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Abstract—Path planning in cluttered and uncertain environ-
ments remains a significant challenge in robotics, autonomous
navigation, and logistics optimization. This paper proposes a
novel Adaptive Hybrid PSO-ACO Planner, which synergistically
combines Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO) to compute efficient paths in grid-based
environments with static obstacles. Unlike traditional fixed-phase
hybrids, our approach features a dynamic switching strategy
between PSO and ACO based on real-time convergence behavior,
allowing the algorithm to maintain progress and escape local
minima. Additionally, adaptive parameter tuning is integrated to
enhance the balance between global exploration and local exploita-
tion throughout the search. The switching logic is governed by two
criteria: a stagnation threshold that triggers phase transitions and
a progress-dependent adaptation mechanism that adjusts search
intensities over time. PSO dominates the early search phase,
rapidly exploring the solution space, while ACO refines promising
paths through pheromone-guided optimization in later stages. The
proposed planner also includes a path reconstruction module
to ensure solution completeness and robustness. Experimental
evaluations on grid-based environments demonstrate that the pro-
posed method consistently achieves higher path quality and faster
convergence compared to standalone PSO and ACO approaches.
Quantitative results demonstrate notable improvements in path
efficiency and overall success rate across a range of obstacle
densities. These advancements establish the Adaptive Hybrid PSO-
ACO Planner as a robust and efficient tool for real-time and
practical deployment in autonomous robot navigation systems.

Keywords—Path Planning; Hybrid Metaheuristics; Particle
Swarm Optimization (PSO); Ant Colony Optimization (ACO); Adap-
tive Switching; Robot Navigation

I. INTRODUCTION

Path planning is one of the most critical tasks in the field of
robotics and autonomous navigation. Whether in the context of
mobile robots, unmanned ground vehicles, or autonomous de-
livery systems, the ability to compute an efficient and collision-
free path from a starting point to a desired goal remains a
fundamental challenge [1]-[4]. This task becomes particularly

complex in environments with static or dynamic obstacles,
limited perception, or uncertainty [S]-[11].

Robots operating in such environments often deal with
sensor noise, limited field-of-view, and dynamically changing
surroundings, making static planning approaches insufficient.
In these scenarios, a robot must intelligently explore the envi-
ronment, reason about constraints, and adapt its trajectory in
real time to ensure safe and successful navigation [12]-[18].

The importance of reliable and optimized path planning ex-
tends across a wide range of practical applications. In industrial
settings, automated guided vehicles (AGVs) depend on efficient
path planning to move goods within warehouses [19]-[25]. In
urban mobility, self-driving cars must continuously plan their
paths to navigate traffic while ensuring passenger safety [26]—
[29]. In emergency and rescue missions, mobile robots are de-
ployed in unknown terrains where path planning must be robust
against unexpected barriers and limited sensor coverage [30]-
[34]. Therefore, the effectiveness of path planning algorithms
has a direct impact on the operational performance, reliability,
and safety of robotic systems [35]-[43].

Over the years, numerous approaches have been proposed
for solving the path planning problem. Classical methods such
as Dijkstra’s algorithm and A* provide deterministic solutions
but often struggle with scalability and adaptability in complex
or dynamic environments [44]-[48]. Metaheuristic techniques,
including Particle Swarm Optimization (PSO), Ant Colony Op-
timization (ACO), and Genetic Algorithms (GA), have gained
popularity due to their flexibility and global search capabilities
[49]-[60].

However, these algorithms also suffer from limitations. PSO
can rapidly explore the search space but may converge pre-
maturely to suboptimal solutions [61], [62]. ACO is powerful
for local exploitation but tends to slow down as the search
progresses [63]-[66].
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Hybrid models that combine these algorithms have been
introduced, yet most of them rely on fixed or manually defined
transitions, lacking real-time adaptability and responsiveness to
convergence behavior [67]-[71].

Despite their promise, existing hybrid PSO-ACO approaches
fall short in dynamic decision-making. They typically use static,
fixed-sequence integration strategies, which are insensitive to
real-time convergence behavior and unable to adapt based on
performance feedback. Furthermore, many approaches intro-
duce significant implementation complexity and computational
cost, without adequately addressing their scalability in real-
world robotic systems.

To overcome these limitations, this paper proposes an adap-
tive Hybrid PSO-ACO Path Planner that integrates PSO and
ACO in a cooperative and adaptive framework [72]-[77].

The novelty of this approach lies in its dynamic phase-
switching mechanism, which allows the planner to alternate
between PSO and ACO based on the observed stagnation of
convergence and the progress of optimization. PSO dominates
the early search stage to encourage broad exploration, while
ACO enhances promising paths using pheromone-based rein-
forcement during the later stages.

The algorithm also incorporates adaptive parameter tuning to
continuously balance exploration and exploitation throughout
the search process. The decision to transition between PSO
and ACO is governed by two key factors: (1) a stagnation
threshold that indicates when progress has plateaued, and (2)
a progress-driven adaptation mechanism that tunes algorithmic
parameters to maintain diversity early and promote convergence
later. Initially, the algorithm employs PSO to explore the grid-
based environment broadly, generating candidate paths through
particle movements influenced by both global and personal
bests. When improvement stalls or the search becomes local-
ized, the planner transitions to ACO, where pheromone trails
guide the search through high-quality regions. This switching
process is bidirectional, allowing the system to re-invoke PSO
if needed, and ensures that both exploration and exploitation
are applied effectively and at the right moments.

Additionally, the planner integrates adaptive parameter tun-
ing, a visibility-based heuristic, and a path completion and
enhancement module that reconstructs or extends paths to
ensure full connectivity from start to goal.

The main contributions of this work are: (i) an adaptive
hybrid path planning framework that adaptively switches be-
tween PSO and ACO based on stagnation and progress, en-
suring robustness and flexibility in complex environments; (ii)
a progress-aware parameter adjustment scheme that balances
exploration and exploitation throughout the search; and (iii)
a path validation and enhancement mechanism that ensures
solution completeness and quality without requiring a full
reinitialization.

While our experiments are conducted in static grid-based
environments, the proposed framework is designed with exten-
sibility in mind. Future work will focus on dynamic scenarios,
continuous space navigation, and real-time deployment using
ROS-Gazebo on physical robots. We also aim to investigate
the influence of noisy sensors and uncertainty-aware models
to further enhance real-world applicability. Furthermore, we
acknowledge that while our method improves adaptability, it
introduces additional algorithmic complexity and computation
cost. This trade-off is discussed further in the conclusion.

The proposed method has been rigorously evaluated and
compared against standalone PSO, ACO, and other hybrid
variants such as PSO-GA and GA-ACO. The results demon-
strate that the Adaptive Hybrid PSO-ACO Planner consistently
achieves superior performance in terms of path optimality, suc-
cess rate, convergence behavior, and overall reliability. These
findings confirm the effectiveness of the approach and under-
score its potential for real-world applications in autonomous
navigation systems.

The rest of the paper is structured as follows: Section 2
explains the theoretical background of PSO and ACO and
details the proposed dynamic hybrid methodology. Section 3
discusses the experimental results and benchmarks. Finally,
Section 4 concludes the paper and outlines directions for future
research.

II. RELATED WORKS

Path planning in cluttered and dynamic environments is still
one of the most challenging tasks in mobile robotics. Several
nature-inspired optimization algorithms have been proposed to
solve this problem, among them PSO and ACO are considered
two of the most widely used approaches. PSO is a population-
based stochastic optimization method introduced by Kennedy
and Eberhart [78]. It mimics the social behavior of bird flock-
ing and has shown fast convergence during the initial search
phase. However, standard PSO often suffers from premature
convergence and lacks robustness in complex environments. To
overcome these limitations, hybrid versions of PSO with other
metaheuristics have been proposed.

ACO, developed by Dorigo and Gambardella [79], is inspired
by the pheromone trail behavior of ants. It is well adapted
for solving discrete and combinatorial problems such as grid-
based path planning. ACO performs well in terms of solution
refinement but requires more iterations to converge, especially
in large search spaces. To enhance performance, recent studies
have proposed combining PSO and ACO into hybrid frame-
works. These hybrid approaches exploit the global exploration
capacity of PSO and the local exploitation capability of ACO.

In [80], a two-layer strategy was proposed for wheeled
mobile robots by combining an improved ACO algorithm for
global path generation with a Dynamic Window Approach
(DWA) for local obstacle avoidance. Another work in [81]
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proposed a hybrid PSO-DWA method for unmanned surface
vehicles, where adaptive parameter control was introduced to
improve convergence and reduce oscillation near obstacles.
In the context of aerial vehicles, [82] developed a hybrid
dung beetle optimization algorithm for 3D path planning that
integrates chaotic mapping and adaptive inertia to overcome
local minima.

A recent work in [83] introduced a dynamic PSO-based
planner, named OkayPlan, which considers obstacle kinematics
in real time. It formulates the problem as a constrained op-
timization task and solves it using a modified PSO scheme.
All these works demonstrate that hybrid and adaptive meth-
ods can significantly improve the efficiency and reliability of
autonomous navigation in uncertain environments.

Despite these improvements, most hybrid strategies adopt
static switching rules or fixed weights between phases, which
limits their responsiveness to stagnation or sudden changes
in the environment. In contrast, the method proposed in this
paper introduces an adaptive hybrid PSO-ACO planner that
dynamically switches between phases based on convergence
behavior. A stagnation-based logic is used to alternate between
PSO and ACO phases, while adaptive parameter adjustment
ensures balanced exploration and exploitation during the en-
tire planning process. Compared to existing approaches, this
strategy improves robustness and convergence speed in dense
obstacle environments.

III. METHOD

This section presents the principal techniques used in this
work. Two nature-inspired algorithms are first introduced: PSO
and ACO. These methods have demonstrated effectiveness
in solving complex path planning problems. Afterwards, the
proposed adaptive hybrid approach, which combines both tech-
niques in an adaptive framework, is detailed. The method
alternates between PSO and ACO phases based on the system’s
performance, allowing efficient exploration of the search space
and rapid convergence toward an optimal path.

A. Particle Swarm Optimization

In PSO, each particle represents a potential solution in
the search space, and all particles move within the space by
adjusting their velocities and positions based on their own
experience and the experience of neighboring particles.

The velocity ¢ and position p updates of a particle are
governed by the equations:

Ui (t + 1) = wii(t) + c171 (Dbest,i — Pi(t)) + car2(Goest — Di(t))
)]
pi(t+1) =pi(t) + vi(t + 1) (2)

where pheg,; is the personal best position found by particle
i, Jbest 1S the global best position found so far by the swarm,
w is the inertia weight, and c;, ¢y are cognitive and social
learning coefficients respectively. The variables 7, ro are
random numbers uniformly distributed in [0, 1].
The main steps of the PSO procedure used in this work are
summarized in the following pseudocode.

Algorithm 1: Particle Swarm Optimization

Input: Objective function f, particles N, iterations 7', inertia
weight w, coefficients ¢y, co
Output: Global best solution Gpes
« Initialize positions p; and velocities v; randomly for each
particle i =1,..., N
o Set ﬁbesl,i <~ ﬁi’ and gbesl < argmin; f(ﬁbest,i)
e Fort=1toT":
— For each particle i:
« Sample r1,rs ~ U(0,1)
« Update velocity: 0; < wt; 4+ c171 (Pbest,i
CaT2 (gbest - ﬁz)
Update position: p; < p; + U;
If f(ﬁZ) < f(ﬁbest,i), then ﬁbesl,i < ﬁz
If f(ﬁz) < f(gbest)v then Goese < Di
o Return gy

— Pi) +

* % X

In this work, PSO is employed for initial exploration and for
enhancing candidate paths by refining selected waypoints in the
solution space.

B. Ant Colony Optimization

ACO is a nature-inspired algorithm based on the behavior
of real ants searching for food. Each ant constructs a path by
moving from node to node according to a probabilistic rule that
combines pheromone intensity and heuristic information. The
movement probability from a node i to a node j is given by:

(7451 517

> [kl ni]?

kEN;

Py = 3

Here, 7;; is the pheromone value on edge (i,j), and 7;;
represents the heuristic information. In this method, n;; is
defined as:

1

Ty e @

Nij
where d;; is the Euclidean distance from node j to the goal,
and ¢ is a small constant added to avoid division by zero.

To improve navigation in cluttered environments, the heuris-
tic component is further combined with a visibility map that
evaluates the number of free neighboring cells. Therefore, the
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total movement probability toward a neighbor j includes an
exploration component and is computed as:

Pjoc (1}%) - (m2°) + X vy - (1= p) (5)

where v; is the visibility of node j, A is the exploration factor,
and p € [0, 1] represents the normalized progress through the
optimization cycles.

After all ants complete their tours, the pheromone matrix is
updated using the following rule:

mij = (1=8) -7+ > A7l (6)
k=1
where ¢ is the evaporation rate, and ATi(f)
deposited by ant k, defined as:

A _ {LQ .

" 0, otherwise

is the pheromone

if edge (4, 7) is in the best path of ant k

Here, @ is a constant, Ly is the length of the path generated
by ant k, and w is a reinforcement coefficient applied to elite
solutions.

The main steps of the ACO procedure implemented in this work
are summarized below.

Algorithm 2: Ant Colony Optimization

Input: Graph G = (V| E), pheromone matrix 7, heuristic
matrix 7, number of ants m, parameters «, /3,9, Q,w, A.
Output: Best path found.

o Initialize pheromone levels 7;; uniformly.
« For iteration t =1 to 1"

— For eachant £k =1,... m:
* Build a complete path using: Pi(jk) =
[741%[mi3]°

ZleNi [Til]a[”hl]/j
* Adjust n;; with visibility if needed.
— Update pheromone values: 7;; < (1 — J)
s A7) where

%

© Ty T+

AR _ % -w, if (i,7) € best path of ant k
* 0, otherwise
o Return the best path found so far.

This pheromone-guided learning process allows the ants to
collectively refine the solution space, reinforcing paths that are
shorter, safer, and more complete. When used in alternation
with PSO, the ACO phase plays a critical role in fine-tuning
the best candidate paths identified during the global exploration
stages.

C. Adaptive Hybrid Path Planning Strategy

This section details the development of the Adaptive Hybrid
Metaheuristic Path Planning Algorithm, which intelligently
integrates PSO and ACO within an adaptive framework for

autonomous robot navigation. The objective is to efficiently
compute collision-free paths in static, grid-based environments
while avoiding premature convergence and stagnation. Unlike
conventional hybridization strategies that operate on fixed se-
quencing, the proposed method employs a dynamic switching
mechanism regulated by convergence indicators and adap-
tive progress metrics. This allows the planner to seamlessly
transition between PSO and ACO phases based on real-time
performance feedback, ensuring consistent search diversity and
refined exploitation throughout the optimization horizon.

Although the hybridization does not offer formal convergence
guarantees, it is grounded in adaptive metaheuristics literature
and supported by strong empirical results. The stagnation-
aware switching mechanism and dynamic parameter adaptation
collectively form a responsive framework that maintains search
diversity and avoids premature convergence. This limitation
has been clearly stated and suggested for future theoretical
exploration.

1) Overview of the Planner: The navigation environment
is modeled as a 2D occupancy grid , where each cell is
labeled as either free (0) or occupied (1). The robot starts at
a defined position and seeks to reach a target position while
avoiding obstacles. The planning procedure is executed across
multiple optimization cycles, wherein each cycle consists of
either a PSO-driven or ACO-driven path generation phase. The
selection of which optimization method to apply in each cycle
is determined by the stagnation-aware switching logic.

Each generated path is evaluated based on completeness,
feasibility, and optimality (in terms of path length). Only
valid paths that successfully connect to are considered for
updating the best-known solution . The planner is equipped with
path enhancement, reconstruction, and visualization modules to
ensure the quality and interpretability of generated solutions.

2) Switching Mechanism Based on Stagnation Monitoring:
In the proposed hybrid framework, maintaining continuous
progress in the optimization process is essential for avoiding
premature convergence and escaping local optima. To this end,
a dynamic phase-switching mechanism is introduced, governed
by a stagnation counter denoted . This counter is incremented
whenever successive optimization cycles fail to improve the
length of the best-found path.

Let be the index of the current optimization cycle, and the
length of the best complete path at cycle . The evolution of the
stagnation counter is defined as:

0, if Lbeste < Iheste — 1k + 1, @
] otherwise

The counter is compared to a predefined stagnation threshold
. Once the threshold is reached (), the algorithm triggers a phase
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transition to alternate between the two optimization strategies:
o - ACO,

PSO,

The switching logic described above is summarized in Fig. 1,

which visually represents the decision process used to alternate
between PSO and ACO phases in response to stagnation.

if & =PSO

. o k0 (8
if ® = ACO

~__
/ \
/ \
Lbest(c) < Lbest(c-1)

If ¢ = PSO
Switch to ACO,
K< o0

If ¢ = ACO
Switch to PSO,
K< o0

Continue next cycle
with Update Phase

Fig. 1. Flowchart illustrating the stagnation-based switching mechanism. When the best
path length no longer improves, a stagnation counter ~ is incremented and compared to
a predefined threshold 6. Once this threshold is reached, the planner switches between
PSO and ACO phases adaptively

Here, denotes the current operating phase of the algorithm.
The switching rule ensures that the system periodically intro-
duces structural changes in the search behavior, allowing the
algorithm to escape from regions where progress stalls due to
suboptimal path convergence.

This adaptive alternation is especially beneficial in grid-based
path planning problems where complex obstacle configurations
can create deceptive basins in the search landscape. PSO is
better suited for global exploration during early cycles, rapidly
covering large portions of the environment. On the other hand,
ACO excels in fine-tuning and local exploitation due to its
cumulative pheromone-based memory. By switching between
these phases in response to stagnation, the planner maintains a
balance between intensification and diversification throughout
the optimization horizon.

The switching logic and parameter scheduling are synchro-
nized in a dual-feedback loop that governs both the strategy
and behavior of the search dynamically.

This mechanism operates in conjunction with progress-
dependent parameter adjustment strategies to form a fully
dynamic optimization engine capable of adapting its behavior
over time without external supervision.

3) Adaptive Parameter Scheduling: To improve the effi-
ciency and responsiveness of the hybrid optimization process,
an adaptive scheduling strategy is integrated into the algorithm.
This mechanism adjusts key parameters in real-time according
to the normalized optimization progress, enabling a smooth
transition from exploration to exploitation as the search evolves.

Let be the current optimization cycle and the total number
of allowed cycles. The normalized progress is defined by:

o= pe01] )

c
OIII&X ’
This scalar value serves as a temporal indicator of the opti-
mization phase. Three principal parameters are modulated by
this progression variable: the exploration factor , the restart
probability , and the elite emphasis . Each plays a distinct role
in regulating the behavior of the PSO and ACO modules.

1) Exploration Factor :

e(p) = max(0.2,0.7- (1 — p)) (10)

This parameter influences the degree of randomness and
visibility-driven bias in the ACO phase. At early stages
(), a higher promotes broad exploration. As , decreases to
concentrate search efforts near promising regions.

2) Restart Probability :

7 (p) = max(0.1,0.3 - (1 — p)) (11)

Primarily used in PSO, this parameter determines the likeli-
hood of particle reinitialization. A higher value early in the
search encourages diversity; as the search matures, declines
to reinforce exploitation.

3) Elite Emphasis :

Ae(p) =15+p 12)

This coefficient amplifies the reinforcement of elite paths in
ACO. Increasing during late stages strengthens convergence by
directing ants toward the most successful trajectories.

Together, these adaptive parameters define a dynamic be-
havioral profile. Initially, the system emphasizes exploration to
discover diverse regions. As progress accumulates, the search
gradually shifts to intensification near high-quality paths. A
sensitivity study in results section evaluates how these adaptive
rules perform across a variety of grid sizes and obstacle
densities. The results confirm that the planner remains robust
and effective even with parameter variation.

4) Path Validation and Reconstruction: To ensure the feasi-
bility and completeness of generated solutions, each candidate
path P = {ng,n1,...,n,} is subjected to a strict validation
process. This process enforces two critical conditions:

1. Start and Goal Alignment: The path must begin at the
designated start node S and terminate at the goal node G,.
Formally:

n0=S and n k=G o (13)

2. Obstacle Avoidance: Every node n; € P must lie within
a free cell of the occupancy grid G, i.e., no part of the path
may intersect any obstacle or invalid region.
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If either of these conditions is violated (particularly if the
goal is not reached), the planner initiates a greedy path recon-
struction process to attempt a rapid correction. Starting from
the last node ny of the incomplete path, a greedy search is
executed to extend the trajectory to the goal:

P’ = greedy_path(n_k, G_o) (14)

If the greedy extension P’ is successful, the final corrected
path is assembled by appending the extension to the original
path while avoiding node duplication:

Pipa = PU Pl[l Z] (15)

In scenarios involving dense or irregular obstacle configu-
rations, direct greedy reconstruction may fail due to occluded
corridors or dead-ends. In such cases, the system introduces
intermediate waypoints selected near the midpoint between the
current path and the goal. These waypoints serve as subgoals,
dividing the reconstruction into smaller, more tractable subprob-
lems. The resulting path is composed of concatenated greedy
segments:

P_final = greedy_path(n_k, w) U greedy_path(w, G_o) (16)

where w is a valid intermediate waypoint located within a
navigable corridor.

This modular reconstruction strategy significantly enhances
the planner’s robustness. Rather than discarding partially valid
paths and reinitializing the entire optimization process, the
planner preserves useful subpaths and incrementally repairs
deficiencies. Nonetheless, the greedy reconstruction mechanism
may face limitations in highly dynamic or non-uniform environ-
ments. Future work will explore integrating local replanning,
backtracking, or learning-based heuristics to improve repair
reliability under real-world uncertainty. This approach reduces
computational waste and improves convergence in complex,
high-obstacle environments.

5) Formal Description of the Proposed Algorithm: The
following algorithm summarizes the core execution flow of
the proposed adaptive hybrid planner. It integrates the adaptive
scheduling of key parameters, stagnation-aware phase switch-
ing, and path validation mechanisms described previously.
The optimization alternates between PSO and ACO phases,
progressively refining the solution while responding to search
stagnation. The final path is either the best valid trajectory
discovered or a reconstructed extension of an incomplete one.

Algorithm 3: Adaptive Hybrid PSO-ACO Path Planning

Input: Occupancy grid G, start node S, goal node G,,
maximum cycles Ci,.x, stagnation threshold 6
Output: Optimized path Py

o Initialize: Pegt < 0, Lpest < 00, £ < 0, ® < PSO

e For each cycle ¢ =1 to Clpax:

Compute progress ratio p < ¢/Chyax
Update parameters: €(p), m-(p), Ae(p)
If ® = PSO:
% If Poest = (0: Phew < global_exploration()
* Else: P,y < path_enhancement(Phey)
Else if ® = ACO: P,y + aco_phase(p)
— If P,y is valid and complete:
* If |Pnew| < Lbesl: Pbest
| Poewl|, k0
x Else: Kk +— k+1
Else: kK < xk+ 1
-Ifk >0,
x If ® = PSO: ® < ACO
* Else: ® «+ PSO
* k<0
o If Piest is incomplete:
complete_path_to_goal(Phes;)
o Return: Py

— Pnewa Lbest <~

B best —

IV. RESULTS AND DISCUSSIONS

This section presents a detailed evaluation of the proposed
Dynamic Hybrid PSO-ACO Planner, benchmarked against sev-
eral path planning algorithms in grid-based environments. The
hybrid model’s dynamic phase-switching, adaptive parameter
tuning, and path enhancement capabilities were tested under
consistent conditions and validated using both statistical per-
formance metrics and simulated visual scenarios.

A. Simulation Environment and Setup

All simulations were performed on a 20 x 20 grid with a
static obstacle density ranging from 20% to 35%. Obstacles
were randomly generated but remained fixed for each com-
parative experiment. The planner employs both 4-directional
and 8-directional movement strategies. The performance was
measured across 50 independent runs per method.

B. Path Quality Evaluation

The first criterion involves analyzing the path length gen-
erated by each algorithm. Fig. 2 illustrates the average path
lengths over 50 runs, highlighting the hybrid model’s ability
to produce shorter and more efficient paths compared to stan-
dalone PSO and ACO.

Although the A* algorithm produces the shortest paths, its
deterministic design is not adaptable to real-time or uncertain
environments. The PSO-ACO planner, by contrast, achieves
near-optimal results while retaining the flexibility of meta-
heuristic methods. The relatively low standard deviation of
the PSO-ACO solution also confirms its stability across trials.
These findings illustrate the hybrid planner’s capacity to con-
verge to high-quality solutions without excessive variability.
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Average Path Length Comparison

35
” i ~ i

Path Length (Steps)

PSO ACO PSO-ACO GA-ACO PSO-GA A

Fig. 2. Comparison of execution time across different path planning algorithms Error
bars indicate standard deviation over 50 independent runs

C. Computational Efficiency

Evaluating and comparing the average execution times of
different path planning strategies is crucial to assess their
practical applicability. Fig. 3 summarizes the mean and standard
deviation of execution time required by each algorithm under
identical conditions. The classical A* algorithm recorded the
fastest time, completing in an average of 0.1 seconds, attributed
to its greedy and deterministic nature. However, this advantage
comes at the expense of flexibility and global optimality in
more complex or changing environments.

Execution Time Comparison

2.0

Time (Seconds)

05

0.0

PSO ACO PSO-ACO GA-ACO PSO-GA A*

Fig. 3. Execution time comparison of various path planning algorithms. The proposed
PSO-ACO framework demonstrates a good balance between efficiency and solution
quality. Error bars represent standard deviation over 50 runs

The proposed hybrid PSO-ACO algorithm offers a promis-
ing trade-off. By dynamically alternating between exploration-
driven PSO and exploitation-focused ACO, it preserves compu-
tational tractability while maintaining superior solution quality.
Notably, it achieves an average execution time of 1.2 seconds
only marginally higher than standalone PSO but significantly
more efficient than GA-ACO or PSO-GA hybrids. This effi-
ciency, combined with its robustness and adaptiveness, renders
it suitable for near real-time applications.

D. Success Rate and Stability

In autonomous navigation, the planner’s reliability in con-
sistently computing feasible and complete paths is a crucial

performance indicator. Success rate, convergence speed, and
algorithmic stagnation provide insight into the robustness and
responsiveness of a given method. Table I presents the compar-
ative performance of various algorithms across these metrics.
The Adaptive Hybrid PSO-ACO planner achieved the highest
success rate among all metaheuristic strategies (95%).

Moreover, the hybrid approach required fewer iterations
to find the first valid path (8.2 on average), significantly
outperforming its standalone counterparts. This efficiency is
further reinforced by its low stagnation count, demonstrating
that dynamic phase switching and adaptive parameter tuning
effectively maintain optimization momentum and avoid local
entrapments. These results underscore the proposed method’s
capacity to deliver both high reliability and convergence effi-
ciency in cluttered environments.

TABLE 1. PERFORMANCE METRICS PER ALGORITHM: SUCCESS RATE, AVERAGE
ITERATIONS TO FIRST VALID PATH, AND STAGNATION COUNT

Algorithm | Success Rate (%) | Iterations to Path | Stagnation Count
PSO 85 10.5+2.0 3.2
ACO 90 11.2+1.8 2.9
PSO-ACO 95 8.2+1.5 2.1
GA-ACO 88 12.442.0 35
PSO-GA 85 10.1+1.8 2.8

In addition to reporting average values, we now include 95%
confidence intervals for all key performance metrics. Fig. 4
shows the success rate distributions with confidence bands
across 30 trials per algorithm. Significant differences were
found in all comparisons(p < 0.001).

Success Rate with 95% Confidence Intervals

0.95 +

o
©
S
——
——

Success Rate

o
@
&

——
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PSO ACO PSO-ACO GA-ACO PSO-GA A*

Fig. 4. Success rate comparison across five algorithms with 95% confidence intervals
computed over 30 trials.

E. Path Smoothness and Safety Margin

Two key indicators are considered: path smoothness, rep-
resenting the average angular variation along the trajectory,
and the safety margin, quantifying the mean clearance from
surrounding obstacles. As shown in Table II, the proposed PSO-
ACO hybrid planner achieves a remarkable balance between
these two metrics. It outperforms standalone PSO and ACO in
path smoothness (0.12 radians), approaching the performance
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of more exploitative strategies like GA-ACO. This reflects the
method’s ability to generate feasible and fluid paths that respect
the physical constraints of mobile platforms.

In terms of safety, the hybrid strategy preserves a generous
average distance from obstacles (1.41 units), suggesting a cau-
tious yet efficient navigation style. The hybrid algorithm thus
demonstrates its aptitude for navigating dense environments
without compromising manoeuvrability.

TABLE II. PATH SMOOTHNESS AND SAFETY MARGIN PER ALGORITHM

Algorithm | Smoothness (rad) | Safety Margin
PSO 0.18 + 0.06 1.05 £ 0.3
ACO 0.14 £ 0.05 1.35 £ 04

PSO-ACO 0.12 £ 0.05 141 £+ 0.2

GA-ACO 0.10 £ 0.04 1.30 £ 03

PSO-GA 0.15 + 0.06 1.25 + 0.4

F. Runtime and Memory Usage Analysis

To evaluate the computational feasibility of the proposed
adaptive hybrid framework, we conducted a performance analy-
sis in terms of runtime and memory consumption across various
map sizes and obstacle densities. The results, summarized in
Fig. 5, show that the algorithm scales reasonably well, with
runtime increasing from 0.82s for a 50x50 grid to 5.76s for a
200x200 grid. Similarly, memory usage grows from 15.3MB
to 71.9MB. Although the hybrid nature of the approach in-
troduces additional overhead compared to standalone planners,
the method remains tractable for offline or semi-static planning
scenarios.

Runtime and Memory Usage vs Map Size

~
IS)

o
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Fig. 5. Runtime and memory usage of the hybrid PSO-ACO algorithm across increasing
map sizes.

G. Convergence Behavior and Additional Metrics

To complete the characterization of algorithmic performance,
Table III summarizes key metrics related to convergence dy-
namics, dominance, memory usage, and progress gradients.

These indicators collectively capture not only how reliably an
algorithm converges to a solution, but also how consistently it

dominates across evaluation criteria and how efficiently it uses
computational resources.

TABLE III. CONVERGENCE, DOMINANCE,
AND EFFICIENCY METRICS PER ALGORITHM

Algorithm | Convergence Rate (%) | D Ratio (%) | Memory Usage (MB) | Progress Gradient
PSO 80 20 32+4 —0.9+0.3
ACO 87 45 48 +6 —1.1+04

PSO-ACO 95 75 45+5 —1.5+0.3

GA-ACO 85 40 55+ 8 —0.84+0.2

PSO-GA 88 50 50+6 —1.2+04

The hybrid PSO-ACO method exhibits strong convergence
behavior, successfully reaching optimal or near-optimal paths
in 95% of trials. This performance is further validated by its
high dominance ratio (75%), meaning it outperformed other
methods in the majority of the evaluation metrics. Although it
consumes more memory than the deterministic A* algorithm,
its usage remains moderate and justifiable given its enhanced
flexibility and pathfinding reliability.

The progress gradient, defined as the average rate of im-
provement in the path length per iteration, is steepest for the
hybrid planner. This indicates effective learning and iterative
refinement of solutions through dynamic switching and adaptive
tuning. In contrast, the GA-based hybrids tend to stagnate
earlier, reflecting less efficient search behaviors in comparison.
These findings support the conclusion that the hybrid PSO-ACO
planner offers a strong compromise between computational cost
and intelligent performance modulation, achieving competitive
results in diverse and constrained environments.

H. Simulation-Based Validation

To further validate the practical effectiveness of the proposed
Dynamic Hybrid PSO-ACO planner, a series of simulations
were conducted under varying environmental conditions. These
include changes in obstacle density and the type of allowed
robot movements (4-directional vs. 8-directional). The visual
outcomes from these simulations are presented in a sequence
of figures, each illustrating the robot’s computed trajectory from
the start to the goal position under a specific configuration.

Fig. 6 to Fig. 9 illustrate the planner’s behavior using 4-
directional movement with obstacle ratios of 0.35, 0.30, 0.25,
and 0.20, respectively. As the obstacle density decreases, the
planner demonstrates progressively more direct and efficient
trajectories. In high-density scenarios (e.g., Fig. 6), the robot
circumvents tight corridors with a preference for safer paths.
The trajectory shows strong clearance from obstacles, reflecting
the planner’s sensitivity to visibility and risk metrics.

As seen in Fig. 9, at 20% density, the path becomes signifi-
cantly straighter and shorter. This confirms that the planner not
only adapts to cluttered environments but also capitalizes on
free space when available, minimizing unnecessary directional
changes. The visual clarity of the paths also indicates the
benefit of PSO-based global exploration during the initial search
phases.
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Fig. 6. Trajectory generated with 4-directional movement and 35% obstacle density. The
planner follows a cautious path through narrow corridors, maintaining high clearance
from obstacles

Final Optimized Path

Fig. 7. Trajectory under 30% obstacle density. The path is more direct while preserving
safety, reflecting adaptive trade-offs in medium-density terrain

Fig. 8. Trajectory under 25% obstacle density. The hybrid planner exploits wider
passages, producing a shorter, smoother route

Final Optimized Path

Fig. 9. Trajectory under 20% obstacle density. The resulting path is highly efficient and
nearly straight, highlighting minimal environmental constraint

Fig. 10 to Fig. 13 depict the planner operating under 8-
directional movement for the same obstacle densities. The
increased degrees of freedom result in visibly smoother and
more compact paths. In particular, Fig. 11 and Fig. 12 reveal
that the robot takes advantage of diagonal shortcuts to reduce
path length while maintaining a reasonable safety margin.

Interestingly, under denser configurations (e.g., Fig. 10), the
use of 8 actions allows the robot to bypass dead-ends and local
traps more gracefully compared to the 4-directional constraint.
This flexibility complements the adaptive switching mechanism,
enabling the hybrid planner to make fine-grained adjustments
in tight situations.

The visual simulations reinforce the quantitative metrics
discussed earlier. The planner reliably constructs valid, safe, and
efficient paths across a wide range of scenarios. Its responsive-
ness to both obstacle layout and movement capability validates
the core premise of the hybrid strategy combining explo-
ration and exploitation dynamically, and modulating behaviors
through learned heuristics. The comparative visual clarity and
consistency across figures demonstrate not only robustness but
also scalability.

Final Optimized Path

Fig. 10. Trajectory generated with 8-directional movement and 35% obstacle density.
The planner utilizes diagonal actions to navigate compact corridors and avoid dead-ends.

Final Optimized Path

Fig. 11. Trajectory under 30% obstacle density with 8-directional movement. The path
becomes smoother and shorter, leveraging diagonal transitions.

To aid interpretability, Table IV summarizes the core per-
formance metrics across all tested algorithms. The PSO-ACO
method consistently outperforms both standalone and hybrid
baselines in terms of success rate, path smoothness, and stabil-
ity, while maintaining a reasonable runtime overhead.
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Final Optimized Path

Fig. 12. Trajectory under 25% obstacle density. The hybrid planner optimizes turns and
reduces total length using diagonal shortcuts.

Final Optimized Path
@ sart
* Goal
Hn r ="

HE .I l- .‘
: -
- AL

Fig. 13. Trajectory under 20% obstacle density. With minimal clutter, the planner
computes a direct and fluid path to the goal.

This holistic advantage reinforces the effectiveness of the
pI‘OpOSCd strategy.
TABLE IV. SUMMARY OF PERFORMANCE METRICS ACROSS TESTED

ALGORITHMS. THE PROPOSED PSO-ACO HYBRID DEMONSTRATES SUPERIOR
PERFORMANCE IN SUCCESS RATE, PATH SMOOTHNESS, AND STABILITY

Algorithm | Success Rate (%) | Smoothness (rad) | Stability
PSO 85 0.18 32
ACO 90 0.14 2.9

GA-ACO 38 0.10 35
PSO-GA 85 0.15 2.8
PSO-ACO 95 0.12 2.1

V. CONCLUSION

In this paper, we have proposed an Adaptive Hybrid Meta-
heuristic Planner based on the combination of PSO and ACO for
autonomous robot path planning in cluttered environments. Un-
like conventional hybrid models with fixed roles, our method in-
corporates an adaptive switching strategy driven by convergence
behavior and stagnation detection. This mechanism ensures
continuous optimization by dynamically balancing exploration
and exploitation as the search progresses.

The proposed approach exploits the fast global convergence
of PSO during the initial search phase, while leveraging the
local refinement capability of ACO in later stages. The adaptive

adjustment of parameters and phase-switching logic enables
the algorithm to avoid premature convergence and navigate
around obstacles more effectively. Additionally, intelligent path
reconstruction and feasibility verification routines contribute to
generating complete, smooth, and safe trajectories.

Extensive simulations conducted on grid-based environments
with varying obstacle densities confirm the superiority of the
proposed planner over standalone methods and traditional hy-
brid approaches. The results consistently demonstrate signif-
icant improvements across all key metrics including success
rate, path smoothness, and planning stability highlighting the
robustness of the approach in static scenarios.

While the current implementation is designed for offline or
semi-real-time applications, we acknowledge that the proposed
method does not yet meet the requirements for real-time deploy-
ment. No formal timing guarantees or worst-case complexity
bounds were evaluated in this study, and the computational
overhead introduced by hybridization may limit applicability
on resource-constrained robotic platforms. These aspects will
be addressed in future work.

Moreover, extending this framework to dynamic environ-
ments will require architectural modifications such as the inte-
gration of receding-horizon control, obstacle motion prediction,
and adaptive replanning mechanisms. Future research will also
explore the incorporation of sensor uncertainty, localization
drift, and kinematic constraints, with the aim of deploying the
planner on physical robotic platforms and validating its perfor-
mance under real-world navigation conditions using simulation
platforms like Gazebo or Webots.
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