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Abstract—This paper presents a hybrid trajectory planning 

framework that integrates the strengths of rapidly-exploring 

random tree star (RRT), D* Lite (DL) algorithms, and a 

Gaussian filter to enable efficient and smooth navigation of a 

two-link robotic arm in dynamic environments. RRT* is 

employed to generate a globally optimal path from the initial to 

the goal configurations by exploring the Cartesian workspace 

while considering kinematic and dynamic constraints, including 

static obstacles. To handle environmental changes, DL is 

incorporated for local re-planning, allowing the trajectory to 

adapt in real-time when obstacles move or new ones appear, 

thus ensuring continuous path feasibility. The initial path 

produced by RRT* is incrementally optimized, and any 

necessary local adjustments are efficiently handled by DL 

without re-planning the entire path. To further enhance the 

quality of motion, the Shortcut smoothing + Gaussian filter is 

applied for path smoothing, resulting in improved trajectory 

continuity, computational efficiency, and robustness in the 

presence of dynamic obstacles. This hybrid approach offers the 

optimality of RRT*, the adaptability of D* Lite, and the 

smoothness required for practical robotic applications. 

Keywords—Hybrid Path Planning; Sampling-Based 

Algorithms; Dynamic Environments. 

I. INTRODUCTION 

Robotic arms are widely employed in industrial settings 

due to their high precision and versatility in performing 

complex tasks. Consequently, there is a growing need to 

develop advanced path planning strategies that optimize their 

motion efficiency and accuracy. In this regard, path planning 

plays a critical role in robotics, as it determines the motion 

behavior of the robot at an early stage regardless of whether 

the planning approach is conventional or based on intelligent 

algorithms [1]. Specifically, generating a minimal-length, 

collision-free path for a manipulator operating in a dynamic 

workspace with mobile obstacles can use potential-field 

methods (artificial, harmonic), sampling-based planners 

(RRT* and PRM), grid-based techniques, and AI-based 

strategies (evolutionary algorithms, ANNs, and DRL) [2]-[4]. 

In addition, the choice of the optimal path planner may be 

classified by energy use/energy cost [5], [6]. The task of this 

planner is to minimize energy consumption during motion 

and compute a short, safe, smooth start-to-goal path while 

avoiding obstacles with minimal traversal time. In addition, 

it reduces computation, especially in cluttered scenes by 

solving IK at each waypoint, verifying kinematic/dynamic 

feasibility, operating under real-time constraints, 

coordinating coupled joints, selecting the best configuration, 

preventing self-collisions, building a precise environment 

model, using robust collision checking, and maintaining a 

safety clearance in collaborative settings. Integrate RRT* 

with DL in one framework; re-plan at a proximity threshold; 

smooth the path with a Gaussian filter to safely bypass 

moving obstacles and shorten paths, speed up re-plans, lower 

computational demand, and require less manual shape tuning 

[7]-[9]. 

Our key contributions are utilizing RRT* to find a 

feasible seed path and refine its quality, integrating RRT* 

with DL in a single hybrid method, employing DL for path 

repair to avoid obstacles, and evaluating the hybrid 

simulation method and analyzing its performance in dynamic 

environments. In addition, the Shortcut smoothing + 

Gaussian filter is applied for application-specific path 

smoothing. 

We organize the rest of the paper as follows. Section 2 

surveys dynamic-obstacle planning with emphasis on hybrid 

RRT* approaches. Sec. 3 describes the two-link arm 

kinematics, RRT*, D*Lite, the RRT*–DL method, and the 

Smoothing and collision detection procedures. Section 4 

presents the simulations and discussion on point-mass and 

two-link arm and compares the hybrid and the baseline 

RRT*. Section 5 gives the conclusions highlighting 

efficiency and safety gains of the RRT*–D* Lite approach in 

dynamic environments. 

II. RELATED WORKS  

Path planning for robotic manipulators in dynamic 

environments requires a solid theoretical foundation that 

integrates concepts from robotics kinematics, motion 

planning, and optimization. For two-link robotic arms, the 

forward and inverse kinematics define the relationship 

between joint angles and end-effector positions, forming the 

basis for trajectory generation within the workspace [10]. In 

complex scenarios, where both static and dynamic obstacles 

exist, classical approaches such as grid-based methods or 

potential fields often suffer from high computational cost or 

local minima. To this end, sampling-based algorithms, 

particularly RRT*, have emerged as powerful tools due to 

their probabilistic completeness and asymptotic optimality in 

finding feasible collision-free paths [11]-[13]. However, in 

highly dynamic scenarios, RRT* alone may be inefficient, 

requiring repeated re-exploration when obstacles change 
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position. To address this limitation, incremental search 

algorithms such as D* Lite provide efficient re-planning 

capabilities by updating paths locally without reconstructing 

the entire tree. This section presents the theoretical principles 

underlying the hybrid RRT*–D* Lite framework, which 

combines global optimal exploration with adaptive local re-

planning to achieve smooth and collision-free trajectories for 

two-link robotic arms operating in constrained and dynamic 

environments. 

For instance, Liang et al. [14] proposed an improved 

RRT* variant, AGP-RRT*, to enhance multi-axis robotic arm 

path planning by addressing poor directionality and slow 

convergence. They introduced adaptive probabilistic 

sampling and gravitational step-size adjustment to guide 

efficient search, alongside cubic B-spline smoothing for 

flexible path refinement. In another work, Fang et al. [15]  

proposed the XN-RRT* algorithm to improve path planning 

efficiency and success rate in complex pitaya (dragon fruit) 

harvesting environments. They enhanced sampling via 

normal distribution, improved tree expansion using a 

potential field method, and refined the path with a greedy 

algorithm and B-spline smoothing. In addition, Hameed et al. 

[16] introduced the APF-IRRT*-HS algorithm, enhancing 

RRT* by integrating artificial potential fields and Halton 

sequence sampling with a modified goal-biased strategy. The 

method, tested on mass point and two-link robots, showed 

superior performance in path length, computation time, and 

iteration count. Moreover, Hameed et al. [17] proposed the 

APF-IRRT*-SB, combining APF with an enhanced RRT* 

using the Sobol-Burkardt sequence and a probabilistic goal 

strategy for efficient path planning. Evaluated on mass point 

and two-link robot scenarios, it improved path length and 

computational efficiency across varying environments. 

Additionally, Yang et al. [18] introduced the MMD-RRT, an 

improved RRT-based method with multi-mode dynamic 

sampling and adaptive step sizing to reduce randomness and 

improve search efficiency. A greedy strategy was applied for 

path optimization by removing redundant nodes. Li et al. [19] 

proposed the RCM strategy to enhance RRT-based robotic 

arm path planning by integrating probabilistic sampling, a 

reward mechanism, and the B-spline interpolation. This 

approach reduces redundant nodes, improves smoothness, 

and enhances search efficiency. Gu et al. [20] proposed the 

LRRT* algorithm using an improved Lévy flight strategy and 

effective region sampling to overcome blind sampling and 

slow planning in RRT*. The method consists of two stages: 

initial path finding using goal-oriented exploration and 

optimization using localized sampling and node rejection. 

Wang et al. [10] proposed the T-ABA* algorithm, integrating 

the Adaptive Bidirectional A* with Transformer models to 

improve robotic arm path planning and dynamic obstacle 

avoidance. The Transformer enhances heuristic adjustment 

and collision prediction, ensuring smoother, more efficient 

paths and reducing computational overhead. The simulations 

showed that the T-ABA* effectively optimizes both single- 

and dual-arm tasks by reducing joint revolutions, smoothing 

turns, and preventing inter-arm collisions. Zhang et al. [21] 

introduced the Fast-IBI - RRT* algorithm to improve path 

planning for robotic arms by enhancing sampling with 

probabilistic target region sampling and redundant node 

deletion. It further optimizes path quality through adaptive 

step sizing and a reconnecting grandfather node strategy. 

Experimental results in multiple environments confirmed 

reduced planning time, improved smoothness, and lower path 

cost compared to IBi - RRT*. Balint et al. [22] tackled the 

issue of sample inefficiency in Deep RL by integrating it with 

RRT, using RRT to generate diverse experiences that enrich 

the training buffer and improve efficiency; applied to 

autonomous vehicle trajectory tracking, this hybrid method 

outperformed conventional Deep RL across multiple metrics. 

Tahmasbi et al. [23] proposed Zonal RL-RRT, which 

combines kd-tree zone partitioning with Q-learning for high-

level planning, achieving up to 3× faster performance than 

RRT/RRT* and 1.5× better than heuristic or learning-based 

methods across 2D–6D spaces, and validated its. Finally, 

Chao et al. [24] proposed the DL-RRT*, which is a hybrid 

path planning method combining RRT* and D* Lite. In 

dynamic, radiation-rich scenarios, this approach cuts down 

on path re-planning latency by using D* Lite’s grid search to 

establish high-quality starter paths and boost the RRT*’s 

convergence speed. 

In this regard, the majority of prior research has 

overlooked the process of path reconfiguration and the 

influence and efficiency of localized path adjustments. To 

address this issue, a combined RRT* and D* Lite 

methodology is introduced, integrating the advantages of the 

two planning methods. While RRT* restarts the planning 

process entirely upon encountering obstacles, the hybrid 

method enables rapid localized path corrections, minimizing 

the duration of path recalculations. Although it requires 

upfront computational effort to construct the search structure, 

successive path updates are both swift and reliable, 

promoting improved completion rates and enhanced real-

time adaptability. The approach exploits RRT* for fast 

exploration and D* Lite for adaptive, real-time route 

modifications, while applying a Gaussian filter to smooth out 

trajectory irregularities, making it well-suited for responsive 

and flexible navigation in changing scenarios [25]. 

III. THE PROPOSED METHOD  

The proposed method integrates the strengths of RRT* 

and D* Lite to achieve smooth and collision-free path 

planning in dynamic environments [26]. More specifically, 

the RRT* is first employed to construct a global near-optimal 

path by exploring the free space within the workspace. While 

this step ensures asymptotic optimality, its efficiency 

decreases when obstacles move, requiring repeated re-

exploration. To address this limitation, the D* Lite is 

incorporated as a local re-planning module that updates only 

the affected portions of the path when dynamic changes 

occur. This hybrid framework allows the algorithm to balance 

global exploration and local adaptability, ensuring safe 

trajectory generation even in highly constrained spaces. By 

combining these two algorithms, the method reduces the path 

length, the computation time, and the number of iterations 

while maintaining robustness against dynamic obstacles [27]. 

A. Robotic Arm Kinematics 

The workspace coordinates of the two-joint manipulator, 

as shown in Fig. 1, are determined by the joint angles 𝜃₁ and 

𝜃₂ [28], [29]. Every joint setup map to a distinct pose and 

location in the task space. In the case of a two-segment 
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manipulator with revolute joints, the robot’s pose is entirely 

defined by 𝜃₁ (from the base) and 𝜃₂ (from the preceding 

segment). This 2D configuration maps joint angles (𝜃₁, 𝜃₂) to 

a unique (x, y) tool-tip location. Computing the forward 

kinematics is straightforward, yields a single result, and 

determines end-effector position from angles. On the other 

hand, the inverse kinematics is used to find joint angles for a 

desired position in the workspace. However, it may yield no 

solution, a single solution, or multiple possible configurations 

[30], [31]. Joint angle constraints and kinematic singularities 

must also be considered to generate and perform movements 

in the task space while ensuring that unreachable or invalid 

targets are avoided [32], [33]. 

 

Fig. 1. The two-link robotic arm 

Specifically, we adopt this method to verify whether the 

goal position can be accessed, determine the joint 

configurations required to move the end-effector to 

coordinates (x, y), and modify the target point if it exceeds 

the manipulator’s reach or falls beyond the robot’s 

operational area [34], [35]. 

Then, we compute 𝜃2 as follows: 

𝑐𝑜𝑠(𝜃2 ) =
𝑟2 − 𝐿12 − 𝐿22

2. 𝐿1. 𝐿2
 (1) 

Where, 𝑟 = √𝑥2 + 𝑦2, 𝐿1 is the length of link 1, and 𝐿2 is the 

length of link 2. 

𝜃2  = 𝑐𝑜𝑠−1( 
𝑟2−𝐿12−𝐿22

2.𝐿1.𝐿2
 )  (2) 

𝜃1 = 𝑡𝑎𝑛−1( 
𝑦

𝑥
 ) − 𝑡𝑎𝑛−1( 

𝐿2.𝑠𝑖𝑛 (𝜃2)

𝐿1+𝐿2.𝑐𝑜𝑠 (𝜃2)
)  (3) 

B. Random Tree Star (RRT*) 

The rapidly exploring random tree star (RRT*) is an 

optimal extension of the RRT algorithm that incrementally 

builds a search tree while improving the quality of the 

generated path [36]-[40]. 

The algorithm begins by randomly sampling a state 𝑋𝑟𝑎𝑛𝑑 

in the search space and identifying the nearest node 𝑋𝑛𝑒𝑎𝑟 
from the existing tree using a distance metric [41], [42]. Then, 

a steering function generates a new node 𝑋𝑛𝑒𝑤 toward the 

sample, constrained by a maximum step size and obstacle 

avoidance rules. The RRT* considers a neighborhood set 

𝑋𝑛𝑒𝑎𝑟 around 𝑋𝑛𝑒𝑤, and the parent node is selected to 

minimize the cumulative cost-to-come [43]-[45]: 

𝑋𝑝𝑎𝑟𝑒𝑛𝑡 = arg 𝑚𝑖𝑛𝑥∈𝑋𝑛𝑒𝑎𝑟[𝑐(𝑥)+‖𝑥−𝑥𝑛𝑒𝑤‖ (4) 

where 𝑐(𝑥) represents the accumulated path cost from the 

start node. After connecting 𝑋𝑛𝑒𝑤, a rewiring step checks 

whether re-routing existing nodes in 𝑋𝑛𝑒𝑎𝑟 𝑋𝑛𝑒𝑤 reduces their 

cost, and updates the tree accordingly [39], [46]-[48]. 

Through this continuous optimization, the algorithm ensures 

that the path cost is gradually reduced, leading to 

convergence toward the optimal solution. The RRT* 

therefore guarantees both probabilistic completeness (a 

solution will be found if it exists) and asymptotic optimality 

(the solution approaches the global optimum as the number 

of iterations tends to infinity) [49], [50]. These properties 

make the RRT* a widely used and powerful tool in robotic 

path planning, particularly for navigating complex, high-

dimensional, and obstacle-rich environments [51]-[54].  

C. D*Lite  

The D* Lite algorithm is an incremental heuristic search 

method that efficiently re-plans paths in dynamic 

environments [55]. It maintains two values for each node: the 

g-value (cost-to-come) and the rhs-value (one-step look-

ahead cost). The shortest-path condition is satisfied when 

𝑔(𝑠)  =  𝑟ℎ𝑠(𝑠) for all nodes, and the rhs-value is updated 

according to [56], [57]: 

𝑟ℎ𝑠(𝑠) = 𝑚𝑖𝑛𝑠′∈𝑆𝑢𝑐𝑐(𝑠)[𝑐(𝑠, 𝑠′) + 𝑔(𝑠′)] (5) 

Where 𝑐(𝑠, 𝑠′) denotes the transition cost between nodes. A 

priority queue orders the nodes using keys based on path cost 

and heuristic estimates, ensuring efficient updates [58]. When 

an edge cost changes due to moving obstacles, only affected 

nodes are recalculated instead of re-computing the entire 

path. The algorithm expands inconsistent nodes 𝑔(𝑠) ≠
𝑟ℎ𝑠(𝑠) and rewires their neighbors to restore consistency 

[51], [59]. This incremental update mechanism allows fast re-

planning and ensures that the computed path remains optimal 

with respect to the new environment [60]-[63]. Fig. 2 

illustrates this process, where the blue dashed path shows the 

initial shortest route from the start to the goal, and when the 

red nodes representing dynamic obstacles appear, the original 

path becomes blocked. 

The D* Lite then performs a local update and generates a 

green re-planned path, efficiently navigating around the new 

obstacles without reconstructing the entire search tree [64]-

[66]. This property makes the D* Lite highly suitable for real-

time robotic navigation in environments with dynamic 

changes [67]. 
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Fig. 2. D*Lite re-planning 

D. The Hybrid Approach (RRT*-D*Lite) 

The RRT* method is particularly suitable for high-

dimensional global path planning, efficiently identifying 

initial paths even within complex and dynamic environments 

[68], [69]. It iteratively enhances its solution over time, 

moving towards an optimal path. With sufficient 

computation, it guarantees convergence to the shortest 

feasible trajectory [70]-[72]. In contrast, the D* Lite excels at 

local adaptive planning, adjusting trajectories in response to 

changing obstacle configurations [58]. This feature makes the 

DL highly effective in dynamic scenarios, maintaining 

feasible paths when the environment evolves. The hybrid 

RRT*-DL approach combines these strengths: while RRT* 

handles global exploration, DL efficiently manages local 

modifications. Although the hybrid system incurs an initial 

cost to construct a planning grid, it compensates with rapid, 

incremental updates that reduce total runtime. When 

obstacles disrupt the RRT* path, the pure RRT* may struggle 

to recover promptly, increasing collision risk. In comparison, 

the hybrid model improves reliability under frequent 

environmental shifts. Designed for real-time execution, this 

method typically achieves better responsiveness and higher 

success rates, even if the resulting paths are marginally 

longer. 

The flowchart in Fig. 3 outlines the hybrid RRT*+DL 

path planning process for robotic navigation in dynamic 

environments. The algorithm begins by initializing the 

environment parameters, including static and dynamic 

obstacles, and then builds an occupancy grid. The DL is 

initialized with start and goal cells for local path correction. 

The system then creates the figures, plots the obstacles, and 

enters a main loop iterating over a set number of nodes. In 

each loop, dynamic obstacles oscillate and update the 

occupancy grid. If any grid cell changes, the DL locally 

updates its vertices. The RRT* then tries to expand toward 

the goal. If a collision-free path is found, the timing updates 

and the next iteration begins. Concurrently, the robot 

executes its motion by reconstructing the RRT* tree path, 

applying shortcutting and Gaussian smoothing, and updating 

the DL start state. The DL algorithm checks for path 

feasibility. If a valid path is found, it is smoothed and 

converted to world coordinates. The robot then snaps to the 

nearest path point and moves based on its speed. If the robot 

reaches the goal (within a tolerance), the loop ends, and 

performance metrics are printed. If not, the iteration and the 

time counter are updated for the next cycle. This hybrid 

method leverages the RRT* for global planning and the DL 

for efficient local re-planning, making it ideal for dynamic 

environments as shown in the following Pseudo-code: 

The Hybrid RRT + DL Path Planning Pseudo-code, 

START Robot_Path_Planning 

1. Initialize all parameters: 

   - Static and dynamic obstacles 

   - Start/goal positions 

   - Robot settings 

2. Build the occupancy grid with resolution 

   - Initialize D* Lite with startCell and goalCell 

3. Create the initial figure 

   - Draw the static/dynamic obstacles and 

start/goal 

4. FOR iter = 1 to numNodes DO: 

a. Update positions of dynamic obstacles  

   (oscillating) 

    b. Redraw dynamic obstacles in both subplots 

    c. Rebuild the occupancy grid 

    d. IF any grid cells are changed THEN: 

       FOR each changed cell: 

       Call dstar_lite_update_vertex(cell) 

       END FOR 

    E ND IF 

    e. Proceed with RRT* expansion up to  

       maxAttempts: 

        - Add a node to the tree 

        - Draw the edge 

    f. IF a collision-free path to the goal is  

       found THEN: 

       Update time and drawing 

       CONTINUE to the next iteration 

       ELSE: 

       CONTINUE to the next iteration 

       END IF 

       END FOR 

5. Reconstruct the path to the closest node to 

the goal 

6. Apply shortcutting + Gaussian smoothing  

   (safety-checked) 

7. Set D* Lite start to the current robot position 

8. Call dstar_lite_compute_path() 

9. IF D* Lite path is found THEN: 

    Convert cells to world coordinates 

    Apply smoothing and plot 

ELSE: 

    Keep the previous final path 

END IF 

10. IF the final path is non-empty THEN: 

    Snap the robot to the nearest point on the 

path 

    Advance by robot_speed 

    Update the robot marker 

ELSE: 

    There is no motion in this iteration 

END IF 

11. IF the goal is reached within the tolerance 

THEN: 

    Stop the loop 

    Compute and print the metrics 

    END 

ELSE: 

    Update time, iter++ 

    Draw a robot marker 

    RETURN to Step 4 

END. 
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Fig. 3. Flowchart for hybrid approach (RRT*-DL) 

E. Gaussian Filter for Smoothness  

The Gaussian function refines the initial RRT* trajectory, 

which might have abrupt changes or irregularities due to 

stochastic sampling [73], [74]. This refinement guarantees 

that the path is more consistent and suitable for robotic arm 

execution. Moreover, minor irregularities or path noise are 

minimized to enhance the robot’s movement steadiness and 

suppress disturbances [75]-[77]. The sigma (𝜎) parameter 

adjusts the intensity of the filtering process; where increasing 

𝜎 leads to stronger path refinement, but may overly 

generalize the route, possibly causing obstacle hits or 

inefficient paths. The Gaussian function is generally 

expressed mathematically, with 𝜎 defining the spread of the 

Gaussian profile [78]. It refines the trajectory by convolving 

the function over a series of waypoints, and the length of the 

smoothing interval is determined accordingly. 

𝐺(𝑥) = [
1

√2𝜋𝜌2
] . 𝐸𝑥𝑝 ( 

−𝑥2

𝜎2
 ) (6) 

Where 𝐺(𝑥), 𝐺(𝑦) is the value of the Gaussian function at 

point x, y, respectively, ρ2 𝑜𝑟 σ2 is the variance of the 

distribution (σ is the standard deviation), and  √2πρ2 is a 

normalization factor to ensure that the total area under the 

curve is 1. 𝐸𝑥𝑝( −x2/σ2)  has higher values for points near 

the center (x = 0) and lower values farther from it. Each point 

on the path is recalculated as a weighted average of its 

neighbors. The weights are determined by the Gaussian 

function, where points closer to the center contribute more, 

and points farther away contribute less. The width of the bell 

curve is controlled by 𝜎 (the standard deviation), which 

affects how much smoothing is applied. In particular, σ 

determines the spread of the Gaussian function, and it refines 

the trajectory by convolving this function across a set of 

points along the route. The length of the smoothing window 

is calculated as: window length = 2 × [3𝜎] + 1. The overall 

smoothness of the trajectory is evaluated using the 

cumulative curvature, which reflects how sharply or 

frequently the path direction changes. 

Where Larger 𝜎 means more smoothing, but this may 

over-simplify the curves. On the other hand, smaller σ means 

less smoothing, preserving sharp turns. 

𝑃𝑎𝑡ℎ 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =

∑ |𝑎𝑟𝑐𝑡𝑎𝑛 (
     𝑃𝑖+2−𝑃𝑖+1

𝑃𝑖+1−𝑃𝑖
)|

𝑁−2

𝑖=1
  

(6) 

Where 𝑃𝑖  is a point (position) along the path, 𝑃𝑖+1 − 𝑃𝑖  is the 

vector representing a path segment between two consecutive 

points, (𝑃𝑖+2 − 𝑃𝑖+1)/(𝑃𝑖+1 − 𝑃𝑖) is the ratio of two 

consecutive path segments (and this is not the algebraic 

division but the change in direction), the  arctan (. ) returns 

the angle between the two segments (the change in direction), 

and ∑ ( )
𝑁−2

𝑖=1
 is the sum over all path bends from start to end. 

The total sum smooths out abrupt direction and speed 

changes, leading to more fluid robotic movement, better 

energy usage, and less mechanical stress on actuators. The D* 

Lite generates a series of distinct positions, which can be 

further refined to ensure seamless and collision-free motion 

across all path segments. In this regard, tracking and tuning 

these metrics offer a solid foundation for evaluating and 

improving the consistency and effectiveness of the path-

planning algorithm [7], [79]. When the robot resumes motion 

after a pause, it might follow a shorter route once the obstacle 

has moved. To enhance collision detection, each robotic arm 

link is divided into smaller parts, and the system checks 

whether any of these parts fall within a defined safety margin 

that triggers pausing to avoid collisions [79], [80]. 

IV. RESULTS AND DISCUSSION  

The simulation will concentrate on path generation for a 

point mass and a two-joint robotic manipulator within a time-

varying environment. It evaluates the performance of both 

methods, specifically, the standalone RRT* and the 

combined RRT*-DL algorithm. Two simulation scenarios are 

considered: one involving the point mass and another 

involving the two-link robotic arm. 

A. Case Study 1. Mass Point 

This case study evaluates the RRT* algorithm for path 

planning of a mass point in a 2D environment with a fixed 

maze and dynamic obstacles. The workspace is the entire 

rectangular area, which includes both the obstacles and the 

available regions for motion. Within this workspace, the free 

space is the region where the mass point can move safely 

without collisions. The blue rectangular blocks represent the 
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static maze obstacles, which are fixed and permanently 

reduce the free space. The red vertical bars indicate the 

dynamic obstacles, which change position over time and 

create temporary restrictions that the mass point must avoid 

during motion, as shown in Fig. 4. The RRT* incrementally 

expands a tree from the start configuration to generate a 

feasible and collision-free trajectory. Particularly, the method 

provides an initial solution but often requires higher 

computation and a larger number of iterations. The 

simulation results highlight the path length, the 

computational time, and the limitations of the RRT* in 

handling dynamic environments, as shown in Fig. 5. When 

we use the hybrid RRT*–D* Lite algorithm, the path 

planning of the mass point is done under the same maze and 

obstacle settings, as shown in Fig. 6. 

The hybrid approach combines the global exploration of 

the RRT* with the fast local re-planning ability of the D* 

Lite. This integration enables adaptive trajectory correction 

when obstacles interfere with the initial path. The hybrid 

method proves to be an amazing approach, achieving 

significant reductions in computation time, path length, and 

number of iterations compared to the standalone RRT*, as 

illustrated in Fig. 5.  

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4. Mass point path planning using the RRT: (a) initial tree expansion in the static maze with dynamic obstacles (b), (c), (d), and (e) intermediate path 

growth toward the goal with the static maze and dynamic obstacle avoidance, (f) complete collision-free path from start to goal 
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Fig. 5. The RRT* versus the hybrid approach for the mass point (the path length, no. of iterations, and path construction time) 

  

(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 6. Mass point path planning using the hybrid approach: (a) initial tree expansion in the static maze with dynamic obstacles (b), (c), and (d) intermediate 

path growth toward the goal with the static maze and dynamic obstacle avoidance and (e) complete collision-free path from start to goal 
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B. Case Study: The Two-Link Robotic Arm  

This case study investigates the performance of the RRT* 

algorithm for path planning of a two-link robotic arm in a 

constrained environment. The workspace contains a fixed 

maze together with three ball-shaped dynamic obstacles, as 

shown in Fig. 7. The left panel of Fig. 7 illustrates the RRT* 

within the robot’s workspace. 

The green region represents the free space, which 

indicates all the feasible positions where the robotic arm can 

operate without collision. In contrast, the blue rectangular 

shapes correspond to the static maze, which imposes 

permanent obstacles in the environment and defines the 

restricted zones. Additionally, the red circular regions depict 

the dynamic obstacles, which move periodically and create 

time-varying constraints in the workspace. The RRT* tree 

(blue crosses) explores the free space and gradually 

converges to construct a collision-free path (the red curve) 

from the starting point to the goal. The right panel shows the 

two-link robotic arm motion following the planned path. In 

addition, the black lines represent the two links of the 

manipulator, while the red trajectory corresponds to the end-

effector’s movement toward the goal (the green circle). 

During the motion, the arm avoids both the static maze and 

the dynamic obstacles, ensuring safe operation within the free 

space. This visualization highlights the complexity of 

planning in dynamic environments and the ability of the 

RRT* to find a feasible solution within constrained 

workspaces. The RRT* algorithm incrementally expands a 

tree in the configuration space to generate feasible joint 

trajectories while avoiding collisions. 

  

(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 7. Two-link robotic arm path planning using the RRT* (a) tree expansion and safe workspace in the static maze with dynamic obstacles (b), (c), and (d) 

manipulator motion following the planned path while avoiding obstacles and (e) complete collision-free path from start to goal 
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Although it provides a collision-free path, the method 

requires high computational effort and many iterations for 

convergence. The simulation results analyze the constructed 

path and the total computation time and highlight the 

limitations of the RRT* when applied to articulated robotic 

systems (see Fig. 8) when we use the hybrid RRT*–D* Lite 

algorithm for path planning of the two-link robotic arm in a 

dynamic workspace. The environment contains the same 

fixed maze and dynamic obstacles, as shown in Fig. 9. The 

RRT* component first constructs a global near-optimal path 

in the configuration space of the arm. When dynamic 

obstacles interfere, the D* Lite module performs local re-

planning to adapt the arm’s motion in real time. In this regard, 

the hybrid method proves to be highly effective, significantly 

reducing computation time, path length, and iteration count 

compared to the standalone RRT*, as illustrated in Fig. 8. 

 

Fig. 8. The RRT* versus the hybrid approach for the mass point (the path 

length, no. of iterations, and path construction time) 

For the mass point scenario with a fixed maze and two 

rectangular dynamic obstacles, the hybrid RRT*–D* Lite 

approach demonstrates remarkable improvements over the 

standalone RRT*. More precisely, the results show a 29% 

reduction in path length, indicating that the hybrid method 

generates a more direct and efficient trajectory. In terms of 

computational demand, the number of iterations is reduced 

by 90%, reflecting the effectiveness of local re-planning in 

avoiding unnecessary tree expansion. Moreover, the path 

construction time is reduced by 87%, highlighting the ability 

of the hybrid method to achieve faster convergence (see Fig. 

10). These improvements clearly demonstrate that the hybrid 

approach is an outstanding solution for real-time path 

planning of point-mass systems. 

For the two-link robotic arm case with a fixed maze and 

three ball-shaped dynamic obstacles, similar performance 

benefits are observed. In particular, the hybrid RRT*–D* Lite 

achieves a 10% reduction in path length, demonstrating a 

moderate yet meaningful improvement in trajectory 

efficiency for articulated systems. The number of iterations 

decreases by 27%, which reduces computational overhead 

during planning in the robot’s configuration space. Most 

notably, the construction time is reduced by 85%, confirming 

the hybrid approach’s ability to significantly accelerate 

planning even in higher-dimensional state spaces (see Fig. 

10). This outcome validates the hybrid method as a powerful 

framework for robotic manipulators, where rapid re-planning 

is crucial to avoid collisions and ensure smooth motion. 

V. CONCLUSION 

This study introduces a novel integration of RRT* and D* 

Lite tailored for robotic arms in static and dynamic 

environments, achieving significant improvements in 

runtime, path length, and search efficiency. In addition, the 

use of a re-plan threshold enhances adaptability to obstacle 

changes while maintaining efficiency. The results 

demonstrated that the hybrid approach consistently 

outperforms the standalone RRT*, achieving significant 

reductions in the path construction time, the path length, and 

the iteration count. For the mass point, the hybrid method 

achieved up to 29% reduction in path length, 90% reduction 

in iterations, and 87% reduction in time, while for the two-

link robotic arm, it achieved 10% reduction in path length, 

27% reduction in iterations, and 85% reduction in time. These 

improvements highlight the hybrid approach as a highly 

effective and adaptive strategy for real-time navigation in 

dynamic and constrained workspaces. Future research will 

focus on feasible extensions supported by the current results, 

thereby enhancing both the rigor and practical relevance of 

this approach 

Future research can extend this work in several directions. 

First, the integration of uncertainty modeling and sensor-

based perception could enhance robustness in real-world 

environments where obstacle motion is unpredictable. 

Second, applying advanced path smoothing and optimization 

techniques may further improve trajectory quality, especially 

for articulated manipulators. Finally, extending the hybrid 

framework to multi-robot systems would allow coordination 

and collision avoidance among multiple agents.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 
(g) 

Fig. 9. Two-link robotic arm path planning using the hybrid approach (a) tree expansion and safe workspace in the static maze with dynamic obstacles (b), (c) 

(d), (e), and (f) manipulator motion following the planned path while avoiding obstacles (g) complete collision-free path from start to goal 
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Fig. 10. Percentage reduction for the RRT* relative to the hybrid approach 
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