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Abstract—This study investigates the application of 

metaheuristic algorithms to solve the inverse kinematics (IK) 

problem in robotic manipulators, which is often challenging for 

high-degree-of-freedom systems. The research contribution is 

the comparative evaluation of four recent metaheuristic 

algorithms—Ant Colony Optimization, Mayfly Optimization 

Algorithm, Stochastic Paint Optimizer, and Ant Lion 

Optimizer—across different robot configurations. A kinematic 

analysis was conducted on three robotic arms: a 4-DOF 

SCARA, a 6-DOF ABB IRB 1600, and the dual-arm 15-DOF 

Motoman SDA20D/12L. For each manipulator, the end-effector 

pose was optimized by solving the IK problem using the selected 

algorithms. A total of 30 random target positions were tested 

within the operational space to ensure diversity in pose 

challenges; while not exhaustive, this sampling provides 

statistically informative trends. We evaluate each algorithm 

based on the number of optimal solutions obtained, the precision 

of the computed joint configurations, and execution time. The 

results indicate that the Mayfly Optimization Algorithm 

consistently delivered the highest precision with relatively low 

execution time across all robot types. In contrast, the Ant Lion 

Optimizer showed inconsistent performance in higher-DOF 

settings. Unlike traditional Jacobian-based or analytical IK 

methods, metaheuristics offer flexibility in handling complex, 

nonlinear systems without requiring gradient information. 

These findings provide practical insight for selecting suitable 

algorithms in real-world robotic applications. 

Keywords—Robot Arm; Inverse Kinematics; Metaheuristic 

Algorithm; Optimization Techniques; Computational Complexity. 

I. INTRODUCTION  

The resolution of the inverse kinematics (IK) issue is 

essential for the attainment of precise control within robotic 

systems. Inverse kinematics pertains to the process of 

ascertaining the requisite joint angles necessary to position a 

manipulator's end-effector at a designated spatial location and 

orientation. As advancements in robotics lead to the 

development of increasingly intricate and redundant 

manipulators, particularly those exhibiting degrees of 

freedom (DOF) that surpass six, the resolution of this issue 

presents heightened challenges. Conventional analytical 

methodologies, including the algebraic method [1], 

geometric techniques [2], [3], and iterative solutions, 

frequently prove inadequate [4]. This inadequacy is 

particularly pronounced in robots characterized by high DOF, 

where multiple joint configurations may yield identical end-

effector positions. Such redundant configurations introduce 

complexities, including singularities and nonlinearities [5], 

[6], necessitating alternative computational methodologies. 

Practical applications of robotics introduce further 

complexities, encompassing joint limitations, sensor 

inaccuracies, physical impediments, and model discrepancies 

[7], [8], [9]. These uncertainties undermine the reliability of 

idealized mathematical frameworks, thereby constraining the 

efficacy of traditional IK solvers. Although calibration may 

alleviate certain challenges, it remains incapable of entirely 

obviating the requirement for more adaptive and flexible 

solution strategies [10], [11]. 

In response to these constraints, metaheuristic algorithms 

have emerged as viable alternatives for the resolution of IK 

challenges within complex, nonlinear, and high-dimensional 

search spaces[12], [13], [14] . These algorithms—such as 

Genetic Algorithms, Particle Swarm Optimization [15], and 

Ant Colony Optimization [16]—draw inspiration from 

natural phenomena and possess the capability to transcend 

local optima through dynamic mechanisms of exploration 

and exploitation. Nonetheless, these algorithms are 

accompanied by trade-offs, including a heightened sensitivity 

to parameter calibration, stochastic behavior, and potential 

limitations in real-time applications. 

A multitude of studies have highlighted the potential of 

these techniques across diverse robotic platforms. For 

example, as illustrated in [17], the integration of Particle 

Swarm Optimization (PSO) and Genetic Algorithms (GA) 

with Artificial Neural Networks (ANNs) for a 4-DOF 

SCARA robot resulted in a mean squared error (MSE) of 

0.12846 with the PSO-ANN hybrid—surpassing GA-ANN in 

terms of accuracy and underscoring the potential of hybrid 

methodologies for real-time control applications. In the case 

of the 6-DOF ABB IRB 1600 robot, [18] implemented 

NSGA-II and the Bacterial Chemotaxis Multi-Objective 
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Algorithm (BCMOA), achieving highly precise end-effector 

poses with orientation errors as minimal as 5.4 × 10⁻⁸ and 

mean positional errors of merely 0.8 mm. Additionally, the 

Boomerang Algorithm, introduced by [19], exhibited 

promising real-time capabilities by achieving a precise IK 

solution within 8 seconds for the ABB IRB120 robot, with a 

mean positional error of 0.04 mm and a success rate of 

95%—outperforming several variants of PSO. For more 

sophisticated robots, such as the Motoman SDA20D/12L, 

[20] proposed a Multi-Objective Full-Parameter 

Optimization PSO (MOFOPSO) methodology that 

concurrently optimized position, posture, and joint 

constraints. This algorithm attained a positional error of only 

0.52 mm, demonstrating both precision and stability in high-

DOF manipulators. 

Despite these advancements, comparative evaluations of 

newer metaheuristic algorithms across diverse manipulator 

architectures remain scarce. This study endeavors to bridge 

this gap by assessing the performance of four recent and 

promising metaheuristic algorithms—Ant Colony 

Optimization (ACO), Mayfly Optimization Algorithm 

(MOA), Stochastic Paint Optimizer Algorithm (SPOA), and 

Ant Lion Optimizer (ALO)—on a representative array of 

robotic arms, encompassing both redundant and non-

redundant manipulators. 

The research contribution is a systematic comparative 

analysis of these four metaheuristics across three 

manipulators: a 4-DOF SCARA, a 6-DOF ABB IRB 1600, 

and a 15-DOF Motoman SDA20D/12L. Using 30 randomly 

generated end-effector targets per manipulator, the study 

assesses each algorithm’s performance based on positional 

accuracy, convergence behavior, computational time, and 

solution reliability. The findings aim to guide robotics 

researchers and engineers in selecting appropriate 

optimization strategies for various IK scenarios—particularly 

in contexts requiring scalable, precise, and real-time 

solutions. 

As illustrated in Fig. 1, this paper is structured as follows: 

Section 1 presents the kinematic analysis of the manipulator 

robot examined in the study. Section 2 delves into an 

overview of metaheuristic techniques and kinematic analysis. 

Section 3 then describes the optimization problems 

addressed. Subsequently, Section 4 comprehensively details 

the performance of the algorithms and reports the obtained 

results. Finally, Section 5 encapsulates the conclusions drawn 

from this research, offering insights into the implications of 

the findings for future work in the field of robotic kinematics.  

II. KINEMATIC ANALYSIS OF MANIPULATOR ROBOTS 

In the context of robotic manipulators, two fundamental 

kinematic problems arise: forward kinematics and inverse 

kinematics. Forward kinematics involves determining the 

end-effector's position and orientation relative to the base, 

using the joint angles of the robot manipulator. Conversely, 

inverse kinematics focuses on identifying the necessary joint 

angles to achieve a desired end-effector position. 

Establishing the forward kinematic model of the 

manipulator is a crucial step in addressing the inverse 

kinematics challenge. The Denavit-Hartenberg convention is 

the most widely adopted standard for elucidating the 

kinematic relationships between the links and joints of a 

serial manipulator. Firmly rooted in the mechanical 

configuration of the manipulator, this standard provides a 

robust framework for analysis [21]. 

 

Fig. 1. IK Problem-Solving Process for SCARA, ABB, and Motoman 

Manipulators 

A. Denavit-Hartenberg (DH)    

The Denavit-Hartenberg (DH) method is a widely 

adopted approach in robotics for modeling the kinematics of 

robots with i-degrees of freedom. This technique utilizes four 

key parameters: joint angle 𝜃, joint distance 𝑑, link length 𝑎, 

and joint twist 𝛼, to characterize the geometric relationships 

between consecutive robot joints. These parameters are 

determined for each joint up to the 𝑖-th joint in the robot. The 

DH method provides a systematic framework for describing 

the kinematic structure of robotic systems. 

● 𝜃𝑖 represents the joint angle, the angle between 𝑥𝑖−1 and 

𝑥𝑖. 

● 𝑑𝑖 denotes the translation along the 𝑧𝑖−1 axis. 

● 𝑎𝑖 corresponds to the length of the 𝑖-th link. 

● 𝛼𝑖 signifies the joint twist, the angle between 𝑧𝑖−1 and 𝑧𝑖. 

The homogeneous transformation for each joint can be 

represented as the product of four basic transformations: 

𝐴𝑖 = 𝑅𝑜𝑡𝑧𝑖𝜃𝑖
𝑇𝑟𝑎𝑛𝑠𝑧𝑖𝑑𝑖

𝑇𝑟𝑎𝑛𝑠𝑥𝑖𝑎𝑖
𝑅𝑜𝑡𝑥𝑖𝛼𝑖

 (1) 
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 (2) 

B. 4-DOF SCARA manipulator 

The 4-DOF SCARA manipulator is renowned for its 

simple yet highly effective design [22], making it a preferred 

choice for pick-and-place and assembly applications. The 

Denavit-Hartenberg parameters of the 4-DOF SCARA 

manipulator, accompanied by an illustrative GIF image, are 

referenced in Fig. 2 and Table I. 

TABLE I.  THE DH PARAMETERS FOR THE 4-DOF SCARA 

Joint i 𝛉𝒊(𝒅𝒆𝒈) 𝒅𝒊(𝒎𝒎) 𝒂𝒊 𝜶𝒊(𝐝𝐞𝐠) 

1 𝜃1 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 ± 120 290 250 0 

2 𝜃2 Between ±130 0 150 180 

3 0 

𝑑3 

Between 

0 − 150 

0 0 

4 𝜃4 Between ±360 150 0 0 

 

where (𝜃1 , 𝜃2, 𝑑3, 𝜃4) are the joint variables. The key 

advantages of the 4-DOF SCARA manipulator include its 

inherent structural rigidity, high precision, and impressive 

performance capabilities, such as a repeatability of 

approximately ±0.01 mm and a maximum linear velocity. 

This SCARA manipulator was chosen for its suitability for 

applications requiring vertical pick-and-place operations and 

precise horizontal movement. Its kinematic construction 

facilitates swift and accurate placement, aligning with the 

objectives of the research endeavor. 

 

Fig. 2. The Simulation of 4-DOF SCARA manipulator in MATLAB 

C. 6-DOF ABB IRB 1600 manipulator 

The 6-degree-of-freedom (6-DOF) ABB IRB 1600 

industrial robot, a prominent product from ABB Robotics, is 

distinguished by its exceptional accuracy and adaptability 

within industrial automation environments. Table II below 

outlines the Denavit-Hartenberg parameters, and a GIF image 

in Fig. 3 illustrates the configuration of this robotic 

manipulator. 

In this configuration, the joint variables are 

(𝜃1 , 𝜃2, 𝑑3, 𝜃4, 𝜃5, 𝜃6). The ABB IRB 1600 manipulator is a 

mainstay for activities requiring complex manipulation and 

multidirectional motions due to its increased degrees of 

freedom and robust construction. Its exceptional kinematic 

flexibility allows us to investigate and assess metaheuristic 

algorithms for addressing the intricate problems associated 

with robotic manipulation. This opens the door for a wide 

range of applications within the purview of our research, 

enabling us to explore innovative solutions and push the 

boundaries of what is possible in industrial automation and 

robotic systems. 

TABLE II.  DH PARAMETERS FOR THE 6-DOF ABB IRB 1600 

Joint i 𝛉𝒊(𝒅𝒆𝒈) 𝒅𝒊(𝒎𝒎) 𝒂𝒊 𝜶𝒊(𝐝𝐞𝐠) 

1 𝜃1 Between ±180 715 0 90 

2 
𝜃2 Between 30 −

180 
0 350 0 

3 0 
𝑑3 Between 0 −

630 
0 −90 

4 𝜃4 Between ±300 100 1200 90 
5 𝜃5 Between ±120 0 0 −90 
6 𝜃6 Between ±360 0 120 0 

 

 

Fig. 3. Simulation of 6-DOF ABB IRB 1600 in MATLAB 

D. 6-DOF 12 link Motoman SDA20D 

The Yaskawa Motoman SDA20D is a highly advanced 

and versatile robotic manipulator system that is renowned for 

its rapid operational speed and impressive payload capacity. 

Equipped with 6 degrees of freedom and 12 links, this 

manipulator offers exceptional versatility and performance 

capabilities, making it a popular choice for a wide range of 

applications. Table III shows the Denavit-Hartenberg settings 

for this 6-DOF, 12-link Motoman SDA20D manipulator, and 

Fig. 4 visual representation of the manipulator's configuration 

provided in the accompanying GIF image. 

In this robot arm, the joint variables are 

(𝑑1 , 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9, 𝜃10, 𝜃11, 𝜃12). The Motoman 

SDA20D robotic manipulator is distinguished by its 

exceptional reliability and operational capabilities, 

particularly when executing tasks requiring precise trajectory 

control and managing substantial payloads. Owing to its 

expansive range of motion, this manipulator enables the 

execution of complex movements critical to the research 

study, thereby ensuring optimal performance and accuracy 

throughout the experimental process. 
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TABLE III.  DH PARAMETERS FOR THE 6-DOF 12 LINKS MOTOMAN 

SDA20D 

Joint 

i 
𝛉𝒊(𝒅𝒆𝒈) 𝒅𝒊(𝒎𝒎) 𝒂𝒊 𝜶𝒊(𝐝𝐞𝐠) 

1 0 
𝑑1 Between 0 −

 360 
0 0 

2 𝜃2 Between ±180 0 170 −90 

3 𝜃3 Between ±135 0 835 0 

4 𝜃4 Between ±180 1160 160 −90 

5 𝜃5 Between ±180 200 0 90 

6 𝜃6 Between ±360 1250 0 −90 

7 𝜃7 Between ±180 200 0 90 

8 𝜃8 Between ±360 1250 0 −90 

9 𝜃9 Between ±180 200 0 90 

10 
𝜃10 Between 

±180 
1160 160 −90 

11 
𝜃11 Between 

±135 
0 835 90 

12 
𝜃12 Between 

±180 
0 170 −90 

 

 

Fig. 4. Simulation of 6-DOF 12 links Motoman SDA20D in MATLAB 

III. METAHEURISTIC OPTIMIZATION ALGORITHMS  

In recent decades, metaheuristic optimization algorithms 

have emerged as highly effective tools for addressing 

optimization problems [23], [24], [25]. Drawing inspiration 

from natural phenomena, these algorithms explore the 

solution space in search of optimal outcomes. A diverse array 

of techniques, including genetic algorithms [26], artificial bee 

colony algorithms [27], particle swarm optimization [28], 

[29], stochastic paint optimization, and ant lion optimization, 

are among those inspired by nature [30], [31], [32]. 

In contrast to traditional analytical methods heavily 

reliant on mathematical deductions, metaheuristic algorithms 

offer a more adaptable and robust approach. Characterized by 

the dual attributes of diversification and intensification, these 

algorithms facilitate efficient exploration of the search space 

through the use of randomness, while also conducting local 

searches around the current best solution. 

The resilience of metaheuristic algorithms in addressing a 

wide range of optimization challenges, their capacity to 

handle complex and lengthy problems, their ability to identify 

global solutions, and their rapid convergence rates have 

propelled them to the forefront of various domains. 

Consequently, they have become indispensable tools, 

offering significant advantages over conventional 

optimization methodologies. 

A. Particle Ant Colony Optimization Algorithm (ACO) 

Ant Colony Optimization (ACO) is a metaheuristic 

algorithm inspired by the foraging behavior of ant colonies. 

It is a combinatorial optimization method that assembles 

candidate solutions from a set of components that compete 

for attention, avoiding the need for extensive fine-tuning. 

ACO is colony-oriented, consisting of two distinct 

"colonies": the set of components that make up the candidate 

solution and the set of trials that constitute the candidate 

solution [33], [34]. The set of components is fixed, while the 

fitness of each component is updated over time. Each 

generation of the algorithm constructs one or more ant trails 

based on the pheromone selection components, and the 

fitness of each trail is then evaluated. The pheromone of each 

component is subsequently updated based on the fitness of 

the trail. 

As we can see in Fig. 5, the ACO algorithm can be viewed 

as population-oriented, comprising two different 

"populations": the set of components that make up possible 

solutions and the set of trials that represent possible solutions 

[35]. The number of components is fixed, while the fitness of 

each component is updated over time. Each generation of the 

algorithm builds one or more ant trails based on the selected 

pheromones, and the fitness of each trail is evaluated. The 

pheromone of each component is then updated according to 

the fitness of the trail. 

 

Fig. 5. Pseudocode for the ACO algorithm 

At each iteration 𝑡, an ant 𝑘 builds a complete solution by 

selecting values for each joint variable. The probability of 

selecting a specific value 𝑗 for joint 𝑖 is: 

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]
𝛼

⋅ [𝜂𝑖𝑗(𝑡)]
𝛽

∑ [𝜏𝑖𝑙(𝑡)]
𝛼 ⋅ [𝜂𝑖𝑙(𝑡)]

𝛽
𝑙∈𝛺𝑖

  (3) 

Where, 𝜏𝑖𝑗(𝑡)is the pheromone value for variable 𝑗 of joint 𝑖. 

𝜂𝑖𝑗(𝑡) is the heuristic value (e.g., inverse of the estimated 

error). 𝛼 and 𝛽 control the influence of pheromone vs. 

heuristic. 𝛺𝑖 is the set of available discrete values for joint 𝑖. 

After evaluating all ants, pheromone levels are updated to 

reinforce high-quality solutions: 
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𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ⋅ 𝜏𝑖𝑗(𝑡) + ∑ 𝛥𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

  (4) 

with: 

𝛥𝜏𝑖𝑗
𝑘 = {

𝑄

𝑓(𝛩𝑘)
 ,   𝑖𝑓 𝛩𝑘  𝑢𝑠𝑒𝑠 𝜃𝑖𝑗

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

Where, 𝜌 is the evaporation rate. 𝑄 is a constant pheromone 

deposit factor. 𝑚 is the number of ants. 

This rule ensures that components of lower-error 

solutions gain higher pheromone reinforcement, improving 

their selection probability in the next iteration. Table IV 

shows the parameter settings used in this paper. 

TABLE IV.  TYPICAL PARAMETER SETTINGS USED FOR ACO 

Parameter Typical Range Purpose 

𝑚 30–50 Number of ants per iteration 

𝛼 1–2 Influence of pheromone trails 

𝛽 2–5 Influence of heuristic information 

𝜌 0.1–0.5 Evaporation rate 

𝑄 1 Pheromone deposit constant 

𝑇 300–500 Total number of iterations 

 

In the context of inverse kinematics (IK), ACO is used to 

iteratively generate candidate joint angle configurations that 

minimize a composite error function comprising position and 

orientation discrepancies between the desired and actual end-

effector poses. Each solution, corresponding to a complete set 

of joint variables for a robot manipulator, is treated as a 

“path” constructed by an artificial ant. These ants simulate 

the pheromone-guided movement found in nature, with high-

performing solutions reinforcing the desirability of their 

components. 

B. Mayfly Optimization Algorithm (MA) 

The Mayfly Optimization Algorithm (MOA) is a 

metaheuristic approach that significantly improves upon the 

particle swarm optimization (PSO) [36], [37], genetic 

algorithm (GA) [38], and the firefly algorithm (FA) to create 

a powerful hybrid framework  [39]. This innovative approach 

leverages the social behavior of mayflies and incorporates 

crossover techniques and local search mechanisms. Inspired 

by the life cycle of mayflies, where maturity triggers 

reproductive behavior, MOA aims to ensure the survival of 

the fittest and reflects the ability of the strongest mayflies to 

reproduce. Within the context of the algorithm, the position 

of each mayfly in the search space represents a potential 

solution to the optimization problem. 

As shown in Fig. 6, the MOA algorithm operates as 

follows: two distinct groups of mayflies, representing males 

and females, are randomly initialized within the problem 

space. These mayflies embody possible solutions, which are 

encoded as d-dimensional vectors 𝑥 and evaluated according 

to a predefined objective function 𝑓. The velocity vector 𝑣 

reflects the adjustments in the mayflies' positions. The 

trajectory of each mayfly encapsulates the dynamic interplay 

between individual experience and social influences. 

Specifically, at each iteration, the mayfly adjusts its path to 

reach its personal best position based on the collective 

experience of the group, as described in the research by [40]. 

 

Fig. 6. Pseudocode for the MOA algorithm 

In the field of entomology, as shown in Fig. 2, mayflies 

exhibit a distinctive life cycle: they spend several years as 

aquatic larvae before emerging as short-lived adult forms that 

fly in the air for a period of only one to seven days. The need 

to study the mating behaviors of male and female mayflies 

inspired the development of the Mayfly Optimization (MO) 

algorithm. Building upon the Particle Swarm Optimization 

(PSO) framework, the MO algorithm simulates the position 

updates of mayflies: 

𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡) (6) 

The position 𝑝𝑖  represents the position for the 𝑖 −th 

individual in the next iteration. Accounting for the distinct 

behaviors of male and female mayflies, their velocities are 

updated using different approaches. 

For male mayflies, which exhibit remarkable speeds as 

they soar above water surfaces, the velocity calculations are 

distinctive: 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑎1𝑒
−𝛽𝑟𝑝(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))

+ 𝛼2𝑒
−𝛽𝑟𝑔

2
(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) 

(7) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)  (8) 

In this context, 𝑣𝑖 represents the velocity of the 𝑖-th 

mayfly at the current time step, while 𝑥𝑖 denotes the position 

of that mayfly. The parameter 𝛽 is a fixed visibility 

coefficient that limits the range over which a mayfly can 

perceive its environment. Additionally, 𝑝𝑏𝑒𝑠𝑡𝑖 indicates the 

optimal position previously visited by the 𝑖 −th mayfly, and 

𝑔𝑏𝑒𝑠𝑡𝑖 refers to the position of the best male mayfly 

component. The positive attraction constants 𝛼1 and 𝛼2 

capture the cognitive and social influences, respectively, that 

guide the mayflies' movements. 
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Regarding the female mayflies, they are attracted to their 

male counterparts and follow deterministic attraction models 

that dictate the changes to their location and velocity. 

𝑣𝑖(𝑡 + 1) = {
𝑔. 𝑣(𝑡) + 𝑎𝑓𝑒

−𝛽𝑟𝑚𝑓
2

(𝑥𝑖(𝑡) − 𝑦𝑖(𝑡))    ;    𝑓(𝑦𝑖(𝑡)) > 𝑓(𝑥𝑖(𝑡))

𝑔. 𝑣(𝑡) + 𝑓𝑙. 𝑟1    ;    𝑓(𝑦𝑖(𝑡)) ≤ 𝑓(𝑥𝑖(𝑡))
   (9) 

Where 𝛼𝑓 and 𝛽 are fixed parameters, 𝑔, and 𝑓𝑙 represent 

weights that decrease from their maximum to lowest values 

and 𝑓(𝑥𝑖(𝑡))  and 𝑓(𝑦𝑖(𝑡)) denote the fitness values. A 

random integer sampled from the uniform distribution from -

1 to 1 is represented by 𝑟1. 

When mayflies engage in mating, a selection process akin 

to the male-female attraction dynamics occurs, whereby the 

superior male mayflies mate with the better female mayflies 

to produce offspring: 

{
𝑜𝑓𝑓1 = 𝛼3𝑚𝑎𝑙𝑒 + (1 − 𝛼3)𝑓𝑒𝑚𝑎𝑙𝑒

𝑜𝑓𝑓2 = (1 − 𝛼3)𝑚𝑎𝑙𝑒 + 𝛼3𝑓𝑒𝑚𝑎𝑙𝑒
 (10) 

Here the male is the parent male mayfly, the female is the 

female parent, and 𝛼3 represents a random number adhering 

to a Gaussian distribution. 

In this study, MOA is applied to solve the inverse 

kinematics (IK) problem by minimizing a composite 

objective function that accounts for both position and 

orientation errors of the end-effector. The algorithm’s ability 

to navigate high-dimensional, nonlinear, and multimodal 

search spaces makes it particularly effective for robotic 

systems with redundancy or singularities. The specific 

parameter settings used for MOA in this work are 

summarized in Table V. 

TABLE V.  TYPICAL PARAMETER SETTINGS USED FOR MOA 

Parameter Range Description 

Population size 30–50 Number of male + female mayflies 

𝑎1, 𝑎2 1.0–2.0 Cognitive and social coefficients 

𝛽 1.0–2.0 Visibility coefficient 

𝑔 , 𝑓𝑙 0.9–0.1 
Female damping and random 

weights 

𝛼3 0.2–0.8 Crossover factor 

𝑇 300–500 Max number of iterations 

 

C. Stochastic Paint Optimizer Algorithm (SPO)  

In this section, a new meta-heuristic technique called the 

Stochastic Paint Optimizer (SPO) is presented, which utilizes 

the rich semantic associations of colors in painting. The SPO 

algorithm is inspired by the complex processes involved in 

selecting and combining colors, akin to an artist's approach to 

creating an artwork. 

Through a series of meticulously designed procedural 

steps, the SPO algorithm optimizes color compositions on a 

virtual canvas. These procedures encompass the creation of 

initial paint configurations, paint combinations, paint 

clustering, and termination criteria. The canvas serves as the 

search space in the SPO algorithm, where paints are 

represented as solutions with their constituent colors acting 

as design variables. Evaluating the visual appeal of paint is 

part of the assessment process, facilitated by a "beauty index" 

derived from objective function values. The distinct 

contributions of each color on the canvas to the overall 

perception of the artwork necessitate a sophisticated grading 

system based on the primary, secondary, and tertiary color 

categories on the color wheel. Leveraging established color 

combination techniques, the SPO algorithm orchestrates the 

synthesis of novel colors to craft optimal paint configurations 

[41], [42]. 

The algorithmic implementation of the SPO technique 

involves iterative phases of color mixing, color clustering, 

and fitness evaluation [43], [44]. In each iteration, the 

algorithm explores the paint search space by introducing 

controlled stochastic perturbations to the current paint 

configuration, akin to an artist's experimental approach, as 

represented in Fig. 7. 

 

Fig. 7. Pseudocode for the SPO algorithm 

The effectiveness of the SPO algorithm stems from its 

seamless integration of color theory principles with 

optimization methodologies, leading to the generation of 

visually appealing and harmonious artworks. By leveraging 

the inherent stochasticity in color selection and combination 

processes, the SPO algorithm transcends conventional 

optimization paradigms, providing a novel perspective on 

artistic expression and creativity in the digital realm. 

In this context, each candidate solution (analogous to a 

"paint") is represented as a vector of real-valued decision 

variables: 

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑], 𝑋𝑖 ∈ ℝ𝑑 (11) 

where 𝑑 is the number of joint parameters for the 

manipulator. 

The algorithm proceeds through iterative refinement of a 

solution population 𝑃 = {𝑋1, 𝑋2, . . . , 𝑋𝑁}, using a stochastic 

update rule designed to perturb and explore new regions of 

the solution space. In each iteration, solutions are modified 

using controlled noise and clustering heuristics as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜖 ⋅ 𝑁(0, 𝜎2)  (12) 

Where, 𝜖 is a learning or perturbation rate. 𝑁(0, 𝜎2) is 

Gaussian noise with variance 𝜎2. 

A clustering-based selection mechanism is applied after 

each generation to retain the top 𝑘 individuals with minimum 
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error, simulating the refinement of "visual harmony" in the 

solution population. The population is then replenished by 

generating new candidates via interpolation of top solutions 

and perturbation: 

𝑋𝑛𝑒𝑤 = 𝜆1𝑋𝛼 + 𝜆2𝑋𝛽 + 𝜆3𝑋𝛿 + 𝛿 (13) 

Where, 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿  are three high-fitness solutions. 𝜆1 + 𝜆2 +

𝜆3 = 1, with 𝜆𝑖 ∈ [0,1] being the blending coefficients. 𝛿 is 

a small random vector (mutation). 

The algorithm terminates after a fixed number of 

iterations 𝑡 or when the best solution achieves an error below 

a threshold 𝜖min.Table VI summarizes the specific parameter 

settings used for SPO in this work. 

TABLE VI.  TYPICAL PARAMETER SETTINGS USED FOR SPO 

Parameter Range Description 

Population 
size 

30–50 
Number of candidate solutions 

in each generation 

Top-k 

selection 
10–30% of N 

Percentage of elite individuals 

retained for interpolation 

𝜆1, 𝜆2, 𝜆3 
Random or fixed 

(sum = 1) 
Weights used in generating new 

candidates via interpolation 

𝑇 300–500 Max number of iterations 

D. Ant Lion Optimizer Algorithm (ALO)  

Ant Lion Optimizer Algorithm is a powerful population-

based Metaheuristic Algorithm that meticulously emulates 

the sophisticated hunting strategies of antlions in their natural 

habitats [45]. Named after their remarkable hunting prowess 

and favored prey, antlions employ a distinctive tactic of 

excavating cone-shaped pits in sand using circular motions 

executed by their formidable jaws. These patient predators 

then position themselves at the pit's base, awaiting 

unsuspecting prey to stumble into their snare. Upon detecting 

an ensnared insect unable to escape the steep pit walls, 

antlions swiftly dispatch their quarry. In nature, as insects 

instinctively strive to evade traps, they often engage in frantic 

movements to flee from predators. In response, astute 

antlions deftly fling sand just ahead of the prey's path, 

inducing them to slide inexorably into the pit's depths. It 

meets its demise when the prey's evasive maneuvers fail to 

outpace the encroaching jaws. Interestingly, antlions also 

adjust the dimensions of their pits based on factors such as 

their degree of hunger and the lunar phase [46]. 

As shown in Fig. 8, the algorithm employs two distinct 

types of search agents: ants and antlions. Antlions, the 

superior agents, maintain fixed positions unless replacing a 

specific ant. In contrast, ants perform random walks within 

the search space and risk being captured by antlions if they 

fall into the antlions' traps [47]. 

The algorithmic formulation initializes a population of 

solutions as ants navigating the search landscape. Each ant's 

position is represented as a vector: 

𝐴𝑛𝑡𝑖 = [𝐴𝑖
1, 𝐴𝑖

2, 𝐴𝑖
3, … . , 𝐴𝑖

𝑑] (14) 

where 𝐴𝑛𝑡𝑖 represents the 𝑖 −th ant's, and indicates its 

coordinates in the 𝑑-th dimension. The locations of the ants 

are determined by the following rule (15): 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
 (15) 

Where, 𝑅𝐴
𝑡  denotes a random walk performed by an ant near 

the antlion selected through the roulette wheel mechanism at 

the 𝑡 −th iteration. 𝑅𝐸
𝑡  represents the location of a randomly 

walking ant, denoted as 𝐴𝑛𝑡𝑖, near the best-performing 

antlion, known as the elite antlion, within the ant swarm. 

 

Fig. 8. Pseudocode for the ALO algorithm 

The roulette wheel mechanism utilizes the fitness values 

of the antlions to select an antlion 𝐴 for an ant to perform a 

random walk nearby, while the elite antlion, identified as the 

best-performing antlion, is designated as 𝐸. 

The random walking behavior of an ant 𝐴𝑛𝑡𝑖
𝑡 in proximity 

to a presumed antlion 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 is expressed as follows: 

𝑅𝑗
𝑡 =

(𝑋𝑖 − 𝑎𝑖) × (𝑑𝑖 − 𝑐𝑖
𝑡)

𝑏𝑖
𝑡 − 𝑎𝑖

+ 𝑐𝑖 (16) 

Where, 𝑅𝑗
𝑡 represents the ant's position after performing a 

random walk near the selected antlion 𝑗 during iteration 𝑡. 𝑎𝑖 

denotes the minimum step size of the random walk 𝑋𝑖
𝑡 in the 

𝑖-th dimension. 𝑏𝑖 represents the maximum step size of the 

random walk 𝑋𝑖
𝑡 in the 𝑖-th dimension. 𝑐 and 𝑑 define the 

lower and upper bounds of the random walk, respectively. 

The position of each ant in each dimension is updated 

using a random walk process as follows: 

𝑥(𝑡) = [0, 𝑐𝑢𝑚(2𝑟(𝑡1)) − 1, 𝑐𝑢𝑚(2𝑟(𝑡2)) − 1,… , 𝑐𝑢𝑚(2𝑟(𝑡𝑇)) − 1]  (17) 

Where, 𝑇 represents the total number of iterations. 𝑡𝑖 denotes 

the index of the current iteration. 𝑐𝑢𝑚 indicates the 

cumulative summation operation. 𝑟 is a random function that 

is calculated as follows: 

𝑟(𝑡) = {
1  ; 𝑟 > 0.5
0 ; 𝑟 ≤ 0.5

 (18) 

ALO is effective for multi-DOF manipulators in high-

dimensional, non-convex spaces such as IK. Its dual-random-

walk approach enhances global exploration while 

maintaining elite-guided convergence. However, due to its 

stochastic nature and high iteration count, ALO can be 
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computationally expensive and less suitable for real-time IK 

control. The specific parameter settings used for ALO in this 

work are summarized in Table VII. 

TABLE VII.  TYPICAL PARAMETER SETTINGS USED FOR ALO 

Parameter Range Description 

Population 

size 
30–50 Number of ants and antlions 

Top-k 

selection 

10–30% of 

N 

Percentage of elite individuals 

retained for interpolation 

Scaling 

factor 
Dynamic Bounds shrink with each iteration 

𝑇 300–500 Max number of iterations 

IV. OPTIMIZATION PROBLEM 

This section presents a generalized objective function for 

solving inverse kinematics (IK) problems using metaheuristic 

optimization techniques. The proposed formulation provides 

a unified framework that accommodates the multimodal and 

nonlinear characteristics inherent in robotic manipulators, 

thus enabling the application of diverse algorithmic strategies 

[48]. 

Utilizing optimization methodologies to address the 

inverse kinematics challenge, we can quantify the error E as 

a measure of the discrepancy between the current position of 

the end effector and its intended position relative to the 

specified objective. The orientation error, 𝐸𝑂, delineates the 

variance in the desired orientation of the end effector, 

facilitating the attainment of precise accuracy. Meanwhile, 

the position error, 𝐸𝑝, highlights disparities in the coordinates 

of the end effector relative to its designated location. 

Consequently, the following equation encapsulates the 

composite error 𝐸, which is contingent upon both orientation 

and position errors. This composite error is calculated as a 

weighted sum of the position error, 𝐸𝑝, and the orientation 

error, 𝐸𝑂, where the weighting coefficients 𝛼 and 𝛽 determine 

the relative importance of each error component. 

𝐸 = 𝛼𝐸𝑝 + 𝛽𝐸𝑂 (19) 

The prioritization of position and orientation errors can be 

achieved by employing constant weighting coefficients, 

denoted as 𝛼 and 𝛽, respectively. The resulting formulation 

of the objective function aimed at resolving the inverse 

kinematics problem is represented by the equation below: 

𝑚𝑖𝑛
𝜃∈[𝜃𝑚𝑖𝑛,𝜃𝑚𝑎𝑥]

𝐸 (20) 

A. Position Based Error 

The Euclidean distance metric, which represents the 

distance between the end-effector's current position and 

desired position, is used to quantify the positional 

discrepancy of the end-effector. This can be expressed 

mathematically as follows [49]: 

𝐸𝑝 = ||𝑃𝑑 − 𝑃𝑐|| (21) 

B. Orientation Based Error 

To measure the orientation error between the required and 

current frames, a comparative analysis of their orientations 

can offer valuable insights. Although the XYZ and UVW 

frames have distinct orientations, they share a common 

origin. As a result, aligning the current XYZ frame with the 

target UVW frame necessitates a rotational adjustment, 

represented by 𝑅𝐸. This rotational alignment of the current 

frame towards the target frame serves as a quantifiable metric 

for orientation discrepancies. 

𝑅𝐸 = 𝑅𝑑𝑅𝑐
−1 = 𝑅𝑑𝑅𝑐

𝑇 = (

𝑛𝑥 𝑜𝑥 𝑎𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧

) (22) 

The orientation error can be mathematically quantified by 

extracting the variables 𝑛𝑥, 𝑜𝑦, and 𝑎𝑧 from the rotation 

matrix 𝑅𝐸 using the following equation, as described in the 

work by Kumar et al. [50]. 

𝐸𝑜 = 2𝑐𝑜𝑠−1 (
1

2
√𝑛𝑥 + 𝑜𝑦 + 𝑎𝑧 + 1) (23) 

V. RESULTS AND DISCUSSION  

In this study, we utilized three distinct robotic 

manipulators to conduct our experiments: a 4-degree-of-

freedom SCARA manipulator, a 6-DOF ABB IRB 1600 

manipulator, and a 6-DOF 12-link Motoman SDA20D 

manipulator. These manipulators were evaluated at thirty 

randomly selected locations within their respective 

workspaces. 

To assess the performance of the Ant Lion Optimizer 

algorithm, Stochastic Paint Optimizer Algorithm, Mayfly 

Optimization Algorithm, and Ant Colony Optimization, we 

employed various metrics, including position error. This error 

was quantified by calculating the Euclidean distance between 

the algorithm's solution location and the actual position. This 

metric provided valuable insights into the accuracy and 

effectiveness of each algorithm in solving the inverse 

kinematics problem for the robotic manipulators under 

investigation: 

𝐸𝑟𝑟 = ||𝑃𝑠 − 𝑃𝑟|| (24) 

Where 𝐸𝑟𝑟  is the position error. 

Additionally, the assessment of orientation errors 

involved comparing the pitch (rotation by 𝜃𝑠 about the fixed 

y-axis), yaw (rotation by 𝜓𝑠 about the fixed x-axis), and roll 

(rotation by 𝜙𝑠 about the fixed z-axis) angles of the 

algorithm's solution with the corresponding actual angles (𝜃𝑟, 

𝜓𝑟 ,𝜙𝑟): 

𝐸𝑟𝑟𝜓
= |𝜓𝑟 − 𝜓𝑠|; 

𝐸𝑟𝑟𝜃
= |𝜃𝑟 − 𝜃𝑠|; 

𝐸𝑟𝑟𝜙
= |𝜙𝑟 − 𝜙𝑠| 

(25) 
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Where, 𝐸𝑟𝑟𝜓
 is the orientation error of the yaw. 𝐸𝑟𝑟𝜃

 is the 

orientation error of the pitch. 𝐸𝑟𝑟𝜙
is the orientation error of 

the roll. 

A. 4-DOF SCARA Manipulator 

This section thoroughly assesses the performance of 

diverse metaheuristic algorithms when applied to the 4-DOF 

SCARA manipulator. The evaluation examines position and 

orientation errors and the time required for the algorithms to 

converge to the optimal solution. The findings are presented 

graphically in Fig. 9 through Fig. 12. 

• Ant Colony Optimization: As shown in Fig. 9, this 

algorithm achieved outstanding results with minimal 

errors. The maximum position error was 8.99e-05 mm, 

the minimum was 0 mm, and the mean error was 7.55e-

06 mm. The orientation errors were consistently zero 

across all axes. Additionally, the algorithm demonstrated 

efficient computation times, with a maximum of 2.4634 

seconds, a minimum of 1.0797 seconds, and a mean of 

1.4913 seconds. 

• Mayfly Optimization Algorithm: Similar to ACO, as 

depicted in Fig. 10, the Mayfly Optimization Algorithm 

exhibited excellent error reduction. The position error 

ranged from 9.17e-06 mm to 0 mm, with a mean error of 

4.8115e-07 mm. Orientation errors were also consistently 

zero. The computation times were competitive, with a 

maximum of 4.0249 seconds, a minimum of 2.2581 

seconds, and a mean of 3.0788 seconds. 

• Stochastic Paint Optimizer Algorithm: SPO demonstrated 

in Fig. 11 competitive performance in minimizing 

position errors, with a mean error of 3.1412e-05 mm, 

comparable to other algorithms. Its orientation errors 

were also negligible. The moderate computational time of 

1.6283 seconds suggests efficient optimization for precise 

robotic arm configurations. 

• Ant Lion Optimizer: As shown in Fig. 12, ALO 

demonstrated good performance in minimizing position 

errors, with a mean error of 2.12e-05 mm, comparable to 

other algorithms. However, it exhibited higher orientation 

errors, especially in the 𝜙 angle. The computational time 

of 3.8612 seconds suggests moderate efficiency in 

solving the inverse kinematic problem for this robotic 

arm. 

 

  
(a) (b) 

Fig. 9. Results of Ant Colony Optimization, (a) position and orientation errors, and (b) Computation time 

  
(a) (b) 

Fig. 10. Results of Mayfly Optimization Algorithm, (a) position and orientation errors and (b) Computation time 
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(a) (b) 

Fig. 11. Results of Stochastic Paint Optimizer Algorithm, (a) position and orientation errors, and (b) Computation time 

  
(a) (b) 

Fig. 12. Results of Ant Lion Optimizer algorithm, (a) position and  orientation errors, and (b) Computation time 

B. 6-DOF ABB IRB 1600 Manipulator 

This section examines the effectiveness of various 

metaheuristic algorithms when applied to the 6-degree-of-

freedom ABB IRB 1600 manipulator. Fig. 13 to Fig. 16 

provide graphical representations of the position and 

orientation errors, as well as the convergence times, for each 

algorithm tested on this robotic platform. 

• Ant Colony Optimization: As depicted in Fig. 13, ACO 

demonstrated good performance in minimizing position 

errors, with a mean error of 0.0091 mm, which is 

acceptable for most applications. However, as shown in 

Fig. 13, it exhibited slightly higher orientation errors 

compared to other algorithms, particularly in the 𝜙 angle. 

Additionally, the computational time of 3.8788 seconds 

indicates moderate efficiency in solving the inverse 

kinematic problem for this robotic arm. 

• Mayfly Optimization Algorithm: As observed in Fig. 14, 

MO exhibited exceptional performance in minimizing 

errors across all metrics for the ABB IRB 1600 

manipulator. Its mean position error of 0.0091 mm and 

orientation errors were significantly lower compared to 

other algorithms. However, as shown in Fig. 14, its 

computational time of 3.8788 seconds suggests the need 

for optimization to improve efficiency. 

• Stochastic Paint Optimizer Algorithm: As illustrated in 

Fig. 15, SPO showed good performance in minimizing 

errors for the ABB IRB 1600 manipulator, achieving 

mean errors similar to other algorithms. Its computational 

time of 3.8788 seconds indicates moderate efficiency in 

solving the inverse kinematic problem. 

• Ant Lion Optimizer: ALO showcased in Fig. 16 a 

competitive performance in minimizing position errors, 

with a mean error of 0.2393 mm, comparable to other 

algorithms. However, its orientation errors were slightly 

higher, indicating room for improvement. The 

computational time of 3.8788 seconds suggests 

reasonable efficiency in achieving accurate robotic arm 

configurations. 
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(a) (b) 

Fig. 13. Results of Ant Colony Optimization, (a) position and orientation errors, and (b) Computation time 

  
(a) (b) 

Fig. 14. Results of Mayfly Optimization Algorithm, (a) position and orientation errors, and (b) Computation time 

  

(a) (b) 

Fig. 15. Results of Stochastic Paint Optimizer Algorithm, (a) position and orientation errors, and (b) Computation time 

  
(a) (b) 

Fig. 16. Results of Ant Lion Optimizer algorithm, (a) position and  orientation errors, and (b) Computation time 
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C. 6-DOF 12 Links Motoman SDA20D  

We now focus on evaluating the effectiveness of 

individual metaheuristic algorithms on the 12-link, 6-degree-

of-freedom Motoman SDA20D manipulator. Fig. 17 to Fig. 

20 provide comprehensive graphical depictions of position 

and orientation errors, together with convergence durations 

for every algorithm used on this same robotic platform. 

• Ant Colony Optimization: As shown in Fig. 17, ACO 

demonstrated a competitive performance in minimizing 

position errors for the Motoman SDA20D robotic arm, 

with a mean error of 0.0044 mm, indicating its 

effectiveness in achieving accurate robotic arm 

configurations. However, it exhibited relatively higher 

orientation errors compared to other algorithms, 

particularly in the 𝜙 angle. The longer computational time 

of 6.7593 seconds suggests a trade-off between accuracy 

and computational efficiency. 

• Mayfly Optimization Algorithm: MO showcased 

remarkable accuracy in minimizing errors for the 

Motoman SDA20D robotic arm, achieving the lowest 

mean errors among the algorithms considered. Despite its 

longer computational time of 8.3173 seconds, its superior 

accuracy makes it a preferred choice for high-precision 

applications, as illustrated in Fig. 18. 

• Stochastic Paint Optimizer Algorithm: As depicted in Fig. 

19, SPO exhibited good performance in minimizing 

errors for the ABB IRB 1600 manipulator, achieving 

mean errors similar to other algorithms. Its computational 

time of 3.8788 seconds indicates moderate efficiency in 

solving the inverse kinematic problem. 

• Ant Lion Optimizer: ALO demonstrated good 

performance in minimizing position errors for the 

Motoman SDA20D robotic arm, with a mean error of 

0.0022 mm, as shown in Fig. 20, comparable to other 

algorithms. However, it exhibited relatively higher 

orientation errors, especially in the 𝜙 angle. The longer 

computational time of 8.0490 seconds suggests a trade-

off between accuracy and computational efficiency, as 

seen in Fig. 19. 

 

  
(a) (b) 

Fig. 17. Results of Ant Colony Optimization, (a) position and orientation errors, and (b) Computation time 

  
(a) (b) 

Fig. 18. Results of Mayfly Optimization Algorithm, (a) position and orientation errors, and (b) Computation time 
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(a) (b) 

Fig. 19. Results of Stochastic Paint Optimizer Algorithm, (a) position and orientation errors, and (b) Computation time 

  
(a) (b) 

Fig. 20. Results of Ant Lion Optimizer algorithm, (a) position and  orientation errors, and (b) Computation time 

TABLE VIII.  TABLE COMPARING THE RESULTS OF EVERY ROBOT ARM 

Robot Arm The algorithm Results MAX MIN MEAN 

4-dof SCARA 

manipulator 

Ant Colony 

Optimization 

Position error Err (mm) 8.99e-05 0 7.55e-06 

Orientation error Errψ (° deg) 0 0 0 

Orientation error Errθ (° deg) 0 0 0 

Orientation error Errφ (° deg) 3.69e-04 3.8250e-08 1.9988e-05 

Times (s) 2.4634 1.0797 1.4913 

Mayfly Optimization 

Algorithm 

Position error Err (mm) 9.17e-06 0 4.8115e-07 

Orientation error Errψ (° deg) 0 0 0 

Orientation error Errθ (° deg) 0 0 0 

Orientation error Errφ (° deg) 4.20e-04 2.9490e-08 1.4663e-05 

Times (s) 4.0249 2.2581 3.0788 

Stochastic Paint 

Optimizer Algorithm 

Position error Err (mm) 6.99e-04 2.3611e-12 3.1412e-05 

Orientation error Errψ (° deg) 0 0 0 

Orientation error Errθ (° deg) 0 0 0 

Orientation error Errφ (° deg) 3.17e-04 9.3697e-09 2.4197e-05 

Times (s) 2.4797 1.3113 1.6283 

Ant Lion Optimizer 

algorithm 

Position error Err (mm) 4.98e-05 3.8003e-06 2.12e-05 

Orientation error Errψ (° deg) 0 0 0 

Orientation error Errθ (° deg) 0 0 0 

Orientation error Errφ (° deg) 0.0981 4.3288e-06 0.0164 

Times (s) 5.2077 3.5073 3.8612 

6-dof ABB IRB 

1600 manipulator 

 

Ant Colony 

Optimization 

Position error Err (mm) 0.1625 0 0.0091 

Orientation error Errψ (° deg) 0.2606 5.0763e-08 0.0209 

Orientation error Errθ (° deg) 0.1080 3.3750e-08 0.0071 

Orientation error Errφ (° deg) 0.0974 1.4513e-07 0.0049 

Times (s) 4.6144 3.2092 3.8788 

Mayfly Optimization 

Algorithm 

Position error Err (mm) 0.1625 0 0.0091 

Orientation error Errψ (° deg) 0.2606 5.0763e-08 0.0209 
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Orientation error Errθ (° deg) 0.1080 3.3750e-08 0.0071 

Orientation error Errφ (° deg) 0.0974 1.4513e-07 0.0049 

Times (s) 4.6144 3.2092 3.8788 

Stochastic Paint 

Optimizer Algorithm 

Position error Err (mm) 0.1625 0 0.0091 

Orientation error Errψ (° deg) 0.2606 5.0763e-08 0.0209 

Orientation error Errθ (° deg) 0.1080 3.3750e-08 0.0071 

Orientation error Errφ (° deg) 0.0974 1.4513e-07 0.0049 

Times (s) 4.6144 3.2092 3.8788 

Ant Lion Optimizer 

algorithm 

Position error Err (mm) 0.9293 0 0.2393 

Orientation error Errψ (° deg) 0.4736 0 0.0850 

Orientation error Errθ (° deg) 0.3105 0 0.0312 

Orientation error Errφ (° deg) 0.1826 0 0.0269 

Times (s) 6.5926 0 5.1123 

6-dof 12-link 

Motoman SDA20D 

 

Ant Colony 

Optimization 

Position error Err (mm) 0.0332 3.9399e-12 0.0044 

Orientation error Errψ (° deg) 0.0782 3.1056e-08 0.0060 

Orientation error Errθ (° deg) 0.1083 5.7238e-08 0.0056 

Orientation error Errφ (° deg) 0.0518 1.2966e-07 0.0030 

Times (s) 7.1060 6.6899 6.7593 

Mayfly Optimization 

Algorithm 

Position error Err (mm) 1.49e-07 0 5.7463e-09 

Orientation error Errψ (° deg) 3.71e-06 6.3506e-08 8.7512e-07 

Orientation error Errθ (° deg) 7.14e-06 7.0878e-08 1.1281e-06 

Orientation error Errφ (° deg) 2.08e-06 3.2610e-08 8.6681e-07 

Times (s) 8.4731 8.2144 8.3173 

Stochastic Paint 

Optimizer Algorithm 

Position error Err (mm) 3.73e-04 8.2627e-11 4.7558e-05 

Orientation error Errψ (° deg) 0.0039 1.2975e-08 1.3772e-04 

Orientation error Errθ (° deg) 5.50e-04 8.5515e-09 2.7164e-05 

Orientation error Errφ (° deg) 0.0044 3.0660e-08 1.5937e-04 

Times (s) 6.2927 6.0927 6.1651 

Ant Lion Optimizer 

algorithm 

Position error Err (mm) 0.0209 2.2022e-04 0.0022 

Orientation error Errψ (° deg) 0.0904 1.0403e-05 0.0133 

Orientation error Errθ (° deg) 0.0827 5.9961e-07 0.0081 

Orientation error Errφ (° deg) 0.0668 5.3355e-06 0.0086 

Times (s) 8.4333 7.9543 8.0490 

  All simulations were performed on a standard desktop 

computer with an Intel Core i7-3600T 2.0 GHz processor and 

8 GB DDR4 RAM. The algorithms were implemented in 

Python without GPU acceleration or parallel computing 

enhancements. As such, the reported computation times 

reflect single-threaded CPU performance. It is expected that 

substantial speed improvements could be achieved on more 

advanced systems or through optimized implementations 

using C++, multithreading, or GPU-based frameworks. 

Future studies should explore these performance gains, 

particularly for applications requiring real-time inverse 

kinematics solutions. 

Table VIII summarizes each metric's mean, maximum, 

and minimum values. Across all robots, the Mayfly 

Optimization Algorithm (MOA) consistently achieved the 

lowest position and orientation errors, validating its strong 

global search capability and fine-grained convergence. 

However, MOA also had the highest average computation 

times, particularly for the more complex Motoman SDA20D 

(8.3173 s). ACO and SPOA demonstrated competitive 

accuracy with faster execution times, while ALO maintained 

acceptable position accuracy but was less robust in 

minimizing orientation error, especially for higher-DOF 

configurations. 

As shown in Fig. 9 to Fig. 12, all four algorithms 

produced negligible orientation errors (almost zero) due to 

the limited complexity of the SCARA configuration. MOA 

achieved the lowest mean position error (4.81e-07 mm), 

followed by ACO (7.55e-06 mm) and SPOA (3.14e-05 mm). 

ALO's performance, while still acceptable, had a higher 

orientation error in the 𝜙 angle (mean 0.0164°), suggesting 

possible instability in rotational refinement. ACO and SPOA 

offered superior time efficiency (mean ≈ 1.5 s), making them 

suitable for time-sensitive SCARA-based tasks. MOA, 

despite its precision, required over 3 seconds on average, 

reflecting its intensive search dynamics. 

Fig. 13 to Fig. 16 detail the results for the ABB IRB 1600. 

Here, MOA, ACO, and SPOA yielded identical mean 

position errors (0.0091 mm), yet ALO showed significant 

deviation (0.2393 mm). Orientation error analysis revealed 

that MOA maintained the most stable and accurate pose 

solutions, while ALO again demonstrated higher angular 

error (mean 𝐸𝜓 =  0.085°). All algorithms showed similar 

computation times (≈ 3.8 s), although ALO’s performance 

drop in precision indicates suboptimal adaptation to this 6-

DOF workspace. 

Fig. 17 to Fig. 20 reveal that this highly redundant system 

posed the greatest challenge. MOA significantly 

outperformed others, achieving a mean position error of 

just 5.75e-09 mm and orientation error components below 

1e-06°. ACO and SPOA delivered reasonable results (mean 

position errors: 0.0044 mm and 4.75e-05 mm, respectively), 

though ACO’s orientation error remained slightly elevated. 

ALO again struggled with orientation refinement (mean 𝐸𝜙

 =  0.0086°). However, its runtime (8.0490 s) was slightly 

lower than MOA’s (8.3173 s), suggesting marginal speed 

gains at the cost of precision. 

Compared to recent inverse kinematics research using 

nature-inspired or hybrid techniques, the results of this study 
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show substantial improvements in accuracy and competitive 

computational efficiency. 

For the 4-DOF SCARA robot, [17] reported a mean 

squared error (MSE) of 0.12846 mm using a hybrid PSO-

ANN approach. In contrast, our MOA implementation 

achieved a mean position error of 4.81e-07 mm—an 

improvement of over two orders of magnitude—without 

requiring neural network training overhead. This underscores 

the strength of pure metaheuristic search when effectively 

tuned. 

For the 6-DOF ABB IRB 1600, [18] applied NSGA-II and 

BCMOA, achieving a mean position error of ~0.8 mm and 

orientation error of 0.056°. In our work, MOA reduced these 

metrics to 0.0091 mm and 0.0209°, respectively, confirming 

significant accuracy gains. Additionally, [19] applied on a 

similar ABB robot, reported a mean position error of 0.0408 

mm and orientation error of 0.0761°, with a very low runtime 

(~0.78 s). While Boomerang was faster, our results achieved 

higher precision, which is favorable in tasks prioritizing 

accuracy over speed. 

For the Motoman SDA20D, [20] reported a position error 

of 0.52 mm using MOFOPSO. In contrast, our MOA 

approach yielded a mean position error of 5.75e-09 mm, 

which is dramatically lower and demonstrates the MOA’s 

strong capability in handling high-DOF redundant kinematic 

structures. Even SPOA and ACO achieved superior precision 

compared to MOFOPSO. 

These comparisons highlight that metaheuristic 

algorithms, when properly applied and tuned, can outperform 

hybrid or multi-objective methods from the literature—

especially in achieving sub-millimeter or sub-degree 

accuracy essential in high-precision robotic applications. 

VI. CONCLUSION  

This study presents a comprehensive comparative 

analysis of four metaheuristic algorithms—Ant Colony 

Optimization (ACO), Mayfly Optimization Algorithm 

(MOA), Stochastic Paint Optimizer Algorithm (SPOA), and 

Ant Lion Optimizer (ALO)—for solving the inverse 

kinematics (IK) problem across three robotic manipulators: 

the 4-DOF SCARA, the 6-DOF ABB IRB 1600, and the 6-

DOF 12-link Motoman SDA20D. A unified objective 

function combining position and orientation errors was 

optimized for each manipulator at 30 randomly sampled 

target positions. 

The key findings show that the MOA consistently 

achieved the highest precision in both position and 

orientation tracking, particularly for redundant systems like 

the Motoman SDA20D. However, this came at the cost of 

significantly longer computation times—e.g., 8.3173 seconds 

on average for the most complex robot—making it less 

suitable for real-time applications without further 

optimization. In contrast, ACO and SPOA offered faster 

convergence with only minor accuracy trade-offs, making 

them viable for tasks with tighter execution constraints. ALO, 

while competitive in minimizing position errors, exhibited 

instability in orientation accuracy, especially in higher-DOF 

systems. 

The primary theoretical contribution of this study is the 

development of a consistent benchmarking framework to 

evaluate metaheuristic-based IK solvers across manipulators 

of varying complexity. The analysis demonstrates the 

sensitivity of algorithm performance to kinematic structure, 

highlighting that no single algorithm is universally optimal. 

Moreover, this work reinforces the importance of balancing 

exploration-exploitation strategies, parameter tuning, and 

task-specific error tolerances when deploying metaheuristic 

methods in robotics. 

Despite its contributions, the study has several 

limitations. First, all algorithms were tested under offline 

simulation conditions using 30 random target configurations, 

which may not fully capture singularities, boundary effects, 

or dynamically changing environments. Second, the 

evaluation did not include comparisons to classical 

deterministic IK methods (e.g., Jacobian pseudoinverse or 

CCD), leaving open questions about whether the increased 

computational overhead of metaheuristics is justified in 

scenarios demanding real-time precision. Third, parameter 

tuning was static, and the results may not generalize to 

structurally dissimilar robots without reconfiguration. 

To extend the impact of this research, future work should 

include: 

• Integration of adaptive parameter tuning or hybrid 

metaheuristic–local optimization methods to accelerate 

convergence, 

• Application of machine learning (ML) and deep 

learning (DL) techniques, including reinforcement 

learning (RL), to dynamically guide or initialize the IK 

solution space, 

• Exploration of hybrid metaheuristic–neural network 

frameworks that leverage learned models to reduce 

search time while retaining solution diversity, 

• Benchmarking against analytical and numerical IK 

solvers under noise and perturbation, 

• Deployment of these algorithms on physical robots to 

assess real-world robustness, 

• Expansion to more complex or high-DOF manipulators to 

evaluate algorithmic scalability. 

In summary, this study provides valuable guidance for 

selecting and adapting metaheuristic algorithms to solve 

inverse kinematics challenges across various robotic 

platforms. While highly effective in accuracy, trade-offs in 

computational cost must be addressed before real-time 

deployment. The results lay a strong foundation for future 

exploration into scalable, robust, and adaptive IK 

optimization frameworks in modern robotics. 
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