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Abstract—Accurate control of internal combustion engine 

speed, especially under variable load conditions, has always 

been a significant challenge in the automotive industry. Classical 

PID controllers often fail to effectively compensate for 

nonlinearities and environmental disturbances in spark ignition 

(SI) engines. To address this issue, we propose a method based 

on tuning PIDF controller parameters using the grey wolf 

optimizer (GWO) to enhance system stability and performance. 

This approach aims to reduce steady-state error, settling time, 

and overshoot. A mathematical model of the engine speed 

control system is developed, and the GWO algorithm is applied 

to optimize the PIDF gains. The performance of the GWO-based 

controller is then compared to other metaheuristic methods 

such as particle swarm optimization (PSO), differential 

evolution (DE), and cuckoo search (CS) algorithms through 

simulation. Simulation results demonstrate that the proposed 

GWO-based approach outperforms the alternatives by 

achieving better error reduction, improved stability, enhanced 

disturbance rejection, and faster response times. 

Keywords—Engine Speed Control; Grey Wolf Optimizer; 

PIDF Controller Design; Stability Enhancement; Optimization. 

I. INTRODUCTION 

Regulating the speed of internal combustion engines, 

particularly spark ignition (SI) engines, remains a critical 

challenge due to their nonlinear dynamics and sensitivity to 

load variations and external disturbances. In this study, we 

propose a novel control strategy in which the parameters of a 

proportional-integral-derivative with filter (PIDF) controller 

are optimally tuned using the grey wolf optimizer (GWO) 

algorithm to improve system stability, dynamic response, and 

steady-state accuracy. 

PID controllers are among the most widely used control 

strategies in engine speed regulation due to their simple 

structure and ease of implementation [1][2]. However, their 

performance heavily relies on accurate gain tuning, which 

becomes particularly challenging in nonlinear systems such 

as SI engines [3]. Traditional PID controllers often fail to 

maintain stability and precision under varying conditions, 

prompting researchers to propose improved versions like 

filtered PID (PID-F) controllers [4] and advanced designs 

such as feedforward-compensated PI [5][6] or fractional-

order controllers [7], aiming to enhance robustness and 

dynamic response.  

To address these limitations, a wide range of 

metaheuristic optimization algorithms have been employed 

for automatic PID tuning in engine control applications  [8]. 

Among the most notable are particle swarm optimization 

(PSO) [9], differential evolution (DE) [10], cuckoo search 

(CS) [11], ant colony optimization (ACO)  and the recently 

proposed GWO [12][13]. These algorithms, inspired by 

natural and evolutionary processes, have demonstrated 

remarkable capabilities in handling nonlinear, multi-modal, 

and time-varying dynamics, making them well-suited for 

engine speed regulation tasks. 

In recent years, numerous studies have explored the 

application of metaheuristic optimization algorithms for 

enhancing the performance of control systems, particularly in 

nonlinear and dynamic environments [14][15]. The GWO has 

emerged as a promising algorithm due to its strong 

convergence characteristics, ability to avoid local minima, 

and reduced computational complexity [16][17].  For 

instance, Nayak, et al. [18] employed GWO for parameter 

estimation of photovoltaic (PV) models and demonstrated its 

superiority over traditional algorithms like PSO in terms of 

accuracy and convergence speed under varying 

environmental conditions. Similarly, Mohanty, et al. [19] 

applied the GWO algorithm for maximum power point 

tracking (MPPT) in PV systems under partial shading 

conditions. Their results showed that GWO outperformed 

conventional techniques such as perturb and observe (P&O) 

and improved PSO (IPSO), particularly in achieving smooth 

and accurate tracking of global peaks. In the context of power 

systems, Guha, et al. [20] investigated the use of GWO in 

load frequency control of multi-area interconnected power 

networks. They optimized the gains of PI and PID controllers 

using an integral time absolute error (ITAE) performance 

index, and reported that GWO delivered better dynamic 

performance compared to other evolutionary algorithms such 

as comprehensive learning PSO and DE. In robotics and 

automation, Rahmani, et al. [21] proposed a novel sliding 

mode control approach enhanced with an extended GWO 

(EGWO) to manage a 2-DOF robot manipulator. Their hybrid 
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controller combined the benefits of both SMC and PD control 

while leveraging EGWO for parameter tuning. Their 

comparative simulations confirmed that the NSMC-EGWO 

method achieved better tracking accuracy and robustness 

than conventional SMC and PDSMC strategies.  Additionally, 

in the field of cyber-security, Chatterjee, et al. [22] introduced 

a multi-stage intrusion detection framework that used GWO 

for feature selection in network traffic data. This framework 

combined stacked auto encoders and decision tree classifiers, 

and achieved detection accuracies of over 99% on benchmark 

datasets, highlighting the algorithm’s adaptability across 

different domains.  Al-Tashi, et al. [23] conducted an 

extensive review on GWO-based feature selection methods 

for classification tasks, demonstrating the algorithm’s 

effectiveness in reducing dimensionality and identifying 

relevant features with high accuracy. Although their study 

focused on machine learning applications, the demonstrated 

robustness and adaptability of GWO make it a promising 

candidate for tuning control parameters in complex systems 

such as engine speed regulation. Geleta, et al. [24] employed 

GWO to determine the optimal sizing of a hybrid wind and 

solar renewable energy system, aiming to minimize the total 

annual cost. Their research indicates that GWO can 

effectively handle complex optimization problems in energy 

systems, suggesting its potential applicability in other 

engineering domains, including engine speed control.  

Czarnigowski [25] proposed a model-based control 

algorithm employing a neural network observer to estimate 

additional engine loads. Their approach dynamically adjusted 

the spark advance angle to counteract external disturbances, 

demonstrating superior performance compared to traditional 

PID and adaptive controllers, especially under abrupt load 

variations. Similarly, Yildiz, et al. [26] introduced an 

adaptive posicast controller (APC) tailored for idle speed 

regulation in SI engines with time-delay characteristics. Their 

method, integrated with an existing spark-based controller 

and implemented via electronic throttle control, significantly 

reduced the calibration effort and improved disturbance 

rejection. Duarte, et al. [27] analyzed the feasibility of 

applying model predictive control (MPC) strategies to control 

auto-ignition in SI engines. The proposed control strategies 

focus on maintaining the temperature at the ignition point 

below the auto-ignition threshold of the fuel–air mixture, 

thereby preventing knocking and enhancing engine 

performance. Zhu, et al. [28] presented a nonlinear model 

predictive control (NMPC) strategy complemented by a 

disturbance observer. This approach effectively addresses the 

nonlinearities and external disturbances inherent in SI 

engines with EGR systems, enhancing engine performance 

and reducing emissions. Wang, et al. [29] introduced a fuzzy 

logic-based ignition timing control system for SI engines. 

This system utilizes a pressure sensor to determine the 

optimal timing, aiming to enhance engine performance and 

efficiency. The implementation of this fuzzy control strategy 

demonstrated improvements in engine operation, 

highlighting the potential of intelligent control techniques in 

automotive applications. Sahu and Srivastava [30] 

investigates the performance of an idle speed controller 

employing various cylinder airflow calculation 

methodologies. The research demonstrates that accurate 

modeling of cylinder airflow significantly improves the 

controller's ability to maintain stable engine idle speeds under 

varying operating conditions.  

While the aforementioned studies have significantly 

advanced the state of engine control through adaptive, 

predictive, and intelligent techniques, few have explored the 

integration of bio-inspired metaheuristic optimization 

methods particularly GWO  for precise PIDF tuning in spark-

ignition engine speed control. This gap highlights the need 

for further investigation into such approaches, which 

motivates the present study.  The main contribution of this 

study lies in the implementation of a GWO-based PIDF 

tuning method for SI engine speed control and its 

comprehensive comparison with other popular optimization 

techniques. The simulation results confirm that the proposed 

GWO-based controller achieves superior performance in 

terms of transient response, disturbance rejection, and 

robustness, outperforming the other tested algorithms in all 

key performance metrics. 

This paper is structured as follows: In Section 2, the 

structure and features of the PIDF controller are introduced. 

Section 3 presents the mathematical modeling of the engine 

speed control system and its implementation in Simulink. In 

Section 4, the design and application of the GWO for PIDF 

parameter tuning are discussed in detail. Section 5 provides a 

comprehensive comparison between the GWO-tuned 

controller and other metaheuristic algorithms, analyzing 

transient response, disturbance rejection, and frequency 

response. Finally, Section 6 concludes the study and outlines 

future research directions. 

II. OVERVIEW OF PIDF CONTROLLER 

The PIDF controller is an enhanced form of the classical 

PID controller that incorporates a low-pass filter in the 

derivative term to reduce the effects of high-frequency noise. 

Its transfer function is expressed as: 

𝑃𝐼𝐷𝐹(𝑠) = 𝐾𝑃 +
𝐾𝐼
𝑠
+

𝑁𝑠

𝑠 + 𝑁
𝐾𝐷  (1) 

where, 𝐾𝑃, 𝐾𝐼 , and 𝐾𝐷 are the proportional, integral, and 

derivative gains, respectively, and 𝑁 denotes the filter 

coefficient. This filtering action smooths the derivative 

response and prevents instability caused by rapid fluctuations 

or measurement noise, making the controller more suitable 

for practical applications. The structure of the PIDF 

controller used in this study is illustrated in Fig. 1. 

III. MATHEMATICAL MODELING OF ENGINE SPEED CONTROL 

SYSTEM  

This section presents the mathematical modeling and 

control structure of a four-cylinder spark ignition (SI) engine 

for engine speed regulation. The control strategy employs a 

PIDF controller to maintain the desired engine speed under 

varying operating conditions. The engine dynamics are 

modeled based on air intake, manifold pressure, and torque 

generation, and are implemented in MATLAB/Simulink. 

A. Engine Dynamic Model 

The engine's behavior is governed by a set of nonlinear 

differential equations that describe the interaction between 

throttle position, air mass flow, manifold pressure, and engine 
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torque. The following equations are derived from first 

principles and empirical modeling: 

1) Throttle Airflow 

The air mass flow rate entering the intake manifold, 𝑚̇𝑎𝑖, 

depends on throttle angle 𝜃 and the pressure ratio 
𝑃𝑚

𝑃𝑎𝑚𝑏
 : 

𝑚̇𝑎𝑖 =

{
 

 𝑓(𝜃), 𝑖𝑓
𝑃𝑚
𝑃𝑎𝑚𝑏

≤ 0.5 

𝑓(𝜃) × 𝑔 (
𝑃𝑚
𝑃𝑎𝑚𝑏

) , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 (2) 

where 𝑃𝑚 is the manifold pressure, 𝑃𝑎𝑚𝑏  is ambient pressure, 

and 𝑓(𝜃), 𝑔 (
𝑃𝑚

𝑃𝑎𝑚𝑏
) are nonlinear functions derived from 

throttle flow characteristics. 

2) Manifold Pressure Dynamics 

𝑃̇𝒎 =
𝑅𝑇

𝑉𝑚
(𝑚̇𝑎𝑖 − 𝑚̇𝑎𝑜) (3) 

where 𝑅 is the gas constant, 𝑇 is intake air temperature, 𝑉𝑚 is 

the volume of the manifold, 𝑚̇𝑎𝑖 is the incoming air mass 

flow rate from the throttle, and 𝑚̇𝑎𝑜 is the outgoing air mass 

flow rate into the cylinders. 

3) Intake Airflow in Cylinders 

𝑚̇𝑎𝑜 = 0.366𝑃𝑚𝑁 − 0.08979𝑃𝑚
2 − 0.0337𝑁2

+ 0.0001𝑁2𝑃𝑚 
(4) 

where 𝑁 is the engine speed in RPM, and 𝑃𝑚 is manifold 

pressure in bar. 

4) Engine Torque Generation 

The engine torque 𝑇𝑒𝑛𝑔 is calculated as a nonlinear 

function of air mass 𝑚𝑎, air-fuel ratio 
𝐴

𝐹
, spark timing 𝜎, and 

engine speed: 

𝑇𝑒𝑛𝑔 = 181 + 3.379𝑚𝑎 − 36.21 ( 
𝐴

𝐹
) +⋯ (5) 

5) Engine Speed Dynamics 

𝑁̇ =
𝑇𝑒𝑛𝑔 − 𝑇𝑙𝑜𝑎𝑑

𝐽
 (6) 

where 𝑇𝑙𝑜𝑎𝑑  is the load torque and 𝐽 is the engine’s rotational 

inertia. 

B. Implement of PIDF in Engine Speed Control System 

In general, PIDF controller enhances system robustness 

by incorporating a low-pass filter in the derivative path, 

minimizing sensitivity to noise.  

Based on PIDF equation that express in section 2, In the 

time domain, the control signal 𝜃 is: 

𝜃 = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏

+ 𝐾𝐷 × 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (
𝑑

𝑑𝑡
𝑒(𝑡)) 

(7) 

where 𝑒(𝑡) = 𝑁𝑠𝑒𝑡(𝑡) − 𝑁(𝑡) is the tracking error. The 

derivative is filtered using a first-order low-pass filter with 

cutoff determined by 𝑁. 

C. Simulink Implementation and Response 

The full engine model and PIDF controller are 

implemented in Simulink as illustrated in Fig. 2. The block 

diagram includes subsystems for engine dynamics, manifold 

pressure calculation, torque generation, and the PIDF 

controller block. The simulation tracks engine speed from 

2000 to 3000 RPM under changing throttle commands. 

Fig. 3 shows the time-domain response of the system, 

demonstrating that the PIDF controller achieves rapid 

convergence to the desired speed with minimal overshoot and 

steady-state error, validating its effectiveness in real-time 

control of engine dynamics. 

IV. GWO-TUNED PIDF CONTROLLER DESIGN  

A. Overview of Grey Wolf Optimizer  

The GWO is a population-based metaheuristic 

optimization algorithm introduced by Mirjalili et al. [12]. It 

is inspired by the social hierarchy and hunting strategy of 

grey wolves in nature. In the algorithm, candidate solutions 

are represented as wolves, which are divided into four groups 

based on dominance: alpha (𝛼), beta (𝛽), delta (𝛿), and 

omega (𝜔). The alpha wolf represents the best solution found 

so far, while beta and delta help guide the search. The omega 

wolves follow the leading wolves and explore the search 

space accordingly. 

In general, GWO algorithm is inspired by the natural 

hunting behavior of grey wolves, which involves a 

coordinated process of encircling the prey, collaboratively 

hunting it, and ultimately launching a final attack. This 

behavior is mathematically modeled to guide the search 

agents toward optimal solutions in a problem space.The 

positions of the wolves are updated iteratively using 

mathematical models that simulate the wolves’ surrounding 

and attacking behaviors. GWO balances exploration and 

exploitation, making it highly effective for tuning controller 

parameters in nonlinear and complex systems. 

In this paper, GWO is used to find the optimal PIDF 

controller parameters by minimizing the cost function (IAE), 

ensuring enhanced control accuracy and dynamic 

performance in engine speed regulation. 

B. Objective Function Definition 

The optimization goal is to minimize the integral of 

absolute error (IAE) over a simulation period of 𝑡𝑓 = 50𝑠 

seconds, defined as: 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡

𝑡𝑓

0

 (8) 

where 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) is the error between the reference 

speed 𝑟(𝑡) and the actual engine speed 𝑦(𝑡). This 

performance index penalizes both transient and steady-state 

errors, encouraging a fast and accurate response. 

C. Parameter Boundaries 

To ensure stability and practical implementation, the 

PIDF parameters are optimized within the constrained ranges 

given in Table I.  
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Fig. 1. General schematic of PIDF controller 
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Fig. 2. Block diagram of PIDF controlled four-cylinder SI engine speed control system  
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Fig. 3. Time response of Simulink PIDF-tuned system  

TABLE I.  BOUNDARIES FOR PIDF CONTROLLER PARAMETERS 

Parameters 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝑁 

Lower Band 0.001 0.001 0.001 100 

Upper Band 0.1 0.1 0.01 2000 

These bounds were selected based on prior system 

knowledge and ensure the filter term is effective while 

keeping the gains within reasonable physical limits for the 

engine control unit. 

D. System Implementation 

The GWO algorithm is integrated with a closed-loop 

simulation model of the engine control system. Fig. 4 

illustrates the structure of the control loop, where the PIDF 

controller processes the error signal and adjusts the throttle 

input accordingly. The engine’s speed output is continuously 

monitored and compared with the reference to form the 

feedback signal. 

The results of this tuning approach demonstrate that the 

GWO-tuned PIDF controller achieves a significant reduction 

in IAE compared to manually tuned or heuristically 

optimized controllers, with improved transient characteristics 

such as reduced overshoot and faster settling time. 

V. COMPARATIVE SIMULATION RESULTS  

This section presents the comparative simulation results 

of four metaheuristic optimization algorithms, GWO [12], CS 

[11], DE [10], and PSO [9] for tuning the parameters of a 

PIDF controller. The analysis includes statistical 

performance, transient response specifications, disturbance 

rejection, and frequency response characteristics. 
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Fig. 4. Application of GWO to four-cylinder SI engine speed control system 

A. Experimental Setup 

All algorithms were executed over 25 independent runs 

under identical simulation conditions. The algorithmic 

parameters used for each method are summarized in Table II, 

where the population size and number of iterations were fixed 

to 30 and 50, respectively, across all methods. Additional 

tuning parameters such as mutation and recombination rates 

for DE, convergence constants for GWO, and inertia weights 

and acceleration coefficients for PSO were used as per their 

standard settings. 

TABLE II.  PARAMETER SETTINGS OF GWO, CS, DE AND PSO 

ALGORITHMS  

Algorithm Parameter Value 

GWO 

Population size 30 

Total iteration number 50 

Convergence constant 𝑎 
Decreases linearly from 2 

to 0 

CS 

Population size 30 

Total iteration number 50 

Switching parameter 𝑝𝑎 0.25 

DE 

Population size 30 

Total iteration number 50 

Mutation rate 0.5 

Recombination rate 0.5 

PSO 

Population size 30 

Total iteration number 50 

Inertia weight 𝑤𝑚𝑎𝑥 and 

𝑤𝑚𝑖𝑛 
[0.9, 0.6] 

Acceleration constants 𝑐1 

and 𝑐2 
[2, 2] 

B. Statistical Performance Evaluation 

Table III presents the statistical results of the best 

objective function values obtained in 25 independent runs. 

GWO demonstrated superior performance with the lowest 

mean (231.93), standard deviation (6.07), and minimum 

value (223.72), indicating both accuracy and consistency in 

finding optimal solutions. 

Table IV demonstrates the Wilcoxon signed-rank test that 

confirmed the statistical significance of GWO’s superiority 

over the other algorithms at a 5% significance threshold level. 

TABLE III.  STATISTICAL RESULTS OF THE BEST OBJECTIVE FUNCTION 

VALUES OBTAINED IN 25 INDEPENDENT RUNS 

Algorithm Mean SD Minimum Maximum Median 

GWO 231.9312 6.0663 223.7207 251.9990 230.4099 

CS 237.5224 7.4660 225.5810 249.8761 236.0028 

DE 239.4535 7.2246 227.7941 252.7603 237.7943 

PSO 238.1579 7.5903 227.6914 254.2174 236.7307 

TABLE IV.  WILCOXON SIGNED-RANK TEST BETWEEN PROPOSED 

OPTIMIZATION ALGORITHM AND OTHERS 

GWO versus CS GWO versus DE GWO versus PSO 

p-value Winner p-value Winner p-value Winner 

0.0074 GWO 0.0013 GWO 0.0160 GWO 

C. Optimized PIDF Parameters 

The PIDF controller parameters tuned by each algorithm 

are shown in Table V. GWO achieved a well-balanced set of 

parameters that led to better control performance, as detailed 

in the next subsection. 

TABLE V.  OBTAINED PIDF PARAMETERS 

Algorithm 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝑁 

GWO 0.097992 0.013252 0.0036819 217.17 

CS 0.079164 0.013176 0.0033497 174.33 

DE 0.095967 0.013339 0.0044356 1831.0 

PSO 0.095805 0.013068 0.0033895 1739.9 

Fig. 5 shows the convergence of PIDF parameters over 

iterations using the GWO, CS, DE and PSO algorithms. 

Initially, parameters fluctuate due to exploration, then 

gradually stabilize as the algorithm exploits the best regions. 

The smooth convergence indicates effective optimization. 

Final values ensure balanced and robust controller 

performance. Fig. 6 illustrates the convergence of the 

objective function over 50 iterations for the GWO, CS, DE 

and PSO algorithms. The objective value decreases rapidly in 

the early iterations, showing strong global search ability. It 

then gradually stabilizes, indicating convergence to an 

optimal solution. This smooth decline confirms the efficiency 

and reliability of the optimization process. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1546 

 

Serdar Ekinci, Nonlinear Control of Engine Speed Regulation Using Grey Wolf Optimizer for Enhanced System Stability and 

Performance 

0 10 20 30 40 50

Iteration number

0.02

0.04

0.06

0.08

0.1
K

P GWO

CS

DE

PSO

0 10 20 30 40 50

Iteration number

0.01

0.012

0.014

0.016

0.018

0 10 20 30 40 50

Iteration number

0

2

4

6

8
10-3

0 10 20 30 40 50

Iteration number

0

500

1000

1500

2000

N

GWO

CS

DE

PSO

GWO

CS

DE

PSO

GWO

CS

DE

PSO

x

K
D

K
I

 
Fig. 5. Changes of PIDF controller parameters   
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Fig. 6. Change of 𝐼𝐴𝐸 objective function  

D. Transient Response Analysis 

The transient performance of the PIDF controllers 

optimized by GWO, CS, DE, and PSO algorithms is shown 

in Fig. 7 and Table VI. The GWO-tuned controller 

demonstrates a fast and smooth response with low overshoot 

and short settling time, reflecting its effective parameter 

tuning. To evaluate the performance quantitatively, five key 

transient specifications were analyzed: rise time, settling 

time, overshoot, peak time, and steady-state error. 

The rise time was calculated based on the interval from 

10% to 90% of the final value of the system output. The 

settling time was measured using a ±2% tolerance band 

around the final steady-state value. The steady-state error was 

computed at the final simulation time, 𝑡𝑓 seconds. Under 

these definitions, the GWO method achieved the shortest rise 

time (0.3105 s), a fast settling time (2.4153 s), moderate 

overshoot (1.3765%), and a very low steady-state error of 

1.8270×10⁻⁴ rpm. Although the DE algorithm produced the 

smallest overshoot (0.6124%), it exhibited a higher steady-

state error compared to GWO. The CS and PSO algorithms 

also showed acceptable performance, but with slightly longer 

rise and settling times. Fig. 8 offers a magnified view of the 

time-domain responses, clearly emphasizing the faster 

convergence and reduced steady-state fluctuations achieved 

by the GWO-based controller. 

TABLE VI.  COMPARISONS OF NORMALIZED TRANSIENT RESPONSE 

SPECIFICATIONS 

Algorithm 
Rise 
time 

Settling 
time 

Overshoot 
Peak 
time 

Steady-state 
error 

GWO 0.3105 2.4153 1.3765 2.4778 1.8270E−04 

CS 0.3156 2.4268 0.9500 2.4932 4.0359E−05 

DE 0.3142 2.4266 0.6124 2.4933 9.3574E−04 

PSO 0.3113 2.4785 2.0069 2.4756 0.0010 
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Fig. 7. Comparative time responses 
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Fig. 8. Zoom of time responses   

E. Disturbance Rejection and Reference Tracking 

Performance 

To evaluate the robustness and real-world applicability of 

the GWO-based PIDF controller, the system was subjected to 

two types of external influences: a dynamic disturbance and 

measurement noise. As shown in Fig. 9, the external 

disturbance was defined in the Laplace domain as: 

𝐷(𝑠) = −
1740

𝑠2 + 1.5𝑠 + 11.6
 (9) 

and was applied starting from 𝑡 = 10𝑠, lasting throughout the 

remainder of the simulation. This disturbance mimics a real-

life low-frequency perturbation that may affect the system’s 

stability. 
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Fig. 9. Types of disturbances (a) external disturbance, (b) measurement 

noise  

Simultaneously, measurement noise was introduced as a 

uniformly distributed random signal 𝜂(𝑡) within the range 

[−1, 1], simulating sensor inaccuracies and electrical noise in 

the feedback signal. These conditions test the controller’s 

ability to maintain performance under uncertainty and 

environmental noise. 

Fig. 10 displays the system's time-domain response under 

these disturbance conditions. The GWO-optimized PIDF 

controller exhibits excellent disturbance rejection capability: 

despite the sudden onset of the disturbance and continuous 

noise, the system remains stable and maintains performance 

with only minimal deviation from the reference signal. This 

highlights the controller’s robustness and effective damping 

behavior. In addition to disturbance rejection, the controller’s 

ability to track varying reference signals was evaluated and is 

presented in Fig. 11. The results confirm that the GWO-based 

controller provides precise reference tracking, with minimal 

steady-state error and no noticeable lag or overshoot. This 

demonstrates that the controller is not only robust to external 

disturbances and noise but also capable of accurately 

following desired dynamic trajectories, making it suitable for 

real-world control applications. 
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Fig. 10. Time response of GWO-based PIDF controlled system under 

disturbances 
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Fig. 11. Performance of GWO-based PIDF control in tracking reference 

input signal 

F. Frequency Response Analysis 

To assess the stability and robustness of the closed-loop 

system from a frequency-domain perspective, a Bode plot of 

the linearized open-loop transfer function of the GWO-based 

PIDF controlled system was analyzed, as shown in Fig. 12. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1548 

 

Serdar Ekinci, Nonlinear Control of Engine Speed Regulation Using Grey Wolf Optimizer for Enhanced System Stability and 

Performance 

The frequency response reveals a gain margin of 12.8 dB at a 

frequency of 68.8 rad/s, and a phase margin of 34.6° at 22.3 

rad/s. These values fall within the acceptable range for 

control systems, indicating that the system can tolerate 

moderate variations in gain and phase without becoming 

unstable. 

A higher gain margin implies that the system can 

withstand larger increases in system gain before instability 

occurs, while a sufficient phase margin ensures good 

damping and transient behavior. The margins observed 

confirm that the designed controller not only performs well 

in time-domain simulations but also maintains robustness 

under frequency-domain criteria. Therefore, the Bode plot 

analysis supports the conclusion that the GWO-optimized 

PIDF controller guarantees closed-loop system stability with 

adequate robustness against uncertainties and unmodeled 

dynamics. 
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Fig. 12. Bode plot of open-loop GWO-based PID controlled system 

VI. CONCLUSION  

In this paper, a GWO-based PIDF controller tuning 

method was developed and applied to the speed control of a 

SI engine. By integrating the GWO algorithm with classical 

PID architecture, the proposed approach aimed to address, the 

inherent nonlinearities and disturbances present in internal 

combustion engine systems. Through comprehensive 

simulation experiments, the GWO-based controller 

demonstrated superior performance compared to traditional 

metaheuristic algorithms such as PSO, DE, and CS. The 

results showed improvements in transient response 

characteristics, reduced overshoot, enhanced disturbance 

rejection, and increased robustness. 

Despite the promising results, the study has several 

limitations. The analysis was performed exclusively in a 

simulation environment, without real-time or hardware-in-

the-loop (HIL) implementation. Additionally, the engine 

model assumes fixed parameters and does not account for 

long-term variations in engine wear or environmental 

conditions such as temperature or fuel quality. Moreover, 

while the tuning focused on PIDF parameters, other structural 

improvements for instance, fractional-order controllers or 

fuzzy hybrid systems were not considered. 

From a practical and managerial perspective, the 

proposed GWO-based tuning method offers a low-cost, 

adaptive, and effective solution for real-time engine control 

systems. It can be integrated into embedded control units 

(ECUs) of vehicles to automatically adjust PIDF parameters 

under varying load and operational conditions, contributing 

to better fuel efficiency, smoother operation, and reduced 

emissions. 

Future research may focus on extending the proposed 

framework to real-time hardware testing, applying the 

controller to different engine types, for instance, diesel or 

hybrid electric, and integrating more advanced control 

strategies, such as MPC or reinforcement learning-based 

methods. Additionally, hybrid optimization algorithms that 

combine the exploration strength of GWO with the 

exploitation ability of other techniques may further improve 

controller performance in dynamic environments. 
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