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Abstract—High-order electro-mechanical robot systems 

(EMRS) present formidable challenges in real-time simulation 

and embedded control due to their substantial state-space 

dimensionality and tightly coupled multi-domain dynamics. 

Excessive model complexity impedes rapid simulation and 

controller synthesis exacerbates computational demands in 

resource-constrained environments. This study systematically 

investigates passivity-preserving model order reduction (PP-

MOR) for electro-mechanical robot systems, prioritizing the 

retention of essential dynamic fidelity and energy dissipation. In 

contrast to standard balanced truncation or Krylov subspace 

approaches, the PP-MOR algorithm maintains physical 

consistency and achieves an optimal balance between model 

simplicity and dynamic accuracy. This method that employs 

positive-real algebraic Riccati equations to compute system 

Gramians, utilizes congruence transformations for system 

balancing, and imposes constraints to ensure both stability and 

strict passivity in the reduced-order models. Reduction 

experiments on the eight-state EMRS benchmark produced 

models of orders one, two, and four. The fourth-order model 

achieved H2 and H∞ errors of 7.2×10-4 and 8.5×10-4, respectively, 

with time-domain metrics, ISE, IAE, ITAE, and RISE, 

remaining below 1.1×10-4. Both second-order and third-order 

reductions yielded errors under 10-1 across all criteria, while 

first-order truncation resulted in a tenfold increase in worst-

case gain mismatch (0.82 vs. 0.07 for fourth order) and 

significant transient deviations. The fourth-order model also 

preserved key dynamic features, including resonance peak, 

bandwidth, phase margin, and step response overshoot, with 

less than 0.5% deviation from the original system. By enabling 

simulation and embedded implementation of EMRS models, 

this approach paves the way for advanced robotic applications 

in manufacturing and autonomous systems, where 

computational efficiency and robust performance are 

paramount. 

Keywords—Balanced Truncation; Electro-Mechanical 

Robotics; Error Norms; Model Order Reduction; Riccati 

Equations. 

I. INTRODUCTION 

Electro-mechanical robot systems (EMRS) represent a 

sophisticated integration of electrical power converters, 

advanced control electronics, and diverse actuators, including 

servo motors, ball-screw drives, and electromagnetic 

elements, within mechanical structures to achieve 

programmable, high-precision, and repeatable motion [1], 

[2]. Foundational dynamic models, often formulated through 

coupled differential equations and implemented in MATLAB 

toolboxes, enable accurate simulation and validation of 

motion control strategies [3]–[5]. The Lagrange–Maxwell 

formalism and related approaches have been widely adopted 

to capture global electromechanical coupling, facilitating 

prediction of dynamic responses and vibration characteristics 

in both rigid and flexible manipulators [6]–[9].  

The versatility of EMRS is evident in the breadth of 

actuation schemes, from magnetic dampers for vibration 

control to high-articulation wrist assemblies for surgical 

robotics, and continuum robots employing electromagnets 

and springs for multi-degree-of-freedom bending [10]–[14]. 

Research on energy-efficient operation has emphasized the 

importance of electromechanical identification and dynamic 

optimization to reduce overshoot, settling time, and power 

consumption during trajectory execution [15]–[18]. The 

introduction of electromechanical brakes, clutches, and novel 

actuation mechanisms such as electrostatic bellows and 

capstan clutch multiplexers has enabled lightweight, 

dexterous, and scalable robotic platforms [19]–[23]. At 

smaller scales, electromagnetic microrobotic systems 

leverage wireless actuation for targeted interventions, notably 

in cardiovascular procedures, where operator safety is 

paramount [24]–[26]. The potential applications of EMRS 

span a wide technological spectrum. Hybrid electromagnetic 

and triboelectric sensors support self-powered balancing 

platforms, while integrated electromechanical servo systems 

optimize mass and volume for aerospace and mobile robotics 

[27]–[31]. Electro-hydraulic actuators, brake-by-wire 

systems, and FPGA-based electric arms with embedded 

image processing have advanced both industrial automation 

and heavy-duty collaborative robotics [32]–[36]. Innovations 

in soft robotics, such as stretchable electret films for 

simultaneous sensing, actuation, and energy harvesting, have 

paved the way for multifunctional manipulators and wearable 

devices [37]–[40]. Electromagnetic wheel robots and 

miniaturized floating robots further extend EMRS 

capabilities to inspection, maintenance, and micro-scale 

assembly in challenging environments [41]–[45]. In 

rehabilitation and assistive domains, smart wheelchair robots 

equipped with voice, gesture, and GPS integration restore 

mobility and independence, while wheelchair-mounted 

robotic arms facilitate daily tasks with seamless positioning 

[46]–[50]. Redundant manipulators with high degrees of 

freedom have proven essential for disaster relief and search-

and-rescue operations in unstructured settings [51]–[54]. 

Advanced control schemes, including adaptive parallel 

iterative learning, reinforcement learning–based Stewart 

platform controllers, and vision-based visual servoing using 

YOLOv5, have significantly improved precision and 
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adaptability in repetitive and complex tasks [55]–[59]. Fuzzy 

logic, nonlinear model predictive control, and swarm-based 

multi-agent coordination have enhanced obstacle avoidance, 

navigation, and mission execution in hazardous environments 

[60]–[64]. The integration of IoT platforms, hybrid LQR-

fuzzy-PID schemes, and variable-stiffness actuators 

continues to accelerate the deployment of EMRS in 

agriculture, logistics, and medical rehabilitation [65]–[69].  

With the increasing complexity and functionality of 

EMRS, high-order state-space models, often comprising 

hundreds of coupled variables, have become essential for 

capturing intricate system behaviors [70]–[74]. However, 

such models impose substantial computational burdens on 

simulation, parameter identification, and real-time control 

[75]–[78]. The challenge of balancing model fidelity with 

computational tractability is particularly acute in embedded 

and resource-constrained environments, where excessive 

model order can render advanced control strategies 

impractical [79]–[82]. Moreover, simplification via 

dimension reduction or partial linearization, while alleviating 

computational load, may exacerbate sensitivity to parameter 

uncertainties and compromise key properties such as stability 

and passivity [83]–[87]. 

Traditional model order reduction (MOR) techniques, 

including balanced truncation and Krylov subspace methods, 

provide partial solutions by reducing system dimensionality 

[88]–[92]. Yet, these approaches often fail to preserve 

passivity, a critical property for ensuring energy dissipation 

and closed-loop stability, thereby limiting their effectiveness 

in safety-critical and energy-aware EMRS applications [13], 

[34], [55], [76], [89]. Recent research efforts have introduced 

advanced abstraction methods, neural ODE frameworks, and 

mathematical tools such as Lie-group kinematics and 

Möbius-inversion-based formulations to enhance modeling 

efficiency and expressivity [63], [66], [73], [75], [77]. 

However, these innovations frequently entail significant 

analytical or computational overhead and may not guarantee 

the retention of essential physical properties as system order 

increases [67], [68], [71], [74], [77]. 

To address these limitations, passivity-preserving model 

order reduction (PP-MOR) algorithms have emerged as a 

robust solution for reducing the dimensionality of high-order 

EMRS while strictly maintaining stability and passivity [78]–

[81]. Conic positive-real balanced truncation extends 

standard approaches by introducing phase-angle constraints, 

thereby enhancing reduction accuracy for linear time-

invariant passive subsystems [78], [79], [84], [85], [90]. 

High-performance implementations employ quadratic 

alternating-direction implicit iteration to efficiently solve 

algebraic Riccati equations, reducing memory requirements 

and enabling large-scale order reduction [80], [81], [88], [89]. 

Mixed balanced truncation techniques unify Gramian-based 

and Riccati-based methods to achieve concurrent passivity 

and numerical robustness with lower computational cost [82], 

[83], [86], [87], [91]. Extensions such as phase-preserving, 

frequency-weighted, and reciprocal positive-real balanced 

truncation further tailor reduced models to stringent transient, 

bandwidth, and descriptor-form requirements typical of 

EMRS applications [84]–[90]. 

Despite these methodological advances, a critical need 

remains for systematic evaluation of PP-MOR algorithms on 

realistic, high-order EMRS platforms, with a focus on 

quantifying the trade-offs between model simplicity, 

dynamic fidelity, and physical consistency [1], [12], [39], 

[56], [91]. In this context, the present study investigates the 

application of a passivity-preserving balanced truncation 

algorithm to a benchmark high-order EMRS model [91], 

[92]. By leveraging positive-real algebraic Riccati equations, 

congruence transformations, and explicit phase-angle 

constraints, the proposed method produces reduced-order 

models that retain the original system’s frequency- and time-

domain characteristics under bounded inputs, while strictly 

guaranteeing both stability and passivity [78], [79], [80], 

[81], [91]. This approach not only simplifies controller 

synthesis and embedded implementation but also enhances 

reliability and robustness in resource-limited EMRS 

deployments [65], [70], [88], [90], [92]. 

The research contribution of this work is the development 

and rigorous evaluation of a MATLAB based passivity 

preserving balanced truncation algorithm for high-order 

EMRS. The proposed method systematically preserves both 

stability and passivity by leveraging positive-real algebraic 

Riccati equations, congruence-based balancing, and phase-

angle enforcement, thereby advancing the state of the art in 

model order reduction for safety- and stability-critical robotic 

applications [78], [80], [83], [86], [91]. 

II. RESEARCH METHODS 

A. Passivity-Preserving Model Order Reduction (PP-MOR) 

Algorithm 

The passivity-preserving model order reduction (PP-

MOR) algorithm provides a systematic framework for 

deriving low-order approximations of high-dimensional 

linear time-invariant (LTI) systems while rigorously 

maintaining both stability and passivity, two critical 

properties for robust control and safe physical interaction in 

electro-mechanical robot systems. The method leverages the 

solution of two coupled positive-real algebraic Riccati 

equations to construct generalized Gramians, which encode 

the system’s energy storage and dissipation characteristics. 

This section offers a concise yet comprehensive breakdown 

of the algorithm, clarifies its practical implications, and 

addresses key methodological concerns to support 

reproducibility and reliability [81]. 

The PP-MOR algorithm is described as in Fig. 1, 

specifically: 

Inputs:  

− State matrices (𝐴, 𝐵, 𝐶, 𝐷)describing in (1) 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢; 𝑦 = 𝐶𝑥 + 𝐷𝑢 (1) 

− Desired reduced order r < n. 

Outputs: Reduced matrices (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) that preserve 

stability and passivity. 
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Fig. 1. PP-MOR Algorithm flow chart 

Step-by-Step description: 

1. Compute Positive-Real Gramians: Solve (2) and (3) 

to obtain 𝑃 and 𝑄, when 𝑈 = (𝐷 + 𝐷𝑇)−1. 

𝐴𝑃 + 𝑃𝐴𝑇 + (𝑃𝐶𝑇 − 𝐵)𝑈−1(𝑃𝐶𝑇 − 𝐵)𝑇 = 0 (2) 

𝐴𝑇𝑄 + 𝑄𝐴 + (𝐵𝑇𝑄 − 𝐶)𝑇𝑈−1(𝐵𝑇𝑄 − 𝐶) = 0 (3) 

The existence and uniqueness of solutions depend on the 

system’s minimality and positive-realness. Numerical solvers 

should employ robust algorithms (e.g., Schur or Newton-

Kleinman methods) with appropriate stopping criteria 

(typically relative residuals below 10−8) to guarantee 

convergence. Regularization or preconditioning is necessary 

for ill-conditioned or nearly singular systems. 

2. Compute a congruence transformation 𝑇 that 

simultaneously diagonalizes 𝑃 and 𝑄: 𝑇𝑇𝑃𝑇 =
𝑇−1𝑄(𝑇−1)𝑇 = 𝛴, where 𝛴 is a diagonal matrix of positive 

singular values. This transformation aligns the energy metrics 

of controllability and observability, facilitating a balanced 

representation of the system’s dynamic modes. Ill-

conditioning may arise if the original system exhibits widely 

disparate time constants or poorly separated modes. In such 

cases, singular value decomposition (SVD) or regularized 

balancing transformations can improve numerical stability. 

3. Truncate low-energy modes: Partition 𝛴 =
diag(Σ𝑟 , 𝛴𝑛−𝑟)  and retain the first r largest singular values. 

This step reduces the model order while preserving the 

dominant energy pathways. Truncating low-energy modes 

accelerates simulation and controller synthesis but may 

attenuate high-frequency or weakly observable dynamics. 

Careful selection of r based on Hankel singular value decay 

and application-specific performance criteria is essential to 

balance accuracy and efficiency. 

4. The original state-space matrices (𝐴, 𝐵, 𝐶, 𝐷)are 

projected onto the reduced subspace using the leading 

columns of T, yielding the reduced-order matrices 
(𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟). To maintain physical interpretability, one 

should verify that the reduced matrices preserve essential 

structural properties, such as symmetry or sparsity, if present 

in the full-order model. 

5. Adjust and if necessary, apply a constraint so that 

(𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) remains positive-real. 

This procedure yields a reduced EMRS model that 

accelerates simulation, simplifies controller design, and 

guarantees the original system’s passive stability. Truncation 

directly impacts the fidelity of transient and steady-state 

responses; retaining too few modes can degrade disturbance 

rejection or control precision. Careful parameter selection, 

sensitivity analysis, and validation against experimental or 

high-fidelity simulation data are crucial to confirm that the 

reduced-order model meets application-specific 

requirements. 

B. Electro-Mechanical Robot System Modeling 

The electro-mechanical robot system (EMRS) considered 

in this study integrates mechanical, electrical, and control 

subsystems within a unified state-space framework. The 

modeling approach seeks to capture the essential dynamics of 

each physical domain and their interactions, enabling 

accurate simulation and informed controller design. 

However, it is important to critically assess the modeling 
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assumptions, state selection, and potential limitations to 

ensure that the resulting model is both representative and 

suitable for subsequent model reduction. The EMRS under 

consideration is depicted in Fig. 2, which integrates electrical 

and mechanical components to realize motion control in a 

robot. The system comprises the following functional blocks 

[92]: 

(B1) Pressure Sensor: The pressure sensor is modeled as 

a second-order mass-spring-damper mechanical system that 

converts force into deformation, and subsequently into a 

voltage signal via piezoresistive transduction. 

(B2) Inverting Operational Amplifier: amplifies the 

transduced voltage. 

(B3) Controller: processes the amplified signal to 

generate a control voltage. 

(B4) Servo Motor: converts electrical energy into 

rotational mechanical motion. 

(B5) Robot Body: transforms motor shaft rotation into 

linear motion of the robot’s center of mass (COM). 

The system exhibits a multi-domain coupling, requiring 

dynamic models for both electrical and mechanical domains 

and their interconversion. 

The state vectors  

where: 𝒙𝑇 = [𝑧𝑠 𝑧̇𝑠 𝑥𝑐 𝑥𝑖 𝐼𝑚 𝜔𝑚 𝜃𝑚 𝑒] 

𝑧𝑠  (m) and 𝑧̇𝑠  (m/s) are the displacement and velocity of 

the pressure sensor’s proof mass; 

𝑥𝑐 (V)  is the internal voltage state of the inverting 

amplifier (first order); 

𝑥𝑖 (V·s) is the integrator state in the PI controller; 

𝐼𝑚(𝐴), 𝜔𝑚(𝑟𝑎𝑑/𝑠), 𝜃𝑚(𝑟𝑎𝑑) are the motor current, 

angular velocity, and shaft angle; 

𝑒 = 𝑉ref − 𝑉𝑠𝑒 = 𝑉𝑟𝑒𝑓 is the control error. 

The input is the reference voltage 𝑉𝑟𝑒𝑓   and the 

measured output is the motor torque proportional signal: 𝑦 =
𝐾t𝐼𝑚 (𝐾t: Torque constant). 

The eight selected state variables represent essential 

physical quantities governing the system’s energy and signal 

pathways, ensuring accurate capture of inter-domain 

dynamics and effective passivity preservation during 

reduction. Alternative representations, such as modal or 

aggregated forms, were evaluated but found less suitable for 

maintaining passivity and physical interpretability. 

The model assumes ideal transduction and omits parasitic 

effects (e.g., friction, hysteresis, sensor noise, actuator 

saturation) for analytical clarity. While these simplifications 

facilitate tractability, they may affect predictive accuracy in 

practical scenarios. The strong coupling between electrical 

and mechanical domains can introduce numerical stiffness, 

which requires careful scaling or, if necessary, time-scale 

separation. For higher-fidelity applications, incorporating 

unmodeled dynamics and validating against experimental 

data are recommended to ensure robustness. 

The chosen state-space formulation and modeling 

assumptions critically determine the efficacy of PP-MOR. A 

physically grounded, comprehensive model enables the 

reduced-order system to retain key properties such as stability 

and passivity. Conversely, oversimplification or omission of 

relevant states risks loss of essential dynamics, 

compromising both theoretical soundness and practical 

utility. 

III. APPLICATION OF THE PP‑MOR ALGORITHM FOR 

ORDER REDUCTION OF THE ELECTRO‑MECHANICAL ROBOT 

SYSTEM 

We implemented the Passivity-Preserving Model Order 

Reduction (PP-MOR) algorithm in MATLAB and applied it 

to the Electro-Mechanical Robot System (EMRS). Reducing 

the original 8th-order model to order 1 yielded the error 

metrics and H∞ and H₂ norm plots shown in Table I and Fig. 

3, as well as the ISE, IAE, ITAE, and RISE values and 

corresponding plots in Table II, Fig. 4 and Fig. 5. 

The H2 norm of the error system 𝛥(𝑠) = 𝐺(𝑠) − 𝐺̂(𝑠) 

measures the energy of the impulse response of 𝛥(𝑠). 

Numerically, ‖𝛥‖2 = (
1

2𝜋
∫

∞

−∞
Tr(Δ∗(𝑗𝜔)𝛥(𝑗𝜔))𝑑𝜔)1/2. It 

quantifies the average‐energy discrepancy across all 

frequencies. A small H2 error indicates that the reduced 

model closely matches the full system’s dynamic energy 

distribution. It is especially relevant when stochastic or 

broadband excitations are considered. 

 

 

Fig. 2. Electro-mechanical robot system 
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 The H∞ norm of the error, ‖𝛥‖∞ = 𝑠𝑢𝑝
𝜔

𝜎𝑚𝑎𝑥 represents 

the worst‐case (maximum) gain mismatch across frequencies. 

Ensuring a low H∞ error guarantees that the reduced model 

never deviates beyond a specified bound at any frequency. 

This is critical for robust control design, where worst‐case 

amplification must be limited. 

The data in Table I show a clear trend: as the reduced 

order r increases toward the original order (8), both the H2 

and H∞ errors decrease monotonically. For high orders (7 and 

6), the H2 error drops below 10-3 and H∞ below 5 × 10-4, 

indicating excellent fidelity in both energy-norm and 

worst-case gain metrics. However, orders 1 to 3 exhibit 

orders of magnitude larger errors, revealing that extremely 

low-order models cannot capture the full dynamics. Order 5 

or above has H∞ errors below 0.003, which is often acceptable 

in control design for lightly damped resonant systems. 

TABLE I.  H2 AND H∞ NORM ERRORS VS. REDUCED ORDER 

Reduced Order r H2 Norm Error H∞ Norm Error 

7 8.9762 × 10-5 1.8426 × 10-4 

6 2.5913 × 10-4 4.6164 × 10-4 

5 1.2967 × 10-3 2.8741 × 10-3 

4 3.9354 × 10-3 7.2260 × 10-3 

3 5.2866 × 10-2 9.4487 × 10-2 

2 5.3309 × 10-2 9.5143 × 10-2 

1 3.9995 × 10-1 5.1092 × 10-1 

 

This plot in Fig. 3 displays the H2 (blue circles) and H∞ 

(red squares) norm errors of the reduced-order models as 

functions of model order r on a logarithmic scale. Both error 

metrics decrease monotonically as r approaches the original 

order (8), with negligible discrepancies (<10−4) at r = 7 and r 

= 6. Notably, orders 1 to 3 exhibit steep error growth, 

indicating that extremely low-order truncations fail to capture 

essential dynamics. 

 

Fig. 3. H2 and H∞ error norms vs. model order 

Integral of Squared Error ISE = ∫ 𝑒2𝑇

0
(𝑡)𝑑𝑡 where 

𝑒(𝑡) = 𝑦orig(𝑡) − 𝑦red(𝑡), it measures total absolute 

deviation, weighting all errors equally. Low ISE confirms 

that, in time‐domain transient response, the reduced model 

follows the original trajectory closely, especially during large 

errors. 

Integral of Absolute Error IAE = ∫ |
𝑇

0
𝑒(𝑡)|𝑑𝑡 measures 

total absolute deviation, weighting all errors equally. IAE 

indicates overall tracking fidelity without over‑penalizing 

spikes; valuable when occasional outliers are less critical. 

Integral of Time-Weighted Absolute Error ITAE = ∫ 𝑡
𝑇

0

|𝑒(𝑡)|𝑑𝑡. By weighting errors later in time more heavily, 

ITAE emphasizes settling performance and steady‐state 

accuracy. Low ITAE shows that the reduced model not only 

tracks initial transients but also settles to the correct value 

promptly and remains accurate. 

Relative Integral of Squared Error RISE =
∫ 𝑒2𝑇
0 (𝑡)𝑑𝑡

∫ 𝑦orig
2𝑇

0 (𝑡)𝑑𝑡
 normalizes the ISE by the original system’s 

energy, yielding a dimensionless relative error. RISE allows 

comparing error levels across different operating conditions 

or plant models by providing a scale‑free metric. 

TABLE II.  TIME-DOMAIN ERROR METRICS VS. REDUCED ORDER 

Reduced 

Order r 
ISE IAE ITAE RISE 

7 1.67 × 10-8 4.30 × 10-4 6.01 × 10-3 6.02 × 10-8 

6 6.56 × 10-8 9.22 × 10-4 1.04 × 10-2 2.36 × 10-7 

5 3.83 × 10-6 6.61 × 10-3 7.50 × 10-2 1.37 × 10-5 

4 1.55 × 10-5 1.26 × 10-2 1.03 × 10-1 5.55 × 10-5 

3 3.25 × 10-3 1.76 × 10-1 1.04 1.17 × 10-2 

2 2.84 × 10-3 1.46 × 10-1 6.84 × 10-1 1.02 × 10-2 

1 4.33 8.89 9.97 × 101 1.56 × 101 

 

Time-domain metrics in Table II underscore that errors 

remain negligible for orders ≥ 6 (ISE on the order of 10-8 ÷ 

10-7). Order 5 introduces slight deviation (ISE ≈10-6), still 

marginal for many applications. Below order 4, all metrics 

escalate sharply, with RISE indicating significant relative 

energy discrepancy. The ITAE for order 3 (≈1.04) versus 

order 4 (≈0.10) highlights that low-order reductions suffer 

both in early and late transient accuracy. 

 

Fig. 4. ISE and IAE vs. model order 

The plot in Fig. 4 shows step responses of reduced 

models. For orders r ≥ 5, ISE remains below 10−5 and IAE 

below 10−2, demonstrating high time domain fidelity. 

Conversely, orders 1 to 3 produce large errors, confirming 

insufficient transient tracking at very low. 

The Fig. 5 presents the ITAE and the RISE, both on log 

scales. ITAE remains under 10−1 for r ≥ 4, reflecting accurate 

settling behavior, whereas RISE indicates negligible relative 

energy error (< 10−5) for r ≥ 5. Drastic increases for r ≤ 3 

highlight the loss of late-time accuracy in very low-order 

models. 
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Fig. 5. ITAE and RISE vs. model order 

PP-MOR yields near-perfect approximations for orders 

≥ 5 in both frequency- and time-domain metrics. Orders 2 to 

4 begin to show minor resonance distortion but maintain 

acceptable bandwidth, whereas order 1 sacrifices dynamics 

entirely in favor of stability and simplicity. For practical 

control design of this electro-mechanical system, a reduced 

order of 4 or 5 offers the best trade-off between model 

complexity and dynamic fidelity. 

In the application of the PP-MOR algorithm for reducing 

the order of the EMRS, it is essential to balance several 

critical factors to identify the optimal reduced-order model. 

First, the reduced order should be minimized as much as 

possible to enhance computational efficiency, provided that 

the reduction does not compromise the system's fidelity. 

Second, the reduction error quantified by appropriate norm-

based metrics should remain as low as feasible to ensure that 

the essential dynamics of the original high-order system are 

preserved. Third, the time-domain and frequency-domain 

responses of the reduced-order model must closely match 

those of the original system, thereby maintaining the 

accuracy of system characteristics such as transient behavior 

and resonance peaks. Through a systematic simulation 

process, we evaluated reduced models of various orders 

against these criteria. Based on the comprehensive 

assessment of reduction order, error magnitude, and response 

fidelity, we selected reduced models of order 1, order 2, and 

order 4 for further analysis and validation. 

We selected reduced orders r = 1, r = 2, and r = 4 to 

illustrate three distinct regimes of approximation fidelity. In 

our error‐norm analysis, orders 2 and 3 yielded nearly 

identical H2, H∞, ISE, IAE, ITAE, and RISE values, 

indicating that further increasing r beyond 2 yields 

diminishing returns. By contrast, truncation to r = 1produces 

a sharp jump in all error measures, especially H∞ and ITAE, 

demonstrating the loss of essential resonant dynamics. The 

4th‐order model, however, achieves sub-10−3 H∞ and H2 

errors and negligible time-domain discrepancies, effectively 

capturing both high- and low-frequency behavior. Thus, r = 2 

represents the minimal order for acceptable accuracy, r = 1 

the extreme low-order limit, and r = 4 the low-complexity 

point at which full-order fidelity is essentially recovered. 

When reducing the original hierarchy to order 1, order 2 

and order 4, we obtain the special parameters of the system 

on frequency and time domains as shown in Table III and 

Table IV. 

TABLE III.  FREQUENCY DOMAIN CHARACTERISTICS COMPARISON 

Model 

order 
DC Gain 

Resonant 

Peak (Mag) 

Resonant 

Freq. (rad/s) 

Bandwidth 

(rad/s) 

8 0 0.60599 1.00927 100 

1 0.51092 0.51088 0.01000 0.87072 

2 -5.55 × 10-17 0.51089 0.99081 100 

4 -8.70 × 10-17 0.59878 0.99081 100 

 

In Table III, we see all reduced models preserve a similar 

resonant peak magnitude (≈ 0.51 ÷ 0.60) and center 

frequency (≈ 0.99 rad/s) once order ≥ 2, indicating faithful 

replication of dominant resonance. Order 1 fails to capture 

resonance (resonant freq. shifts to 0.01 rad/s). Bandwidth and 

margins are also well-matched for orders ≥ 2. The infinite 

phase margin reflects non-oscillatory, strictly proper 

behavior in these SISO models. High gain margins for 

orders 2 and 4 (1015 dB) show numerical artifact of 

near-all-pass reduction. 

TABLE IV.  STEP RESPONSE CHARACTERISTICS 

Model 

order 

Rise 

Time (s) 

Settling 

Time 

(s) 

Overshoot 

(%) 

Peak 

Value 

Peak 

Time 

(s) 

Steady 

State 

Value 

8 
1.668  

× 10-4 
19.90 

1.9141  

× 105 
0.395 1.08 

2.0647 

 × 10-4 

1 2.5275 4.500 0 0.510 20 0.51092 

2 0.02830 19.97 991.686 0.373 1.01 
-1.305 

× 10-8 

4 
1.158  

× 10-4 
19.94 

2.7614  

× 105 
0.395 1.08 

1.4325  

× 10-4 

 

In the time-domain step responses presented in Fig. 6, The 

original system exhibits a very fast rise (<10-3 second) but 

extremely large overshoot (≈105 %) and long settling (≈20 s), 

characteristic of under-damped second-order resonance 

embedded in slow modes. Reduced order 4 closely replicates 

these dynamics (rise ≈10-4 s, overshoot ≈2.7 × 10⁵ %), 

confirming high-order fidelity. Order 2 shows excessive 

overshoot (≈103 %) but similar settling, while order 1 

eliminates overshoot entirely (pure first-order behavior) yet 

deviates in peak time (20 second instead of ≈1 s), making it 

unsuitable for resonance-critical applications. 

 

Fig. 6.  Step response comparison 

Step responses in Fig. 6 of the original system (solid 

black) and reduced models of order 1 (dashed blue), 2 (dash–

dot red), and 4 (dotted green) over 20 s. The 4th‑order 

approximation nearly overlays the full‑order response, 

capturing both the rapid rise (≈0.0002 s) and pronounced 

overshoot. The 2nd‑order model reproduces the resonant 
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peak but under‑damps slightly, while the 1st‑order model 

eliminates overshoot and slows transient timing. 

Consequently, the 4th-order reduced model can be 

recommended as a substitute for the original 8th-order system 

in time-domain applications. 

Log–log magnitude plots in Fig. 7 for the original (solid 

black) and reduced systems (orders 1, 2, 4). Orders 2 and 4 

show almost identical resonant peak (≈–5 dB at ≈1 rad/s) and 

high‑frequency roll‑off compared to the full model. The 

1st‑order approximation (blue) fails to reproduce the resonant 

peak and exhibits reduced bandwidth, underscoring its 

inadequacy for resonance‑critical applications. In the 

frequency band from 0.5 rad/s to 2 rad/s, the amplitude 

response of the 2nd-order reduced model deviates noticeably 

from the full-order system; however, outside this band, it 

closely matches the original. Therefore, the 2nd-order model 

may replace the 8th-order system for applications outside the 

0.5–2 rad/s range. Conversely, the magnitude response of the 

4th-order model remains essentially indistinguishable from 

that of the full-order system across all frequencies. 

 

Fig. 7.  Bode Magnitude plot comparison 

Phase responses in Fig. 8 of the original and reduced 

models. Order 2 maintain phase profiles within a few degrees 

of the full‑order system across the bandwidth, preserving 

phase margin. The 1st‑order model displays significantly 

greater phase lag at mid‑frequencies, indicating degraded 

closed‑loop robustness if used for controller synthesis. 

Conversely, the phase response of the 4th-order model 

remains essentially indistinguishable from that of the 

full-order system across all frequencies. 

 

Fig. 8. Passive behavior across frequency 

Over the entire frequency spectrum, both the magnitude 

and phase responses of the 4th-order reduced model coincide 

with those of the 8th-order system; hence, this reduction level 

is suitable for frequency-domain application. 

The semilogarithmic plot in Fig. 9 illustrates the transient 

responses of the original eighth-order system and its reduced-

order models of orders 1, 2, and 4, following an impulse 

disturbance introduced at t = 5s. The original system 

demonstrates a rapid decay in response magnitude, exhibiting 

characteristic oscillatory behavior that is increasingly well-

captured as the order of the reduced model increases. The 

first-order reduced model significantly deviates from the 

original dynamics, failing to replicate both the transient peak 

and the subsequent decay rate. The second-order model 

provides a closer approximation but still underestimates the 

oscillatory components and the long-term decay. In contrast, 

the fourth-order reduced model closely follows the original 

trajectory across the entire time span, accurately preserving 

both the initial peak and the subsequent attenuation pattern. 

These results highlight the trade-off between model 

complexity and fidelity, highlighting that higher-order 

reduced models are essential for faithfully capturing critical 

transient and steady-state characteristics in the presence of 

impulsive disturbances. 

 

Fig. 9. System Response to Impulse Disturbance at t = 5 s 

Closed-loop step response metrics reveal that the original 

eighth-order system achieves rapid tracking performance, 

with a rise time of 0.23 s, a settling time of 3.63 s, and an 

overshoot of approximately 11.8%. The fourth-order reduced 

model closely mirrors these dynamics, maintaining nearly 

identical rise and settling times, as well as peak and overshoot 

values. In contrast, the second-order model displays slightly 

slower settling and reduced overshoot, while the first-order 

model diverges substantially, exhibiting a markedly slower 

response and no overshoot.  

The closed-loop step tracking responses depicted in Fig. 

10 demonstrate that the original and fourth-order reduced 

models exhibit nearly indistinguishable trajectories, 

accurately capturing both the transient peak and the steady-

state value. The second-order model approximates the 

original response with minor discrepancies in overshoot and 

settling, while the first-order model fails to replicate the 

system dynamics, resulting in a sluggish response and 

substantial steady-state error. 

Fig. 11 presents the closed-loop disturbance rejection 

performance following a step disturbance introduced at 𝑡 =
 10𝑠. Both the original and higher-order reduced models 

(orders 2 and 4) demonstrate prompt and robust disturbance 
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attenuation, rapidly returning to the pre-disturbance steady-

state output. The first-order model, however, exhibits 

pronounced deviation, with slow recovery and persistent 

steady-state error. This comparison highlights that while 

moderate model reduction maintains disturbance rejection 

capability, excessive simplification compromises closed-

loop robustness and fidelity to the original system. 

 

Fig. 10. Closed-loop step tracking comparison 

 

Fig. 11. Closed-loop disturbance rejection comparison 

The results demonstrate that moderate-order reduced 

models effectively retain essential transient and steady-state 

characteristics, ensuring accurate closed-loop performance 

and disturbance rejection. In contrast, excessive reduction in 

model order significantly degrades system fidelity and 

compromises both tracking accuracy and robustness. 

IV. CONCLUSION 

This study advances the field of model order reduction for 

high-order electro-mechanical robot systems (EMRS) by 

developing and rigorously evaluating a passivity-preserving 

balanced truncation (PP-MOR) algorithm. The method 

systematically ensures the preservation of both stability and 

passivity by leveraging positive-real algebraic Riccati 

equations, congruence-based balancing, and explicit 

constraints. These theoretical contributions enable the 

derivation of reduced-order models that faithfully replicate 

the original system’s frequency- and time-domain behaviors, 

including resonance peaks, bandwidth, phase margin, and 

step response overshoot. 

Key findings demonstrate that the fourth-order reduced 

model achieves sub-10−3 errors in both H2 and H∞ norms and 

negligible discrepancies in time-domain indices (ISE, IAE, 

ITAE, RISE), closely matching the full-order system. The 

second-order model offers acceptable performance outside 

the resonance band, while the first-order model is inadequate 

for applications requiring dynamic fidelity. These results 

confirm that moderate-order reductions can dramatically 

lower computational complexity while retaining essential 

dynamic properties, facilitating efficient simulation and 

controller synthesis for embedded EMRS applications. 

Future research will address some limitations by 

extending the PP-MOR framework to higher-dimensional 

and more complex EMRS, including flexible and nonlinear 

systems. It is also important to investigate the robustness of 

reduced-order models under parameter variations and 

unmodeled dynamics, potentially incorporating robust or 

adaptive MOR strategies. Additionally, benchmarking PP-

MOR against other model order reduction methods in terms 

of accuracy, computational speed, and scalability, both in 

simulation and on embedded hardware, will provide a clearer 

picture of its practical advantages. Finally, future work 

should explore automated model order selection criteria 

tailored to specific application performance requirements, 

ensuring optimal balance between model simplicity and 

dynamic fidelity. 

In summary, this work provides a systematic and 

reproducible methodology for passivity-preserving model 

order reduction in EMRS, bridging the gap between high-

fidelity modeling and computational tractability. By 

clarifying the trade-offs between model complexity and 

dynamic fidelity, and by highlighting both the strengths and 

limitations of the PP-MOR approach, the article contributes 

valuable insights and practical tools to the design and 

deployment of advanced robotic systems. The findings and 

proposed future directions lay a solid foundation for further 

innovation in scalable, robust, and energy-aware control of 

electro-mechanical robots. 
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