-

06 mm. The orientation errors were consistently zero

across all axes. Additionally, the algorithm demonstrated

efficient computation times, with a maximum of 2.4634

seconds, a minimum of 1.0797 seconds, and a mean of

1.4913 seconds.

• Mayfly Optimization Algorithm: Similar to ACO, as

depicted in Fig. 10, the Mayfly Optimization Algorithm

exhibited excellent error reduction. The position error

ranged from 9.17e-06 mm to 0 mm, with a mean error of

4.8115e-07 mm. Orientation errors were also consistently

zero. The computation times were competitive, with a

maximum of 4.0249 seconds, a minimum of 2.2581

seconds, and a mean of 3.0788 seconds.

• Stochastic Paint Optimizer Algorithm: SPO demonstrated

in Fig. 11 competitive performance in minimizing

position errors, with a mean error of 3.1412e-05 mm,

comparable to other algorithms. Its orientation errors

were also negligible. The moderate computational time of

1.6283 seconds suggests efficient optimization for precise

robotic arm configurations.

• Ant Lion Optimizer: As shown in Fig. 12, ALO

demonstrated good performance in minimizing position

errors, with a mean error of 2.12e-05 mm, comparable to

other algorithms. However, it exhibited higher orientation

errors, especially in the 𝜙 angle. The computational time

of 3.8612 seconds suggests moderate efficiency in

solving the inverse kinematic problem for this robotic

arm.

(a) (b)

Fig. 9. Results of Ant Colony Optimization, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 10. Results of Mayfly Optimization Algorithm, (a) position and orientation errors and (b) Computation time

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1738

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

(a) (b)

Fig. 11. Results of Stochastic Paint Optimizer Algorithm, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 12. Results of Ant Lion Optimizer algorithm, (a) position and orientation errors, and (b) Computation time

B. 6-DOF ABB IRB 1600 Manipulator

This section examines the effectiveness of various

metaheuristic algorithms when applied to the 6-degree-of-

freedom ABB IRB 1600 manipulator. Fig. 13 to Fig. 16

provide graphical representations of the position and

orientation errors, as well as the convergence times, for each

algorithm tested on this robotic platform.

• Ant Colony Optimization: As depicted in Fig. 13, ACO

demonstrated good performance in minimizing position

errors, with a mean error of 0.0091 mm, which is

acceptable for most applications. However, as shown in

Fig. 13, it exhibited slightly higher orientation errors

compared to other algorithms, particularly in the 𝜙 angle.

Additionally, the computational time of 3.8788 seconds

indicates moderate efficiency in solving the inverse

kinematic problem for this robotic arm.

• Mayfly Optimization Algorithm: As observed in Fig. 14,

MO exhibited exceptional performance in minimizing

errors across all metrics for the ABB IRB 1600

manipulator. Its mean position error of 0.0091 mm and

orientation errors were significantly lower compared to

other algorithms. However, as shown in Fig. 14, its

computational time of 3.8788 seconds suggests the need

for optimization to improve efficiency.

• Stochastic Paint Optimizer Algorithm: As illustrated in

Fig. 15, SPO showed good performance in minimizing

errors for the ABB IRB 1600 manipulator, achieving

mean errors similar to other algorithms. Its computational

time of 3.8788 seconds indicates moderate efficiency in

solving the inverse kinematic problem.

• Ant Lion Optimizer: ALO showcased in Fig. 16 a

competitive performance in minimizing position errors,

with a mean error of 0.2393 mm, comparable to other

algorithms. However, its orientation errors were slightly

higher, indicating room for improvement. The

computational time of 3.8788 seconds suggests

reasonable efficiency in achieving accurate robotic arm

configurations.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1739

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

(a) (b)

Fig. 13. Results of Ant Colony Optimization, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 14. Results of Mayfly Optimization Algorithm, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 15. Results of Stochastic Paint Optimizer Algorithm, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 16. Results of Ant Lion Optimizer algorithm, (a) position and orientation errors, and (b) Computation time

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1740

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

C. 6-DOF 12 Links Motoman SDA20D

We now focus on evaluating the effectiveness of

individual metaheuristic algorithms on the 12-link, 6-degree-

of-freedom Motoman SDA20D manipulator. Fig. 17 to Fig.

20 provide comprehensive graphical depictions of position

and orientation errors, together with convergence durations

for every algorithm used on this same robotic platform.

• Ant Colony Optimization: As shown in Fig. 17, ACO

demonstrated a competitive performance in minimizing

position errors for the Motoman SDA20D robotic arm,

with a mean error of 0.0044 mm, indicating its

effectiveness in achieving accurate robotic arm

configurations. However, it exhibited relatively higher

orientation errors compared to other algorithms,

particularly in the 𝜙 angle. The longer computational time

of 6.7593 seconds suggests a trade-off between accuracy

and computational efficiency.

• Mayfly Optimization Algorithm: MO showcased

remarkable accuracy in minimizing errors for the

Motoman SDA20D robotic arm, achieving the lowest

mean errors among the algorithms considered. Despite its

longer computational time of 8.3173 seconds, its superior

accuracy makes it a preferred choice for high-precision

applications, as illustrated in Fig. 18.

• Stochastic Paint Optimizer Algorithm: As depicted in Fig.

19, SPO exhibited good performance in minimizing

errors for the ABB IRB 1600 manipulator, achieving

mean errors similar to other algorithms. Its computational

time of 3.8788 seconds indicates moderate efficiency in

solving the inverse kinematic problem.

• Ant Lion Optimizer: ALO demonstrated good

performance in minimizing position errors for the

Motoman SDA20D robotic arm, with a mean error of

0.0022 mm, as shown in Fig. 20, comparable to other

algorithms. However, it exhibited relatively higher

orientation errors, especially in the 𝜙 angle. The longer

computational time of 8.0490 seconds suggests a trade-

off between accuracy and computational efficiency, as

seen in Fig. 19.

(a) (b)

Fig. 17. Results of Ant Colony Optimization, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 18. Results of Mayfly Optimization Algorithm, (a) position and orientation errors, and (b) Computation time

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1741

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

(a) (b)

Fig. 19. Results of Stochastic Paint Optimizer Algorithm, (a) position and orientation errors, and (b) Computation time

(a) (b)

Fig. 20. Results of Ant Lion Optimizer algorithm, (a) position and orientation errors, and (b) Computation time

TABLE VIII. TABLE COMPARING THE RESULTS OF EVERY ROBOT ARM

Robot Arm The algorithm Results MAX MIN MEAN

4-dof SCARA

manipulator

Ant Colony

Optimization

Position error Err (mm) 8.99e-05 0 7.55e-06

Orientation error Errψ (° deg) 0 0 0

Orientation error Errθ (° deg) 0 0 0

Orientation error Errφ (° deg) 3.69e-04 3.8250e-08 1.9988e-05

Times (s) 2.4634 1.0797 1.4913

Mayfly Optimization

Algorithm

Position error Err (mm) 9.17e-06 0 4.8115e-07

Orientation error Errψ (° deg) 0 0 0

Orientation error Errθ (° deg) 0 0 0

Orientation error Errφ (° deg) 4.20e-04 2.9490e-08 1.4663e-05

Times (s) 4.0249 2.2581 3.0788

Stochastic Paint

Optimizer Algorithm

Position error Err (mm) 6.99e-04 2.3611e-12 3.1412e-05

Orientation error Errψ (° deg) 0 0 0

Orientation error Errθ (° deg) 0 0 0

Orientation error Errφ (° deg) 3.17e-04 9.3697e-09 2.4197e-05

Times (s) 2.4797 1.3113 1.6283

Ant Lion Optimizer

algorithm

Position error Err (mm) 4.98e-05 3.8003e-06 2.12e-05

Orientation error Errψ (° deg) 0 0 0

Orientation error Errθ (° deg) 0 0 0

Orientation error Errφ (° deg) 0.0981 4.3288e-06 0.0164

Times (s) 5.2077 3.5073 3.8612

6-dof ABB IRB

1600 manipulator

Ant Colony

Optimization

Position error Err (mm) 0.1625 0 0.0091

Orientation error Errψ (° deg) 0.2606 5.0763e-08 0.0209

Orientation error Errθ (° deg) 0.1080 3.3750e-08 0.0071

Orientation error Errφ (° deg) 0.0974 1.4513e-07 0.0049

Times (s) 4.6144 3.2092 3.8788

Mayfly Optimization

Algorithm

Position error Err (mm) 0.1625 0 0.0091

Orientation error Errψ (° deg) 0.2606 5.0763e-08 0.0209

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1742

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

Orientation error Errθ (° deg) 0.1080 3.3750e-08 0.0071

Orientation error Errφ (° deg) 0.0974 1.4513e-07 0.0049

Times (s) 4.6144 3.2092 3.8788

Stochastic Paint

Optimizer Algorithm

Position error Err (mm) 0.1625 0 0.0091

Orientation error Errψ (° deg) 0.2606 5.0763e-08 0.0209

Orientation error Errθ (° deg) 0.1080 3.3750e-08 0.0071

Orientation error Errφ (° deg) 0.0974 1.4513e-07 0.0049

Times (s) 4.6144 3.2092 3.8788

Ant Lion Optimizer

algorithm

Position error Err (mm) 0.9293 0 0.2393

Orientation error Errψ (° deg) 0.4736 0 0.0850

Orientation error Errθ (° deg) 0.3105 0 0.0312

Orientation error Errφ (° deg) 0.1826 0 0.0269

Times (s) 6.5926 0 5.1123

6-dof 12-link

Motoman SDA20D

Ant Colony

Optimization

Position error Err (mm) 0.0332 3.9399e-12 0.0044

Orientation error Errψ (° deg) 0.0782 3.1056e-08 0.0060

Orientation error Errθ (° deg) 0.1083 5.7238e-08 0.0056

Orientation error Errφ (° deg) 0.0518 1.2966e-07 0.0030

Times (s) 7.1060 6.6899 6.7593

Mayfly Optimization

Algorithm

Position error Err (mm) 1.49e-07 0 5.7463e-09

Orientation error Errψ (° deg) 3.71e-06 6.3506e-08 8.7512e-07

Orientation error Errθ (° deg) 7.14e-06 7.0878e-08 1.1281e-06

Orientation error Errφ (° deg) 2.08e-06 3.2610e-08 8.6681e-07

Times (s) 8.4731 8.2144 8.3173

Stochastic Paint

Optimizer Algorithm

Position error Err (mm) 3.73e-04 8.2627e-11 4.7558e-05

Orientation error Errψ (° deg) 0.0039 1.2975e-08 1.3772e-04

Orientation error Errθ (° deg) 5.50e-04 8.5515e-09 2.7164e-05

Orientation error Errφ (° deg) 0.0044 3.0660e-08 1.5937e-04

Times (s) 6.2927 6.0927 6.1651

Ant Lion Optimizer

algorithm

Position error Err (mm) 0.0209 2.2022e-04 0.0022

Orientation error Errψ (° deg) 0.0904 1.0403e-05 0.0133

Orientation error Errθ (° deg) 0.0827 5.9961e-07 0.0081

Orientation error Errφ (° deg) 0.0668 5.3355e-06 0.0086

Times (s) 8.4333 7.9543 8.0490

 All simulations were performed on a standard desktop

computer with an Intel Core i7-3600T 2.0 GHz processor and

8 GB DDR4 RAM. The algorithms were implemented in

Python without GPU acceleration or parallel computing

enhancements. As such, the reported computation times

reflect single-threaded CPU performance. It is expected that

substantial speed improvements could be achieved on more

advanced systems or through optimized implementations

using C++, multithreading, or GPU-based frameworks.

Future studies should explore these performance gains,

particularly for applications requiring real-time inverse

kinematics solutions.

Table VIII summarizes each metric's mean, maximum,

and minimum values. Across all robots, the Mayfly

Optimization Algorithm (MOA) consistently achieved the

lowest position and orientation errors, validating its strong

global search capability and fine-grained convergence.

However, MOA also had the highest average computation

times, particularly for the more complex Motoman SDA20D

(8.3173 s). ACO and SPOA demonstrated competitive

accuracy with faster execution times, while ALO maintained

acceptable position accuracy but was less robust in

minimizing orientation error, especially for higher-DOF

configurations.

As shown in Fig. 9 to Fig. 12, all four algorithms

produced negligible orientation errors (almost zero) due to

the limited complexity of the SCARA configuration. MOA

achieved the lowest mean position error (4.81e-07 mm),

followed by ACO (7.55e-06 mm) and SPOA (3.14e-05 mm).

ALO's performance, while still acceptable, had a higher

orientation error in the 𝜙 angle (mean 0.0164°), suggesting

possible instability in rotational refinement. ACO and SPOA

offered superior time efficiency (mean ≈ 1.5 s), making them

suitable for time-sensitive SCARA-based tasks. MOA,

despite its precision, required over 3 seconds on average,

reflecting its intensive search dynamics.

Fig. 13 to Fig. 16 detail the results for the ABB IRB 1600.

Here, MOA, ACO, and SPOA yielded identical mean

position errors (0.0091 mm), yet ALO showed significant

deviation (0.2393 mm). Orientation error analysis revealed

that MOA maintained the most stable and accurate pose

solutions, while ALO again demonstrated higher angular

error (mean 𝐸𝜓 = 0.085°). All algorithms showed similar

computation times (≈ 3.8 s), although ALO’s performance

drop in precision indicates suboptimal adaptation to this 6-

DOF workspace.

Fig. 17 to Fig. 20 reveal that this highly redundant system

posed the greatest challenge. MOA significantly

outperformed others, achieving a mean position error of

just 5.75e-09 mm and orientation error components below

1e-06°. ACO and SPOA delivered reasonable results (mean

position errors: 0.0044 mm and 4.75e-05 mm, respectively),

though ACO’s orientation error remained slightly elevated.

ALO again struggled with orientation refinement (mean 𝐸𝜙

 = 0.0086°). However, its runtime (8.0490 s) was slightly

lower than MOA’s (8.3173 s), suggesting marginal speed

gains at the cost of precision.

Compared to recent inverse kinematics research using

nature-inspired or hybrid techniques, the results of this study

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1743

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

show substantial improvements in accuracy and competitive

computational efficiency.

For the 4-DOF SCARA robot, [17] reported a mean

squared error (MSE) of 0.12846 mm using a hybrid PSO-

ANN approach. In contrast, our MOA implementation

achieved a mean position error of 4.81e-07 mm—an

improvement of over two orders of magnitude—without

requiring neural network training overhead. This underscores

the strength of pure metaheuristic search when effectively

tuned.

For the 6-DOF ABB IRB 1600, [18] applied NSGA-II and

BCMOA, achieving a mean position error of ~0.8 mm and

orientation error of 0.056°. In our work, MOA reduced these

metrics to 0.0091 mm and 0.0209°, respectively, confirming

significant accuracy gains. Additionally, [19] applied on a

similar ABB robot, reported a mean position error of 0.0408

mm and orientation error of 0.0761°, with a very low runtime

(~0.78 s). While Boomerang was faster, our results achieved

higher precision, which is favorable in tasks prioritizing

accuracy over speed.

For the Motoman SDA20D, [20] reported a position error

of 0.52 mm using MOFOPSO. In contrast, our MOA

approach yielded a mean position error of 5.75e-09 mm,

which is dramatically lower and demonstrates the MOA’s

strong capability in handling high-DOF redundant kinematic

structures. Even SPOA and ACO achieved superior precision

compared to MOFOPSO.

These comparisons highlight that metaheuristic

algorithms, when properly applied and tuned, can outperform

hybrid or multi-objective methods from the literature—

especially in achieving sub-millimeter or sub-degree

accuracy essential in high-precision robotic applications.

VI. CONCLUSION

This study presents a comprehensive comparative

analysis of four metaheuristic algorithms—Ant Colony

Optimization (ACO), Mayfly Optimization Algorithm

(MOA), Stochastic Paint Optimizer Algorithm (SPOA), and

Ant Lion Optimizer (ALO)—for solving the inverse

kinematics (IK) problem across three robotic manipulators:

the 4-DOF SCARA, the 6-DOF ABB IRB 1600, and the 6-

DOF 12-link Motoman SDA20D. A unified objective

function combining position and orientation errors was

optimized for each manipulator at 30 randomly sampled

target positions.

The key findings show that the MOA consistently

achieved the highest precision in both position and

orientation tracking, particularly for redundant systems like

the Motoman SDA20D. However, this came at the cost of

significantly longer computation times—e.g., 8.3173 seconds

on average for the most complex robot—making it less

suitable for real-time applications without further

optimization. In contrast, ACO and SPOA offered faster

convergence with only minor accuracy trade-offs, making

them viable for tasks with tighter execution constraints. ALO,

while competitive in minimizing position errors, exhibited

instability in orientation accuracy, especially in higher-DOF

systems.

The primary theoretical contribution of this study is the

development of a consistent benchmarking framework to

evaluate metaheuristic-based IK solvers across manipulators

of varying complexity. The analysis demonstrates the

sensitivity of algorithm performance to kinematic structure,

highlighting that no single algorithm is universally optimal.

Moreover, this work reinforces the importance of balancing

exploration-exploitation strategies, parameter tuning, and

task-specific error tolerances when deploying metaheuristic

methods in robotics.

Despite its contributions, the study has several

limitations. First, all algorithms were tested under offline

simulation conditions using 30 random target configurations,

which may not fully capture singularities, boundary effects,

or dynamically changing environments. Second, the

evaluation did not include comparisons to classical

deterministic IK methods (e.g., Jacobian pseudoinverse or

CCD), leaving open questions about whether the increased

computational overhead of metaheuristics is justified in

scenarios demanding real-time precision. Third, parameter

tuning was static, and the results may not generalize to

structurally dissimilar robots without reconfiguration.

To extend the impact of this research, future work should

include:

• Integration of adaptive parameter tuning or hybrid

metaheuristic–local optimization methods to accelerate

convergence,

• Application of machine learning (ML) and deep

learning (DL) techniques, including reinforcement

learning (RL), to dynamically guide or initialize the IK

solution space,

• Exploration of hybrid metaheuristic–neural network

frameworks that leverage learned models to reduce

search time while retaining solution diversity,

• Benchmarking against analytical and numerical IK

solvers under noise and perturbation,

• Deployment of these algorithms on physical robots to

assess real-world robustness,

• Expansion to more complex or high-DOF manipulators to

evaluate algorithmic scalability.

In summary, this study provides valuable guidance for

selecting and adapting metaheuristic algorithms to solve

inverse kinematics challenges across various robotic

platforms. While highly effective in accuracy, trade-offs in

computational cost must be addressed before real-time

deployment. The results lay a strong foundation for future

exploration into scalable, robust, and adaptive IK

optimization frameworks in modern robotics.

REFERENCES

[1] D. Manocha and Y. Zhu, “A fast algorithm and system for the inverse

kinematics of general serial manipulators,” in Proceedings of the 1994
IEEE International Conference on Robotics and Automation, pp.
3348–3353, 1994, doi: 10.1109/ROBOT.1994.351055.

[2] R. R. Kumar and P. Chand, “Inverse kinematics solution for trajectory
tracking using artificial neural networks for SCORBOT ER-4u,” in

2015 6th International Conference on Automation, Robotics and

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1744

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

Applications (ICARA), pp. 364–369, 2015, doi:
10.1109/ICARA.2015.7081175.

[3] A. Zamanzadeh and H. Ahmadi, “Inverse kinematic of European

Robotic Arm based on a new geometrical approach,” AUT J. Mech.
Eng., vol. 5, no. 1, Mar. 2021, doi: 10.22060/ajme.2020.17642.5866.

[4] C.-K. Ho and C.-T. King, “Automating the Learning of Inverse
Kinematics for Robotic Arms with Redundant DoFs,” arXiv preprint
arXiv:2202.07869, 2022, doi: 10.48550/ARXIV.2202.07869.

[5] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions With
Singularity Robustness for Robot Manipulator Control,” J. Dyn. Syst.

Meas. Control, vol. 108, no. 3, pp. 163–171, Sep. 1986, doi:
10.1115/1.3143764.

[6] H. N. Ghafil and K. Jármai, “Optimization Algorithms for Inverse

Kinematics of Robots with MATLAB Source Code,” in Vehicle and
Automotive Engineering 3, pp. 468–477, 2021, doi: 10.1007/978-981-
15-9529-5_40.

[7] K. K. Dash, B. B. Chaudhury, and S. K. Senapati, “Inverse Kinematics
Analysis of an Industrial Robot Using Soft Computing,” in

Applications of Robotics in Industry Using Advanced Mechanisms, vol.
5, pp. 270–279, 2020, doi: 10.1007/978-3-030-30271-9_25.

[8] G. Singh and V. K. Banga, “Kinematics and Trajectory Planning

Analysis Based On Hybrid Optimization Algorithms for an Industrial
Robotic Manipulators,” Soft computing, vol. 26, no. 21, pp. 11339-
11372, 2022. doi: 10.21203/rs.3.rs-1313895/v1.

[9] S. Yaseen and J. Prakash, “Analysis of Numerical Method on Inverse

Kinematics of Robotic Arm Welding with Artificial Intelligence,” J.

Phys. Conf. Ser., vol. 1964, no. 6, p. 062104, Jul. 2021, doi:
10.1088/1742-6596/1964/6/062104.

[10] T. Aravinthkumar, M. Suresh, and B. Vinod, “Kinematic Analysis of 6

DOF Articulated Robotic Arm,” Int. Res. J. Multidiscip. Technovation,
pp. 1–5, Jan. 2021, doi: 10.34256/irjmt2111.

[11] M. Haohao et al., “Inverse kinematics of six degrees of freedom robot
manipulator based on improved dung beetle optimizer algorithm,”

IAES Int. J. Robot. Autom. IJRA, vol. 13, no. 3, p. 272, Sep. 2024, doi:
10.11591/ijra.v13i3.pp272-282.

[12] F. Jin and J. Zhai, “SCAPSO-based Inverse Kinematics Method and Its

Application to Industrial Robotic Manipulator,” in 2020 39th Chinese

Control Conference (CCC), pp. 5933–5938, 2020, doi:

10.23919/CCC50068.2020.9188613.

[13] V. Vazquez-Castillo, J. Torres-Figueroa, E. A. Merchan-Cruz, E.
Vega-Alvarado, P. A. Nino-Suarez, and R. G. Rodriguez-Canizo,

“Inverse Kinematics Solution of Articulated Robots Using a Heuristic

Approach for Optimizing Joint Displacement,” IEEE Access, vol. 10,
pp. 63132–63151, 2022, doi: 10.1109/ACCESS.2022.3182496.

[14] H. Deng and C. Xie, “An improved particle swarm optimization

algorithm for inverse kinematics solution of multi-DOF serial robotic
manipulators,” Soft Comput., vol. 25, no. 21, pp. 13695–13708, Nov.
2021, doi: 10.1007/s00500-021-06007-6.

[15] S. Zhang, A. Li, J. Ren, and R. Ren, “Kinematics inverse solution of

assembly robot based on improved particle swarm optimization,”

Robotica, vol. 42, no. 3, pp. 833–845, Mar. 2024, doi:
10.1017/S0263574723001789.

[16] L. A. Nguyen, H. Danaci, and T. L. Harman, “Inverse Kinematics For
Serial Robot Manipulator End Effector Position And Orientation By

Particle Swarm Optimization,” in 2022 26th International Conference

on Methods and Models in Automation and Robotics (MMAR), pp.

288–293, 2022, doi: 10.1109/MMAR55195.2022.9874317.

[17] R. Bouzid, J. Narayan, and H. Gritli, “Hybrid Metaheuristic and

Artificial Neural Network Approach for Solving Inverse Kinematics of
a SCARA Manipulator Robot,” in 2024 International Conference on

Innovation and Intelligence for Informatics, Computing, and

Technologies (3ICT), pp. 385–392, 2024, doi:
10.1109/3ict64318.2024.10824671.

[18] C. A. Pena, M. A. Guzman, and P. F. Cardenas, “Inverse kinematics of
a 6 DOF industrial robot manipulator based on bio-inspired multi-

objective optimization techniques,” in 2016 IEEE Colombian

Conference on Robotics and Automation (CCRA), pp. 1–6, 2016, doi:
10.1109/CCRA.2016.7811428.

[19] O. Duymazlar and D. Engi̇N, “Boomerang Algorithm based on Swarm

Optimization for Inverse Kinematics of 6 DOF Open Chain
Manipulators,” Turk. J. Electr. Eng. Comput. Sci., vol. 31, no. 2, pp.
342–359, Mar. 2023, doi: 10.55730/1300-0632.3988.

[20] S. Luo, D. Chu, Q. Li, and Y. He, “Inverse Kinematics Solution of 6-
DOF Manipulator Based on Multi-Objective Full-Parameter

Optimization PSO Algorithm,” Front. Neurorobotics, vol. 16, p.
791796, Mar. 2022, doi: 10.3389/fnbot.2022.791796.

[21] L. C. Antonio-Gopar, C. Lopez-Franco, N. Arana-Daniel, E. Gonzalez-

Vallejo, and A. Y. Alanis, “Inverse Kinematics for a Manipulator

Robot based on Differential Evolution Algorithm,” in 2018 IEEE Latin
American Conference on Computational Intelligence (LA-CCI), pp. 1–
5, 2018, doi: 10.1109/LA-CCI.2018.8625233.

[22] H. K. Dave, M. D. Chanpura, S. J. Kathrotiya, D. D. Patolia, D. D.

Dodiya, and P. S. Kharva, “Design, Development and Control of

SCARA for Manufacturing Processes,” in Recent Advances in
Manufacturing Modelling and Optimization, pp. 551–567, 2022, doi:
10.1007/978-981-16-9952-8_47.

[23] X.-S. Yang, “Metaheuristic Optimization: Algorithm Analysis and
Open Problems,” in Experimental Algorithms, vol. 6630, pp. 21–32,
2011, doi: 10.1007/978-3-642-20662-7_2.

[24] A. H. Halim, I. Ismail, and S. Das, “Performance assessment of the

metaheuristic optimization algorithms: an exhaustive review,” Artif.

Intell. Rev., vol. 54, no. 3, pp. 2323–2409, Mar. 2021, doi:

10.1007/s10462-020-09906-6.

[25] X.-S. Yang, A. H. Gandomi, S. Talatahari, and A. H. Alavi,

Metaheuristics in water, geotechnical and transport engineering, 1st.
edition. in Elsevier insights. Amsterdam: Elsevier, 2012.

[26] A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, “Optimal
power flow by enhanced genetic algorithm,” IEEE Trans. Power Syst.,

vol. 17, no. 2, pp. 229–236, May 2002, doi:
10.1109/TPWRS.2002.1007886.

[27] H. S. Maharana and S. K. Dash, “Quantum behaved artificial bee

colony based conventional controller for optimum dispatch,” Int. J.
Electr. Comput. Eng. IJECE, vol. 13, no. 2, p. 1260, Apr. 2023, doi:
10.11591/ijece.v13i2.pp1260-1271.

[28] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi,
“A particle swarm optimization for reactive power and voltage control

considering voltage security assessment,” IEEE Trans. Power Syst.,
vol. 15, no. 4, pp. 1232–1239, Nov. 2000, doi: 10.1109/59.898095.

[29] G. Zhao et al., “A Tandem Robotic Arm Inverse Kinematic Solution

Based on an Improved Particle Swarm Algorithm,” Front. Bioeng.
Biotechnol., vol. 10, p. 832829, May 2022, doi:
10.3389/fbioe.2022.832829.

[30] A. Kaveh, S. Talatahari, and N. Khodadadi, “Stochastic paint
optimizer: theory and application in civil engineering,” Eng. Comput.,

vol. 38, no. 3, pp. 1921–1952, Jun. 2022, doi: 10.1007/s00366-020-
01179-5.

[31] L. Abualigah, M. Shehab, M. Alshinwan, S. Mirjalili, and M. A. Elaziz,

“Ant Lion Optimizer: A Comprehensive Survey of Its Variants and
Applications,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1397–
1416, May 2021, doi: 10.1007/s11831-020-09420-6.

[32] P. K. Sahu, G. Balamurali, G. B. Mahanta, and B. B. Biswal, “A

Heuristic Comparison of Optimization Algorithms for the Trajectory

Planning of a 4-axis SCARA Robot Manipulator,” in Computational
Intelligence in Data Mining, vol. 711, pp. 569–582, 2019, doi:
10.1007/978-981-10-8055-5_51.

[33] M. Dorigo and T. Stützle, “Ant Colony Optimization: Overview and
Recent Advances,” in Handbook of Metaheuristics, vol. 272, pp. 311–
351, 2019, doi: 10.1007/978-3-319-91086-4_10.

[34] S. Manakkadu and S. Dutta, “ACO based Adaptive RBFN Control for

Robot Manipulators,” arXiv preprint arXiv:2208.09165, 2022, doi:
10.48550/ARXIV.2208.09165.

[35] V. Maniezzo and A. Carbonaro, “Ant Colony Optimization: An

Overview,” in Essays and Surveys in Metaheuristics, vol. 15, pp. 469–
492, 2002, doi: 10.1007/978-1-4615-1507-4_21.

[36] C. Wang, B. Song, H. Zhang, and C. Sun, “Analysis of passive location

communication system based on intelligent optimization algorithm,” J.
Phys. Conf. Ser., vol. 1325, no. 1, p. 012147, Oct. 2019, doi:
10.1088/1742-6596/1325/1/012147.

[37] M. Couceiro and P. Ghamisi, “Particle Swarm Optimization,” in
Fractional Order Darwinian Particle Swarm Optimization, pp. 1–10,
2016, doi: 10.1007/978-3-319-19635-0_1.

[38] M. Fernandez, J. Caballero, L. Fernandez, and A. Sarai, “Genetic

algorithm optimization in drug design QSAR: Bayesian-regularized

genetic neural networks (BRGNN) and genetic algorithm-optimized

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1745

Aziz El Mrabet, Inverse Kinematics Optimization Using ACO, MOA, SPOA, and ALO: A Benchmark Study on Industrial

Robot Arms

support vectors machines (GA-SVM),” Mol. Divers., vol. 15, no. 1, pp.
269–289, Feb. 2011, doi: 10.1007/s11030-010-9234-9.

[39] X. S. Yang and X. He, “Firefly algorithm: recent advances and

applications,” Int. J. Swarm Intell., vol. 1, no. 1, p. 36, 2013, doi:
10.1504/IJSI.2013.055801.

[40] K. Zervoudakis and S. Tsafarakis, “A mayfly optimization algorithm,”
Comput. Ind. Eng., vol. 145, p. 106559, Jul. 2020, doi:
10.1016/j.cie.2020.106559.

[41] A. Sundaram and N. S. Alkhaldi, “Multi-Objective Stochastic Paint
Optimizer for Solving Dynamic Economic Emission Dispatch with

Transmission Loss Prediction Using Random Forest Machine Learning

Model,” Energies, vol. 17, no. 4, p. 860, Feb. 2024, doi:
10.3390/en17040860.

[42] A. Kumar, V. Kumar, and V. Modgil, “Performance modeling and
optimization for complex repairable system of paint manufacturing

unit using a hybrid BFO-PSO algorithm,” Int. J. Qual. Reliab. Manag.,

vol. 36, no. 7, pp. 1212–1228, Aug. 2019, doi: 10.1108/IJQRM-02-
2018-0041.

[43] N. Sharma, Varun, and Siddhartha, “Stochastic techniques used for

optimization in solar systems: A review,” Renew. Sustain. Energy Rev.,

vol. 16, no. 3, pp. 1399–1411, Apr. 2012, doi:
10.1016/j.rser.2011.11.019.

[44] M. Azizi and S. Talatahari, “Enhanced Stochastic Paint Optimizer for

Nonlinear Design of Fuzzy Logic Controllers in Steel Building

Structures for the Near-Fault Earthquakes,” in Advances in Civil and
Industrial Engineering, pp. 306–335, 2023, doi: 10.4018/978-1-6684-
5643-9.ch012.

[45] S. Mirjalili, “The Ant Lion Optimizer,” Adv. Eng. Softw., vol. 83, pp.
80–98, May 2015, doi: 10.1016/j.advengsoft.2015.01.010.

[46] S. Mirjalili, P. Jangir, and S. Saremi, “Multi-objective ant lion
optimizer: a multi-objective optimization algorithm for solving

engineering problems,” Appl. Intell., vol. 46, no. 1, pp. 79–95, Jan.
2017, doi: 10.1007/s10489-016-0825-8.

[47] D. Oliva, S. Hinojosa, M. A. Elaziz, and N. Ortega-Sánchez, “Context

based image segmentation using antlion optimization and sine cosine
algorithm,” Multimed. Tools Appl., vol. 77, no. 19, pp. 25761–25797,
Oct. 2018, doi: 10.1007/s11042-018-5815-x.

[48] S. Luke, Essentials of metaheuristics: a set of undergraduate lecture
notes. Washington, DC: The author, 2010.

[49] S. Dereli and R. Köker, “Simulation based calculation of the inverse
kinematics solution of 7-DOF robot manipulator using artificial bee

colony algorithm,” SN Appl. Sci., vol. 2, no. 1, 2020, doi:
10.1007/s42452-019-1791-7.

[50] A. Kumar, V. K. Banga, D. Kumar, and T. Yingthawornsuk,

“Kinematics Solution using Metaheuristic Algorithms,” in 2019 15th

International Conference on Signal-Image Technology & Internet-
Based Systems (SITIS), pp. 505–510, 2019, doi:
10.1109/SITIS.2019.00086.

