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Abstract—Short-term electric load forecasting plays a vital 

role in ensuring the stability and efficiency of smart grid 

operations. However, accurately predicting demand remains 

challenging due to nonlinearity, volatility, and long-term 

temporal dependencies in consumption patterns. The research 

proposes a lightweight hybrid deep learning model that 

integrates a Transformer encoder with a multi-layer perceptron 

(MLP) to enhance prediction accuracy and robustness for short-

term load forecasting. The proposed model employs a 

Transformer to extract long-range temporal features through 

self-attention mechanisms, while the MLP captures complex 

nonlinear mappings at the output stage. A real-world electricity 

load dataset collected from three Australian states (NSW, QLD, 

VIC) between 2009 and 2014 is used for evaluation. To assess 

model performance, mean absolute percentage error (MAPE), 

mean squared error (MSE), and Root Mean Squared Error 

(RMSE) are used. Experimental results demonstrate that the 

proposed transformer-MLP model consistently achieves the 

lowest forecasting error across all regions. MAPE ranges from 

0.69% to 0.95%, outperforming standard deep learning models, 

including LSTM, CNN, and MLP. Despite its shallow 

architecture and reduced computational complexity, the hybrid 

model effectively captures both temporal dependencies and 

nonlinear variations. This study provides a practical, deployable 

forecasting solution for smart grids. Future work will extend the 

model to multi-step forecasting, incorporate exogenous 

variables such as weather and calendar effects, and explore 

deeper Transformer variants further to enhance prediction 

accuracy and generalization across diverse load conditions. 

Keywords—Short-Term Load Forecasting; Hybrid Deep 

Learning Model; Transformer; MLP. 

I. INTRODUCTION 

Electric load forecasting plays a pivotal role in the 

operation and management of power systems, enabling 

operators and electricity providers to plan for generation, 

distribution, and consumption effectively. Accurate 

forecasting of future electricity demand supports optimal 

resource utilization, reduces operational costs, and enhances 

grid stability. With the increasing demand for electricity and 

the rapid integration of renewable energy sources and 

demand-side management strategies, load forecasting has 

become increasingly complex. Forecasting errors may lead to 

supply-demand imbalances, resulting in electricity shortages 

or energy waste, thus negatively impacting overall system 

efficiency. 

Historically, electric load forecasting relied on linear 

statistical methods such as linear regression, moving  

average, and autoregressive integrated moving average 

(ARIMA) [1]-[10]. While these approaches provide 

satisfactory performance on stable and stationary time series 

data, they are inadequate for modeling modern power 

systems' nonlinear and highly dynamic nature. 

To overcome these limitations, machine learning 

techniques such as decision tree regression [11]-[14], support 

vector regression (SVR) [15]-[23], random forest, and K-

nearest neighbors (KNN) [24]-[27] have been widely 

adopted. These models offer greater flexibility in capturing 

nonlinear relationships and integrating high-dimensional 

inputs. However, they often fall short in effectively modeling 

temporal dependencies in time series data, which are crucial 

for load forecasting. 

Recent advancements in deep learning have introduced a 

new paradigm for load forecasting. Architectures such as 

multilayer perceptron (MLP) [28]-[33], recurrent neural 

networks (RNN) [34]-[45], long short-term memory (LSTM) 

[46]-[59], gated recurrent unit (GRU) [60]-[67], and 

convolutional neural networks (CNN) [68]-[79] have 

demonstrated superior performance in learning complex 

patterns and modeling long temporal sequences. LSTM and 

GRU effectively capture long-term dependencies via 

controlled memory mechanisms, while CNN is known for 

extracting local temporal features efficiently. Nevertheless, 

deep learning models often demand significant 

computational resources, long training times, and are prone 

to overfitting, especially when data is noisy or insufficiently 

diverse. 

To address these challenges, hybrid models have 

emerged, combining the strengths of multiple architectures to 

improve forecasting accuracy and model robustness. A 

notable example is integrating the transformer architecture—

initially developed for natural language processing—with 

traditional structures like MLP. The Transformer excels in 

modeling long-range dependencies via the Self-Attention 

mechanism [80]-[87], and its ability to process sequences in 

parallel significantly reduces training time compared to 

sequential models like LSTM. Meanwhile, MLP enhances 

nonlinear mapping and feature integration capabilities at the 

output stage. 

In this context, the motivation for selecting the 

transformer-MLP [88]-[95] architecture lies in its ability to 

combine the advantages of both components: the 

Transformer captures global temporal patterns effectively 

through attention mechanisms. At the same time, MLP 

complements this by enhancing local nonlinear interactions 

and stabilizing the output layer. This design ensures that both 
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long-term dependencies and short-term variations in load 

profiles are well represented, which is critical for real-world 

electricity consumption data that exhibit both trends and 

volatility. 

The research contribution is developing a lightweight yet 

accurate hybrid forecasting model that demonstrates high 

generalization capability across different load conditions 

while maintaining computational efficiency. This is 

particularly relevant for innovative grid systems requiring 

real-time responses and adaptable deployment in varying 

scenarios. 

This study aims to develop and evaluate the effectiveness 

of a Transformer-MLP hybrid model for electric load 

forecasting. The proposed model leverages the Transformer’s 

ability to capture long-term temporal dependencies and the 

MLP’s strength in nonlinear data representation, thereby 

improving the accuracy and adaptability of load forecasting. 

The model’s performance is empirically compared with 

standard deep learning models on real-world load datasets, 

including MLP, LSTM, and CNN. Results indicate that the 

proposed hybrid model achieves superior forecasting 

performance, with significantly lower MAE, RMSE, and 

MAPE values. This research contributes theoretically and 

provides a practical forecasting solution for modern power 

systems, particularly in the transition toward renewable 

energy and the growing need for flexible load management. 

II. THEORETICAL BASIS 

A. MLP Model 

Multi-layer perceptron (MLP) networks, a subclass of 

artificial neural networks within the broader domain of 

machine learning, are widely utilized for classification and 

regression tasks. As a Deep Neural Network (DNN) family 

member, MLPs can learn and represent complex nonlinear 

relationships, offering substantial advantages in addressing 

high-dimensional and nonlinear problems. 

An MLP consists of multiple layers of interconnected 

neurons, organized into three main components: the input 

layer, one or more hidden layers, and the output layer. 

Input layer: This layer is responsible for receiving raw 

input data and forwarding it to subsequent layers in the 

network. Each neuron within the input layer corresponds to a 

specific feature in the dataset. 

Hidden layers: MLPs may include one or several hidden 

layers, where each neuron is connected to neurons in both the 

preceding and succeeding layers. These layers are critical in 

extracting hierarchical and abstract patterns from the data. 

The input to each neuron in a hidden layer is typically a 

weighted linear combination of outputs from the previous 

layer, followed by applying an activation function to 

introduce nonlinearity. 

Output layer: This layer delivers the final predictions the 

network generates. In classification tasks, the number of 

output neurons corresponds to the number of target classes. 

In contrast, for regression problems, the output layer 

generally comprises a single neuron that produces a 

continuous value. 

Overall, the MLP architecture enables robust function 

approximation and pattern recognition capabilities, making it 

a foundational model in deep learning applications. The 

operation process of a Multi-Layer Perceptron (MLP) can be 

divided into two main stages. Forward propagation begins 

with input data being fed into the input layer. At each layer, 

the input is transmitted through the neurons by linearly 

combining the outputs from the previous layer with 

corresponding weights and biases. The result is then passed 

through an activation function to produce the output. The 

input to each neuron is computed as (1): 

𝑧𝑙 = 𝑊𝑙𝑎(𝑙−1) + 𝑏𝑙 (1) 

In which, 𝑧𝑙 is the Linear combination between the pre-layer 

output and weights, plus bias; 𝑊𝑙 is the weighted matrix 

between class-1 and class 𝑙; 𝑎𝑙−1 is the output of class -1 𝑙; 
𝑏𝑙 is the bias of the class 𝑙. 

After the calculation, we use the σ trigger function to 

calculate the output of the class: 𝑧𝑙𝑙. 

𝑎𝑙 = 𝜎(𝑧𝑙) (2) 

In which 𝑎𝑙  is the output of the second class, which is the 

result after applying the trigger function 𝑙 and 𝜎 is the trigger 

function. 

The output of this layer is relayed through the successive 

layers up to the network's output layer. 

Backpropagation: Backpropagation is an optimization 

method for updating the network weights after calculating the 

error. The steps in the backpropagation process include: 

Calculation of errors at the output layer: Errors at the 

output layer are calculated using (3), 

𝐿𝑜𝑠𝑠 =  𝐿(𝑦̂, 𝑦) (3) 

In which, ŷ is the Predicted output value and y is the Actual 

value. 

Calculate the gradient of the loss function: After 

calculating the error, the error gradient for the weights and 

bias will be calculated.  

The gradient of the error for the output is calculated as 

follows: 

𝜕𝐿

𝜕𝑎𝑙
=

2

𝑚
(𝑦̂ − 𝑦) (4) 

In which 
𝜕𝐿

𝜕𝑎𝑙 is the derivative of the loss function L for class 

output 𝑙, m is the number of samples in the training dataset, 

𝑦̂ is the Predicted output value, and y is the Actual value. 

Gradient for calculation via trigger function: 𝑧𝑙. 

𝜕𝐿

𝜕𝑧𝑙
=

𝜕𝐿

𝜕𝑎𝑙
𝜎′𝑧𝑙 (5) 
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In which, 
𝜕𝐿

𝜕𝑧𝑙 is the gradient of the loss function for pure input 

𝑧𝑙 and 
𝜕𝐿

𝜕𝑎𝑙 is the gradient of the loss function to the output of 

the class 𝑙. 

Updated weights and biases: Weights and biases will be 

updated according to the Gradient Descent formula:  

𝑊𝑙 = 𝑊𝑙 − 𝜂
𝜕𝐿

𝜕𝑊𝑙
 (6) 

In which, 𝑊𝑙 is the Weighted matrix in the second class 𝑙, 𝜂 

is the Learning rate, and 𝜂
𝜕𝐿

𝜕𝑊𝑙 is the derivative (gradient) of 

the loss function L by weight 𝑊𝑙. 

𝑏𝑙 = 𝑏𝑙 − 𝜂
𝜕𝐿

𝜕𝑏𝑙
 (7) 

In which, 𝜂 is the speed of learning, 𝑏𝑙 is the Bias of the class, 

making the model more flexible when learning 𝑙, 
𝜕𝐿

𝜕𝑏𝑙 is the 

derivative of the loss function L for the bias at the class 𝑙.  

This process is repeated until the desired accuracy is 

achieved. 

Activation function: Activation functions are used in 

MLP to create nonlinearity in the network, helping the 

network learn the complex relationships between inputs and 

outputs. Some standard trigger functions: 

Sigmoid: The sigmoid function converts the xxx input 

value into a value in the range (0, 1), This is a nonlinear 

trigger function, commonly used in binary classification 

problems. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (8) 

Hyperbolic Tangent: A tangent function that converts an 

input value into a value in the range (-1, 1): This function is 

often used in problems with negative and positive output 

values. 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (9) 

Rectified linear unit (ReLU): The ReLU function is a very 

popular trigger function that preserves positive values and 

converts all negative values to 0: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (10) 

Leaky ReLU: This is a variant of ReLU, with a small 

portion of the negative value retained to avoid "neuro death": 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(𝛼𝑥, 𝑥) (11) 

Loss Function: The loss function measures predicted and 

actual values. Standard loss functions in MLP are: 

Cross-Entropy Loss: This is a common loss function in 

classification problems, calculated as follows: 

ℒ = − ∑ 𝑦(𝑖) log(𝑦̂(𝑖)) + (1 −𝑚
𝑖=1

𝑦(𝑖))log (1 − 𝑦(𝑖))  
(12) 

Mean squared error (MSE): MSE is a common loss 

function in regression problems, calculated as follows: 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑦(𝑖) − 𝑦̂(𝑖))2𝑚

𝑖=1   (13) 

Multilayer perceptron (MLP) networks represent a 

powerful approach in machine learning. They offer practical 

solutions for classification and regression tasks because they 

can learn and model nonlinear relationships within data. The 

mathematical operations within an MLP involve a sequence 

of computations, including input aggregation, application of 

activation functions, error calculation, and weight 

optimization through the backpropagation algorithm. The 

selection of appropriate activation and loss functions plays a 

crucial role in enhancing the performance and convergence 

behavior of the MLP model. 

B. Transformer Model 

The transformer is a deep neural network architecture that 

Vaswani et al. proposed. It is now considered foundational 

for many modern models in sequence-related tasks, 

especially in natural language processing and time series 

forecasting. Unlike traditional sequential models such as 

RNNs or LSTMs, the transformer does not process data in 

order. Instead, it utilizes a Self-Attention mechanism to learn 

dependencies between elements in a sequence regardless of 

distance. This enables parallel computation and efficient 

modeling of long-term relationships. In Self-Attention, each 

input vector is mapped into three vectors: Query (Q), Key 

(K), and Value (V). The attention mechanism is computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (14) 

Where 𝑑𝑘 is the dimensionality of the Key vectors. To 

enhance its capacity to capture diverse patterns, the 

Transformer employs multiple attention heads in parallel, 

known as Multi-Head Attention, calculated as: 

𝑀(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … . , ℎ𝑒𝑎𝑑ℎ)𝑊0  (15) 

Each head is computed independently using the attention 

formula with separate learned weight matrices. Since the 

Transformer does not operate on sequence order, it 

incorporates Positional Encoding to inject position 

information into the input embeddings, defined as: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) (16) 

𝑃𝐸(pos,2i/1) = cos (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) (17) 
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These encodings allow the model to capture the relative 

positions of sequence elements. Each Transformer Encoder 

block consists of two main components. First is the Multi-

Head Self-Attention layer, followed by a residual connection 

and Layer Normalization, expressed as: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥 + 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑥)) (18) 

Next, the output passes through a feedforward neural 

network (FFN) with two fully connected layers and a 

nonlinear activation function (such as ReLU or GELU), 

represented as: 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (18) 

which is also followed by a residual connection and 

normalization: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝐹𝐹𝑁(𝑥)) (19) 

Stacking these encoder blocks allows the Transformer to 

learn multilevel representations from the input sequence. In 

electricity load forecasting, the Transformer effectively 

models dependencies among historical data points, 

especially those reflecting seasonal and long-term trends. 

Moreover, the architecture can be seamlessly integrated 

with models such as the multi-layer perceptron (MLP) to 

form a hybrid transformer-MLP model, where the 

Transformer extracts temporal features and the MLP 

performs nonlinear mapping at the output stage. This hybrid 

approach enhances prediction accuracy in complex time 

series forecasting tasks. 

III. SUGGESTED METHODOLOGY 

A. Proposed Hybrid Model Architecture 

This study proposes a hybrid model combining the 

transformer Encoder architecture with multi-layer Perceptron 

(MLP) layers. The objective is to leverage the transformer’s 

strength in learning long-range dependencies and the 

powerful nonlinear mapping capability of MLPs to enhance 

forecasting accuracy in complex time series problems such as 

electricity load prediction. The main components of the 

proposed model include: 

Input embedding layer: The input data has the shape  

(B, S, 1), where 𝐵 is the batch size, 𝑆 is the sequence length, 

and 1 represents the number of features. This data is projected 

into a higher-dimensional space with dmodel=16d using a 

linear transformation: 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥) = 𝑥𝑊𝑒 + 𝑏𝑒 (20) 

Learnable positional encoding: Since the Transformer 

does not inherently capture the order of time steps, a learnable 

positional encoding matrix of shape (1, S, dmodel) is added to 

the embedded representation: 

𝑥𝑖𝑛𝑝𝑢𝑡 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥) + 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 (21) 

Transformer encoder: The embedded and positionally 

encoded input is passed through a Transformer Encoder 

block. A transformer encoder layer is used with the following 

hyperparameters: 𝑑𝑚𝑜𝑑𝑒𝑙=16; 𝑛ℎ𝑒𝑎𝑑=1; 

𝑑𝑖𝑚𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =128; dropout = 0.1. 

Then, a transformer encoder is constructed by stacking 

the encoder layer num_layers=1 time. This encoder captures 

temporal patterns and dependencies across the sequence: 

𝑥𝑡𝑟𝑎𝑚𝑠𝑓𝑜𝑟𝑚𝑒𝑟 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑖𝑛𝑝𝑢𝑡) (22) 

Extracting the Last Time Step: Since the task is to predict 

a single output value, the model only uses the representation 

from the last time step: 

𝑥𝑙𝑎𝑠𝑡 =  𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟[: , −1, : ] (23) 

Multi-layer perceptron (MLP): The output from the 

transformer is passed through a stack of fully connected 

layers with ReLU activations, structured as follows: 

16→32→64→12816  

Each layer is defined as: 

𝑥𝑚𝑙𝑝 = 𝑅𝐸𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑅𝐸𝐿𝑈(𝑥𝑊2

+ 𝑏2) 𝑅𝐸𝐿𝑈(𝑥𝑊3 + 𝑏3) 
(24) 

Output layer: Finally, a linear layer maps the 128-

dimensional vector to a single output, suitable for regression 

tasks: 

𝑦̂ = 𝑥𝑊0 + 𝑏0 (25) 

Model training: The model is trained using the mean 

squared error (MSE) loss function and the Adam optimizer 

with a learning rate of lr=0.001 over 500 epochs and a 

batch size 32. The training data is organized into a 

DataLoader to ensure efficient mini-batch gradient 

updates during training. 

B. Algorithm Flowchart 

Fig. 1 illustrates the algorithmic workflow adopted for 

training and evaluating the Transformer-MLP model in the 

context of short-term electricity load forecasting. The process 

begins with a time series of electricity demand data Y1, Y2, 

..., Yn, which is first preprocessed through normalization and 

reshaping into a supervised learning format using a sliding 

window technique. The preprocessed dataset is divided into 

two subsets: a training set (X_train, Y_train) and a testing set 

(X_test, Y_test). The Transformer-MLP model is trained on 

the training data, generating predictions Ypred based on the 

input Xtest. These predictions are subsequently compared 

with the actual target values Ytest, and standard error 

metrics—including MAE, MSE, and RMSE —are computed 

to assess the model’s forecasting performance quantitatively. 

This structured workflow ensures consistency, 

reproducibility, and transparency in the experimental 

evaluation process. 
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Fig. 1. Algorithm flowchart 

IV. PERFORMANCE EVALUATION AND DISCUSSION 

A. Experimental Data 

Table I, Table II, and Table III present the electricity 

consumption data for three Australian states: New South 

Wales (NSW), Queensland (QL), and Victoria (VI). Each 

dataset contains time-stamped electricity demand values 

(TOTALDEMAND) recorded at 30-minute intervals. The 

data covers a continuous period from May 1, 2009, to May 

31, 2014, yielding 1,857 consecutive days for each state. This 

constitutes a long-term time series dataset, a robust 

foundation for applying machine learning and deep learning 

models in the context of Short-Term Load Forecasting 

(STLF). The uniformity in the duration and structure of the 

data across the three states enables meaningful comparative 

analyses, facilitates the exploration of geographical 

consumption trends, and supports the development of 

national and region-specific forecasting models. 

During the data preprocessing stage, the most recent 35 

days of data were extracted from each dataset to emphasize 

recent patterns relevant for model training. The 30-minute 

sampling rate (equivalent to 48 data points per day) results in 

1,680 time-ordered samples per state. The datasets were then 

restructured into input–output pairs using a sliding window 

technique with a fixed window length 48. Each input 

sequence comprises 48 consecutive values, and the 

corresponding output is the immediate next value in the 

sequence. The resulting data was split chronologically into 

training (80%) and testing (20%) sets to preserve the 

temporal dependencies inherent in time series data. This 

preprocessing strategy ensures consistency, temporal 

integrity. It facilitates effective generalization of deep 

learning models such as long short-term memory (LSTM) 

networks and transformer architectures when applied to the 

STLF task. 

TABLE I. HISTORICAL LOAD DATA OF NSW 

DATE H0 H1 ……… H46 H47 

01/05/09 8724.1 8565.6 ……… 8798.7 8765.0 

02/05/09 8608.93 8422.36 ……… 8162.89 8128.82 

…….. …….. …….. ……… …….. ….. 

30/05/14 7747.18 7556.37 ……… 7840.4 7829.76 

31/05/14 7848.03 7654.02 ……… 7328.17 7355.55 

TABLE II. HISTORICAL LOAD DATA OF QUEENSLAND 

DATE H0 H1 ……… H46 H47 

01/05/09 5318.73 5112.69 ……… 5572.11 5466.93 

02/05/09 5267.31 5074.75 ……… 5360.74 5302.82 

…….. …….. ………… ……… ………… ………… 

30/05/14 5346.41 5171.66 ……… 5581.69 5458.63 

31/05/14 5247.4 5126.62 ……… 5378.7 5328.07 

TABLE III. HISTORICAL LOAD DATA OF VICTORIA 

DATE H0 H1 ……… H46 H47 

01/05/09 5700.4 5486.66 ……… 5797.02 5992.16 

02/05/09 5794.11 5612.12 ……… 5426.44 5640.43 

……… ……… ……… ……… ……… ……… 

30/05/2014 5760.19 5470.23 ……… 5493.71 5813.51 

31/05/2014 5751.21 5506.47 ……… 5050.1 5379.3 

B. Model Parameters 

The model is designed based on a hybrid architecture 

combining a Transformer encoder with a multi-layer 

perceptron (MLP) to handle univariate time series data with 

a sequence length of 48. The input, shaped as (batch_size, 48, 

1), is first passed through a linear embedding layer that maps 

the single input feature to a 16-dimensional space (d_model 

= 16). To incorporate temporal position information, the 

model employs a learnable positional encoding of shape (1, 

48, 16). The Transformer encoder consists of one encoder 

layer (num_layers = 1) with a single attention head (nhead = 

1) and an internal feedforward layer size of 128 

(dim_feedforward = 128). After the Transformer processes 

the input, only the final time step’s output is retained and 

passed through an MLP consisting of three hidden layers with 

dimensions: 16 → 32 → 64 → 128, each followed by a ReLU 

activation. Finally, a linear output layer maps the 128-

dimensional vector to a single output value for prediction. 

The model is trained using the Mean Squared Error (MSE) 

loss function and optimized with the Adam optimizer, with a 

learning rate of lr = 0.001, over 500 epochs and a batch size 

of 32. 

We intentionally adopted a lightweight Transformer 

encoder configuration with only one attention head and a 

single encoder layer to ensure a practical balance between 

model complexity and forecasting efficiency. This 

minimalistic architecture was selected based on preliminary 

tests, which showed that deeper Transformer variants (e.g., 

using 2–4 layers or multiple heads) slightly improved 

performance but significantly increased training time, risk of 

overfitting, and memory usage. Given that our target 

application includes deployment in innovative grid 

environments—where real-time response and computational 
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resources may be constrained—this simplified configuration 

offers sufficient temporal feature extraction without 

compromising operational feasibility. The design thus 

prioritizes model interpretability, efficiency, and scalability, 

which are essential for load forecasting in real-world power 

system operations. 

In addition to the lightweight transformer encoder, the 

multi-layer perceptron (MLP) component was deliberately 

designed with a relatively simple architecture, consisting of 

three hidden layers with increasing dimensions (from 16 to 

128). This configuration was chosen to provide sufficient 

nonlinear feature extraction at the output stage without 

introducing excessive depth that might result in overfitting or 

prolonged training. Empirical testing confirmed that deeper 

or more complex MLP structures did not yield noticeable 

improvements in forecasting accuracy, especially after the 

Transformer had already encoded long-range temporal 

patterns. Thus, the selected MLP structure effectively 

balances complexity and performance, making the model 

suitable for deployment in real-time energy management 

systems with limited computational resources. 

C. Results 

Fig. 2, Fig. 3, and Fig. 4 present the short-term electricity 

load forecasting results obtained using the Multi-Layer 

Perceptron (MLP) model for three Australian states: New 

South Wales (NSW), Queensland (QLD), and Victoria 

(VIC). The visual comparisons between the predicted values 

(y_pred) and the actual observed values (y_test) reveal that 

the MLP model effectively captures the temporal patterns and 

trends in the electricity load data. The predicted curves in 

NSW and QLD align with the actual load values, indicating 

high forecasting accuracy and minimal deviation. This strong 

performance can be attributed to the relatively smooth and 

consistent oscillatory behavior of the load signals in these 

regions, which the MLP model is well-suited to learn and 

generalize from. 

 

Fig. 2. Electricity load forecasting in NSW using MLP 

 

Fig. 3. Electricity load forecasting in QL using MLP 

 

Fig. 4. Electricity load forecasting in VI using MLP 

However, while the overall trend is still well-followed in 

the VI dataset, the model exhibits noticeable discrepancies at 

specific time steps. These deviations are primarily due to the 

more volatile nature of the load profile in Victoria, which 

includes rapid fluctuations and sharp peaks that are inherently 

more difficult to predict. Despite these challenges, the MLP 

model still demonstrates reasonable robustness and 

adaptability. Moreover, its straightforward architecture and 

ease of implementation make it a practical choice for load 

forecasting tasks, particularly in scenarios where the 

complexity of the input signal is moderate or low. Overall, 

the results confirm the MLP model’s potential as a baseline 

method for electricity demand prediction across various 

regions. 

Fig. 5, Fig. 6, and Fig. 7 present the electricity load 

forecasting results using the LSTM model for NSW, QLD, 

and VI states. Unlike MLP, the LSTM model is superior in 

learning temporal dependencies. However, in the displayed 

plots, the model does not achieve a high level of alignment 

with the actual data. In NSW (Fig. 4), while the LSTM 

captures the overall trend, it fails to identify several critical 

load peaks. For QL and VI (Fig. 5 and Fig. 6), the forecasts 

show noticeable deviations from the actual values, especially 

at points with intense fluctuations.  

 

Fig. 5. Electricity load forecasting in NSW using LSTM 

 

Fig. 6. Electricity load forecasting in QL using LSTM 
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Fig. 7. Electricity load forecasting in VI using LSTM 

Although the long short-term memory (LSTM) model is 

inherently well-suited for handling sequential and time-

dependent data, the experimental results indicate that its 

current performance in electricity load forecasting is 

suboptimal. Therefore, additional hyperparameter tuning, 

architectural adjustments, and training refinements are 

required to improve its applicability and accuracy. 

Fig. 8, Fig. 9, and Fig. 10 depict the electricity load 

forecasting results generated by the Convolutional Neural 

Network (CNN) model for the Australian states of New South 

Wales (NSW), Queensland (QLD), and Victoria (VIC). The 

visualizations demonstrate that the CNN model produces 

predictions highly consistent with the actual load values 

across all three regions. Specifically, the predicted curves 

(y_pred) closely follow the ground truth values (y_test), 

including during periods of sharp fluctuations, sudden peaks, 

or rapid transitions. This level of alignment indicates that the 

CNN model can learn the general trend in the data and 

respond to local variations and short-term anomalies. The 

model delivers superior predictive accuracy in NSW and 

QLD, with minimal deviation observed. In VIC, where the 

load signal exhibits more complex and irregular behavior, 

CNN maintains robust and stable tracking of the real values. 

These findings highlight the model’s ability to effectively 

extract and utilize local temporal features. Due to its high 

performance, computational efficiency, and ease of 

implementation, CNN is considered a practical and reliable 

approach for short-term electricity load forecasting across 

diverse regional datasets. 

 

Fig. 8. Electricity load forecasting in NSW using CNN 

 
Fig. 9. Electricity load forecasting in QL using CNN 

 

Fig. 10. Electricity load forecasting in VI using CNN 

Fig. 11, Fig. 12, and Fig. 13 illustrate the electricity load 

forecasting outcomes for the states of New South Wales 

(NSW), Queensland (QLD), and Victoria (VIC) using the 

proposed Transformer-MLP hybrid model. By integrating the 

self-attention mechanism of the Transformer with the 

nonlinear learning capability of the MLP, the model achieves 

exceptional predictive performance. The forecasted curves 

(y_pred) align almost perfectly with the actual load values 

(y_test) across all three states. In particular, the model 

demonstrates excellent accuracy in NSW (Fig. 11) and QLD 

(Fig. 12), effectively capturing sharp peaks and minor 

fluctuations in the data. Even in the case of VI (Fig. 13), 

where the load profile is highly irregular and volatile, the 

Transformer-MLP maintains a high level of accuracy. These 

results confirm the model’s strong ability to learn complex 

temporal dependencies and adaptability to diverse and 

challenging load patterns, making it a powerful tool for short-

term load forecasting. 

 
Fig. 11. Electricity load forecasting in NSW using transformer – MLP 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2040 

 

Tuan Anh Nguyen, A Hybrid Transformer-MLP Approach for Short-Term Electric Load Forecasting 

 
Fig. 12. Electricity load forecasting in QL using transformer – MLP 

 

Fig. 13. Electricity load forecasting in VI using transformer – MLP 

Fig. 14, Fig. 15, and Fig. 16 present a comparative 

analysis of the mean absolute percentage error (MAPE) 

across different deep learning models—LSTM, MLP, CNN, 

and Transformer-MLP—for the NSW, QL, and VI regions. 

Across all areas, the Transformer-MLP model consistently 

achieves the lowest MAPE values, highlighting its superior 

forecasting accuracy and stability compared to the other 

models. Specifically, the Transformer-MLP yields MAPE 

values ranging from only 0.69% to 0.95%, significantly lower 

than traditional models such as LSTM. Notably, LSTM 

records the highest error rates across all regions: 4.82% 

(NSW), 5.38% (QL), and 9.44% (VI). CNN and MLP models 

exhibit intermediate performance, with MAPE values 

typically ranging from 0.89% to 1.59%. Although these 

figures are lower than those of LSTM, both models fall short 

of matching the accuracy of the Transformer-MLP, 

particularly in the VI region, where MLP records a MAPE of 

1.59%, nearly double that of the Transformer-MLP (0.95%). 

 

Fig. 14. MAPE comparison across models – region: NSW 

 
Fig. 15. MAPE comparison across models – region: QL 

 
Fig. 16. MAPE Comparison across models – region: VI 

Fig. 17 compares the execution time of four deep learning 

models—Transformer, MLP, CNN, and LSTM—across 

three geographical regions: NSW, QLD, and VI. Each group 

of bars represents a region and shows the execution time for 

the corresponding four models. The results indicate that 

LSTM consistently exhibits the highest execution time across 

all areas, ranging from 1,266 to 1,389 seconds. This reflects 

the inherently sequential nature and architectural complexity 

of LSTM, which demands longer training time and higher 

computational resources than other models. In contrast, MLP 

is consistently the fastest model, requiring only about 58–101 

seconds. This underscores the simplicity of the traditional 

feedforward neural network architecture, making it suitable 

for applications where quick response time and 

computational efficiency are critical. CNN and Transformer-

MLP demonstrate intermediate execution performance. 

CNN's execution time ranges from 148 to 183 seconds, while 

Transformer-MLP exhibits more variable runtime, between 

176 and 681 seconds, with a noticeable increase in NSW. 

This variation may be attributed to differences in input 

sequence length or the complexity of the datasets across 

regions. 
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Fig. 17. Execution time of deep learning models across regions 

D. Discussion 

The findings of this study highlight the effectiveness of 

the proposed Transformer-MLP model in short-term electric 

load forecasting by demonstrating consistently lower 

prediction errors compared to traditional deep learning 

models. This superior performance can be attributed to the 

model’s ability to integrate the transformer’s self-attention 

mechanism—capable of capturing long-range temporal 

dependencies—with the MLP’s capacity for nonlinear 

mapping and output stabilization. Unlike LSTM, which 

suffers from high training time and potential overfitting in 

highly volatile regions, the Transformer-MLP achieves high 

accuracy and computational efficiency with a shallow 

architecture. While CNN excels in extracting local patterns, 

it lacks global sequence awareness, limiting its adaptability 

in datasets with complex dynamics. MLP, though fast and 

lightweight, struggles to handle sequential correlations 

effectively. The Transformer–MLP strikes a balance, 

offering a robust, generalizable, and low-complexity solution 

suitable for deployment in innovative grid systems. These 

results suggest that attention-based hybrid models may 

provide a valuable direction for future load forecasting 

systems. However, limitations remain, such as excluding 

exogenous variables (e.g., weather or calendar effects) and 

focusing on one-step-ahead prediction. Future research could 

address these gaps by incorporating external features, 

exploring multi-step forecasting, and evaluating deeper 

Transformer variants further to improve accuracy and 

generalization under diverse load conditions. 

V. CONCLUSION 

This study proposed a lightweight hybrid deep learning 

model that integrates a Transformer encoder with a multi-

layer perceptron (MLP) to improve the accuracy of short-

term electricity load forecasting. The model was evaluated on 

real-world datasets from three Australian states—NSW, 

QLD, and VIC—and demonstrated superior performance to 

conventional models, including MLP, LSTM, and CNN. 

Among all models, Transformer-MLP consistently achieved 

the lowest MAPE values, ranging from 0.69% to 0.95%, 

confirming its robustness across stable and volatile load 

scenarios. The key strength of the proposed model lies in its 

ability to simultaneously capture long-term temporal 

dependencies through the Transformer and handle nonlinear 

patterns using the MLP. Its shallow architecture also ensures 

computational efficiency, making it suitable for real-time 

applications in innovative grid systems. 

However, this study presents certain limitations. The 

model was designed for one-step-ahead forecasting and relied 

solely on historical load data without considering exogenous 

variables such as weather conditions, holidays, or 

socioeconomic factors. Additionally, only a single-layer 

Transformer with one attention head was used, which may 

restrict the model’s capacity to learn deeper hierarchical 

patterns in complex scenarios. Future research will expand 

the model to multi-step forecasting tasks, integrate external 

influencing factors (e.g., temperature, calendar events), and 

experiment with deeper transformer architectures or multi-

head attention mechanisms to enhance accuracy and 

generalizability in real-world deployments. 
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